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Abstract: In Northern China, many regions and cities are located in semi-arid regions, and
groundwater is even the only source of water to support human survival and social development.
Affected by human activities, the Bashang (BS) region (including Zhangjiakou City and part of Xilin
Gol League) have showed a significant decline in groundwater levels in recent years. However,
in the BS region, the causes for the decline in groundwater level were not clear. In this study, we
used time series of multi-source data Moderate Resolution Imaging Spectroradiometer (MODIS),
Gravity Recovery and Climate Experiment (GRACE) and Global Land Data Assimilation System
(GLDAS) to analyze vegetation and groundwater changes based on linear regression models. The
variation trends of NDVI (Normalized Difference Vegetation Index, derived from MODIS) and
GWSA (groundwater storage anomaly, derived from GRACE and GLDAS) indicated the increasingly
better vegetation in the agriculture planting areas, partially degraded vegetation in the grassland,
and the declining groundwater level in the whole study region. In order to assess the impact
of human-induced factors on vegetation and groundwater, the RUEseasonal calculation model was
proposed based on RUE (rain use efficiency) in this study. The RUEseasonal calculation results showed
that human-induced factors promoted the growth of vegetation in agricultural areas and accelerated
the consumption of groundwater. In addition, we also obtained temporal and spatial distributions of
human activities-affected regions. The area affected by human-induced factors in the south-central
study area increased, which accelerated the decline in groundwater levels. From bulletin data, we
found that the increasing tourists and vegetable production are respectively the most important
factors for the increased consumption of urban water and agricultural water. Based on multi-source
data, the influences of various human-induced factors on the ecological environment were explored
and the area affected by human-induced factors was estimated. The results provide the valuable
guidance for water resource management departments. In the BS region, it is necessary to regulate
agricultural water use and strengthen residential water management.

Keywords: RUE; GRACE; MODIS; GLDAS; human-induced factor

1. Introduction

Groundwater is the world’s largest freshwater resource and plays a vital role in agricultural
irrigation and food security [1]. Globally, groundwater accounts for one third of all freshwater
withdrawals and supplies 42%, 36%, and 27% of water for irrigation, households and manufacturing,
respectively [2]. In some regions, due to excessive dependence on groundwater resources, the rate of
groundwater consumption increases and natural recharge is insufficient, thus eventually leading to a
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decline in groundwater levels [3]. This significant increase in groundwater consumption is common in
arid and semi-arid regions because surface water resources are scarce in many arid regions and people
can only support and expand agricultural production by pumping groundwater resources [1,3].

In recent years, in the northwestern part of China, except the Huang-Huai-Hai Plain, groundwater
problems become more serious. The Bashang (BS) Region includes Zhangjiakou (ZJK) City and parts
of Xilin Gol League in Inner Mongolia. The region is a typical rainfed agricultural area located in the
agro-pastoral zone in Northern China (shown in Figure 1). Since the 20th century, the land uses in
the BS region have been significantly changed. In the original landscape grasslands, food crops were
planted and led to severe wind-induced soil degradation [4]. Due to the unique geographical location
of ZJK, it is designed as a water conservation area of Beijing. However, ZJK is also an extremely
water-deficient region [5]. At present, groundwater level in the BS is declining, although precipitation
has increased in recent years. Some studies have identified that due to global warming, the temperature
in Inner Mongolia has risen significantly, and the rising rate is 0.4 ◦C per decade [6,7]. As human
activities and population increase, the shortage of water resources gradually becomes serious [5].Water 2019, 11, x FOR PEER REVIEW 3 of 23 
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Figure 1. Spatial location and elevation map of the study area.

In the past few decades, groundwater in wide regions was depleted [8], such as Haihe Plain (HP).
In the HP, about 53.7% of fresh water comes from groundwater. However, agricultural irrigation water
mainly comes from groundwater, and partial groundwater comes from surface water, which is mainly
supplied to urban citizen [9]. Due to long-term groundwater over-exploitation, shallow groundwater
in some areas has disappeared and some problems such as land salinization and land subsidence
occurred [10,11]. Climate change may directly affect the recharge of groundwater and indirectly
affect the use of groundwater. Direct impact is the climate effect on reservoirs and fluxes and indirect
effects are related to human activities [2,12,13]. As extreme weather events and population increase,
various adverse environmental effects exacerbate groundwater depletion [14,15]. Timely monitoring
of groundwater changes and human activities is of great significance for groundwater protection.
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However, due to the lack of groundwater level monitoring well in many regions, groundwater data
often cannot achieve the required spatial resolution.

National Aeronautics and Space Administration (NASA) and the German Aerospace Center
jointly developed the Gravity Recovery and Climate Experiment (GRACE) satellite mission provided
a new opportunity to monitor groundwater storage variations from space [16,17]. Since the successful
launch of the GRACE satellite in March 2002, more and more hydrologists have realized that it
can be used as a new and effective tool to measure the changes in total terrestrial water storage
(TWS) [18–21]. The groundwater storage change (GWSC) can be obtained by removing other
components in the vertical direction of the terrestrial water storage change (TWSC), including soil
moisture storage change (SMSC), surface water storage change (SWSC) and snow water equivalent
change (SWEC) [22–24]. The hydrological water balance models can also be used to simulate the
changes in global groundwater storage (GWS), but the accurate estimation of GWSC is still a challenge
due to incomplete parameters [25]. Although land surface models (LSM) cannot simulate GWSC,
they can predict the changes in soil moisture and water storage by simulating water and energy
fluxes between the land surface and the atmosphere in general circulation models [26,27]. In earlier
studies, Tapley et al. [28] and Chen et al. [29] indicated that the annual geoid variability observed by
GRACE was consistent with the annual geoid variability simulated by Global Land Data Assimilation
System (GLDAS). Subsequently, many regions with significant groundwater consumption in the world
were explored, such as India [3,30,31], California’s Central Valley, USA [32,33], NCP (North China
Plain) [11,34], and African [34–36]. In north of China, the loss trend of GWS was explored based on
GRACE data. Feng et al. [11] estimated the rate of GWS depletion from 2003 to 2010 was −22 ± 3 mm
in north of China (~370,000 km2). Huang et al. [34] divided the North China Plain into piedmont plain
and east central plain and estimated the decline rates of the two regions from 2003 to 2013 to be −46.5
± 6.8 mm/year and −16.9 ± 1.9 mm/year. Based on GRACE data, Zhong et al. [23] estimated the
decreasing rate of GWS in the West Liaohe River Basin from 2005 to 2011 to be −0.92 ± 0.49 km3/year.

BS refers to the area formed by the sudden rise of the grassland. The general BS refers to the
transition zone of Hebei Province to the Inner Mongolia Plateau, including the northern part of
ZJK and some areas of Inner Mongolia (Figure 1), and the study area covers the entire BS and ZJK
Region. From the south to the north, the study area shows the transition features (monsoon climate
to continental climate; humid zone to semi-arid zone) and is more susceptible to natural disasters
and human activities [37]. The study area is still a typical degraded ecosystem with increased human
activities. In the northern part of the study area, as natural grassland was artificially cultivated, soil
desertification intensified and many cultivated lands were abandoned by farmers. In the southern part
of the study area, the groundwater level declined due to increased agricultural production activities.
The main sources of shallow groundwater recharge in the BS region are precipitation and irrigation
infiltration. This region belongs to endorheic rive hydrogeological unit and there is less groundwater
interaction between study area and outside. Before 2000, the flow field of groundwater was in its
natural state. After 2000, due to agricultural exploitation, it was accelerated and the groundwater flow
field was changed. At present, groundwater discharge is mainly based on groundwater exploitation
and evaporation [38]. Agricultural water consumption in ZJK accounted for 73.9% of the total water
consumption in 2016 [5]. Therefore, it is necessary to conduct a more in-depth analysis on groundwater
in the region.

Previous researches in the study area were seldom performed based on remote sensing and
hydrological models, especially GRACE satellites. GRACE combined with GLDAS can provide stable
and temporal-spatial continuous groundwater change datasets for the assessment of groundwater
changes in regions without proper monitoring conditions. The study aims to the effects of vegetation
and human activities on groundwater from remote sensing, LSM and in situ measurement data. The
research route is shown in Figure 2. In the study, we estimated temporal and spatial variations of
groundwater in the BS region by combining multi-source data from 2003–2016, assessed the causes
for groundwater decline, analyzed the impact of different factors on groundwater changes, and gave
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management advices. Most importantly, we modified RUE (rain use efficiency) model and verified
that it was applicable to explore groundwater in agricultural regions with frequent human activities.Water 2019, 11, x FOR PEER REVIEW 4 of 23 
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Figure 2. Study flowchart of the groundwater decline in the BS region. GRACE: Gravity Recovery and
Climate Experiment. RUE: rain use efficiency.

2. Methods and Materials

2.1. Groundwater Decline Assessment Method

As described in Section 1, GWSC can be obtained by subtracting the variation of other components,
including SMSC, SWSC, and SWESC, from TWSC. Similarly, groundwater storage anomalies (GWSA)
can also be obtained by subtracting the anomalies of other components from TWSA (unit is centimeter),
i.e., soil moisture storage anomalies (SMSA), surface water storage anomalies (SWSA) and snow water
equivalents anomalies (SWESA) [39]:

GWSA = TWSA − SMSA − SWSA − SWESA. (1)

In the study area, SWSA is small and not considered in the calculation of GWSA. In Equation (1),
SMSA and SWESA used to derive the GWSA were estimated with four different versions of GLDAS
LSMs, including CLM, MOSAIC, NOAH, and VIC [40–43]. Many researchers showed that the changes
in groundwater storage could be successfully separated from GRACE data and that the output of
GLDAS LSMs provided the SMSA and SWESA variables in Equation (1) [32,44]. In addition to GRACE
and GLDAS data to estimate groundwater trends, in-situ measurement groundwater level data is used
to validate groundwater trends.

2.2. Assessment Method of Human-Induced Factors

Rain use efficiency was the ratio of aboveground net primary production (ANPP) to annual
precipitation in previous studies and was used to assess land degradation or improvement in arid
and semi-arid areas [45,46]. Wessels et al. [47] compared the relationship between satellite-derived
NPP divided by rainfall and annual NDVI divided by rainfall for every pixel and indicated that the
vegetation production was correlated with rainfall in most parts of South Africa. Other researchers
also found the relationship between NDVI and NPP in other study areas [48–50]. Therefore, to
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further explore the causes for land degradation, we can differentiate the effects of precipitation and
human-induced factors on vegetation based on NDVI and precipitation data. In the theoretical basis of
RUE, it is assumed that the relationship between NDVI and precipitation is nearly a linear relationship.
However, in the practical study, the intercept of the regression line is not zero. Some studies identified
that the NDVI of the irrigated area was larger than zero even when the precipitation was close to
zero [51]. If RUE is simply considered to be the ratio of NDVI to precipitation, then RUE depends on
precipitation and decreases with the increase in precipitation.

In arid and semi-arid regions, NDVI has a strong linear relationship with precipitation [52]. In
addition to climate effects, the effects of human-induced factors are also important [45,47]. The effects
of precipitation and human factors on NDVI (in pixel scale) can be quantified as:

NDVI = a × PRE + b + fhuman (2)

where NDVI is the annual mean MODIS NDVI; PRE is annual accumulated precipitation; a and b are
the slope and intercept of the regression line, respectively; fhuman is the change of vegetation caused
by human activities. If the vegetation in the study area is changed due to the influence of human
factors such as returning farmland to forests and planting structure changes, the value of fhuman is not
zero. Zhang et al. [53] modified the NDVI before calculating the RUE in order to more clearly monitor
land degradation or improvement in Badain Jaran Desert (BJD). In this study, we calculated the RUE
according to the method proposed by Zhang et al. [53]. We assumed that the human activities from
2003 to 2009 were stable. The pixel-by-pixel ordinary least squares regression was performed with the
NDVI and the precipitation and the intercept b of the stable human activity period was obtained. RUE
based on human activity stabilization period modification is defined as:

RUEmod =

(
NDVI − b2003−2009

P

)
× 10, 000. (3)

The RUEmod trend in the study area is stable, indicating that human activities in the region remain
stable or do not happen; if the RUE trend in the study area is changed, human activities in the region
promote vegetation growth, 10,000 was used here to enlarge the RUEmod value.

Due to the different types of vegetation cover in the study area, this method shows some defects
in the application in the BS region. The BS region has more precipitation and crops than the BJD
Region and groundwater irrigation is more important for vegetation growth. In the study area, the
effects of adequate precipitation and precipitation shortage on vegetation should be considered at the
same time. If human activities are assumed to be stable in earlier years, irrigation activities carried
out due to insufficient precipitation may be ignored in growth seasons. Based on the monthly data,
we accumulated the precipitation and NDVI for each season separately and analyzed the spatial
distribution of precipitation and NDVI in different years. With the season division method, we can
obtain the maximum NDVI and precipitation and minimum NDVI and precipitation in the same season
in different years. In the agricultural area, if there is sufficient precipitation, there is less irrigation and
the NDVI characteristics of the vegetation are obvious. In contrast, if there is insufficient precipitation,
irrigation is required to ensure vegetation growth. The study was mainly performed in the Q2nd (Mar,
Apr, and May) and Q3rd (June, July, and Aug) because the average temperatures in the Q1th (Dec, Jan,
and Feb) and Q4th (Sep, Oct, and Nov) were below zero and vegetation stopped growth. In the study
area, irrigation mainly occurs in the season when the hydrothermal conditions are not qualified, so
the divided season can highlight the influence of human activities. Chen et al. [54] proposed a fuzzy
pattern recognition method to evaluate the vulnerability of groundwater and calculated different types
of evaluation factors for membership degree. In this study, membership degree equation is used to
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calculate the membership degree of precipitation and NDVI in time series. The membership degree
can be calculated as follows:

ri,j =
(

xi,j − min
(
xi,j,y

))
/
(
max

(
xi,j,y

)
− min

(
xi,j,y

))
, (4)

where xi,j is the pixel in the precipitation or NDVI images; i and j respectively represent rows and
columns; max

(
xi,j,y

)
represents the maximum value of the (i, j) pixel in the entire time series (y) images

(precipitation or NDVI); min
(

xi,j,y
)

represents the minimum value of the (i, j) pixel in the entire time
series (y) images (precipitation or NDVI); ri,j is the membership degree of the current time image (i, j)
pixel for the maximum and minimum values.

The membership degrees of each pixel in the precipitation and NDVI time series images were
respectively calculated with Equation (5). Based on the calculation results of the membership degrees
of precipitation and NDVI, the impact of human activities on vegetation can be evaluated with the
RUE equation below:

RUEseasonal =
NDVI

(
ri,j
)

PRE
(
ri,j
) , (5)

where RUEseasonal indicates the extent to which human-induced factors affect vegetation growth on
each pixel and also reflect the spatial and temporal distributions of human activities; NDVI

(
ri,j
)

is
ri,j in NDVI images; PRE

(
ri,j
)

is ri,j in precipitation images. If the value of RUEseasonal is less than 1,
the precipitation can satisfy the vegetation growth and there is no significant human-induced factors
promoting the vegetation growth; if the value of RUEseasonal is higher than 1, the precipitation cannot
satisfy the vegetation growth and there is significant human-induced factors promoting the vegetation
growth. If the value of RUEseasonal is equal to 1, it indicates that the precipitation reaches the critical
point required for vegetation growth. The higher the value of RUEseasonal is, the higher the probability
that the vegetation of the pixel is affected by human-induced factors is.

2.3. Statistical Methods

This paper introduced a linear regression model to examine the temporal trend in the NDVI
dataset with time as an independent variable and NDVI as a dependent variable. The correlation
coefficient (r values) and slope of the model output represent the strength and magnitude of the
calculated trend [55,56]. The equations of slope and r values are expressed as follows:

Slope =
N ∑N

i=1 iXi −
(

∑N
i=1 i

)(
∑N

i=1 Xi

)
N ∑N

i=1 i2 −
(

∑N
i=1 i

)2 , (6)

where Slope is the change slope; i is the time corresponding to variable X and N is the quantity of
the samples.

r =
Cov(X, Y)√
Var[X]Var[Y]

, (7)

where Cov(X, Y) is the covariance of the variable X and the variable Y; Var[X] is the variance of X;
Var[Y] is the variance of Y.

In this study, the significance level of the time series linear trends of different elements was
detected based on the Mann–Kendall trend test.
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2.4. Data Collection

2.4.1. Normalized Difference Vegetation Index

Currently, Normalized Difference Vegetation Index (NDVI) has been widely used to monitor
vegetation changes at different scales [57–60]. It is defined as:

NDVI =
NIR − RED
NIR + RED

, (8)

where NIR and RED respectively represent near-infrared (~0.860 µm) and red (~0.660 µm)
surface reflectance.

The Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation Index (NDVI) product
has a variety of spatio-temporal resolutions: spatial resolutions of 250 m, 500 m, and 1000 m, and
temporal resolutions of 16 days and one month. This paper selects MOD13A3 with a spatial resolution
of 1000 m at a monthly time scale. The product can be obtained from multiple sources such as Data
pool, NASA Earthdata search and Earth Explorer. Due to the influences of clouds and snow, the data
of some winter months were not complete. We used the linear interpolation method to gap-fill the
missing data. In order to explore the trend of NDVI in the study area, the annual mean NDVI data
were obtained from the monthly NDVI.

2.4.2. Precipitation

Monthly precipitation gridded products were provided by the National Meteorological
Information Center [23,53]. This data is based on the precipitation data of 2472 stations on the
ground in China. The space interpolation was performed by Thin Plate Spline, and the monthly
Chinese precipitation data (unit is millimeter) of 0.5◦ × 0.5◦ from 2003 to 2016 were obtained. Since the
spatial resolution of the MODIS NDVI data used in this paper was 1 km×1 km, which did not match
the 0.5-degree requirement of the precipitation data, the adopted resampling method should ensure
that the precipitation data was consistent with the spatial resolution of the NDVI data.

2.4.3. Groundwater Storage Anomalies Derived from GRACE Data

Currently, there are three official agencies that offer GRACE data products: the Center for Space
Research (CSR) in Austin, the GeoForschungs Zentrum (GFZ) in Potsdam and the Jet Propulsion
Laboratory (JPL) in Pasadena [22]. In the above three research centers, CSR and JPL provide GRACE
data products respectively for two different methods, spherical harmonics (SH) and mascon solutions,
whereas GFZ only provides SH method products. The GRACE SH and mascon solution products
were based on the same GRACE Level-1 observations and time-mean baseline and both of them
used C20 [61], degree-1 coefficient corrections [62] and glacial isostatic adjustment (GIA) [63]. Unlike
mascon products, SH products need to remove north-south stripes and use Gaussian smoothing to
remove high-frequency noise in the SH coefficients [64]. The mascon products provided by CSR and
JPL were used in this study because mascon products had the higher resolution (0.5◦ × 0.5◦) and the
better S/N ratios of mascon fields. Compared with traditional SH products, the results of the mascon
products are directly derived from the original GRACE data and are not processed by empirical
filtering. However, mascon products can provide TWSA estimates comparable to SH products [65,66].
CSR mascon products (RL05_Mascons_v01) differ from JPL mascon products (RL05M_1. MSCNv02)
since JPL needs to apply mascon-set of 0.5-degree gain factors. The gain factor is a multiplication factor
that minimizes the difference between the smooth and unfiltered monthly water storage changes and
land hydrology of the model at any geographic location [67]. The JPL mascon product and gain factor
are calculated as follows:

TWSA’(x,y,t) = TWSA(x,y,t) × s(x,y), (9)

where x is longitude index; y is latitude index; t is time (month) index; s(x,y) is the scaling grid.
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Since early 2011, partial GRACE time series data are lost every year for the effective battery
management of the satellite. The linear interpolation method used in the previous study [68] was used
to obtain the CSR and JPL mascon data sets of continuous time-series.

2.4.4. Global Land Data Assimilation Systems (GLDAS)

GLDAS was jointly developed by scientists from multiple institutions, including National
Aeronautics and Space Administration (NASA), Goddard Space Flight Center (GSFC), National
Oceanic and Atmospheric Administration (NOAA), and National Centers for Environmental Prediction
(NCEP) [27]. GLDAS is a global, high-resolution, off-line ground model system that combines satellite
data with ground monitoring data to produce optimal fields of land surface states and fluxes in
near-real time. GLDAS LSMs overcome the data loss in monitoring sites missing lands and provides
time-continuous datasets [69,70]. The temporal resolution of 4 LSMs used in this study was a month
and the spatial resolution was 1◦ × 1◦. Model characteristics determine the number of vertical levels
of soil moisture. Soil depths (layers) in CLM, MOSAIC, NOAH, and VIC are 3.43 m (10 layers),
3.50 m (3 layers), 2.0 m (4 layers), and 1.9 m (3 layers), respectively. The SWS and SWES produced by
GLDAS LSMs are state variables and need to be processed with the same time-mean baseline as the
GRACE data [24]. To get better results, like some of the previous researchers, we used the aggregated
values of SMSA and SWESA produced by the four LSMs models as the other components of the
TWSA subtraction.

2.4.5. In-Situ Measurement Data

From Groundwater Level Yearbook released by China Institute of Geological Environment
Monitoring (CIGEM) [71], groundwater monitoring well observation data were obtained. However,
the collected time series of groundwater level data were not continuous data (Figure 3b). In order to
compare the trend between GWSA-derived GRACE data and groundwater level data, it is necessary
to convert the groundwater level data. GWSA data baseline is from 2004 to 2009 and the groundwater
level data also need to be converted into groundwater level anomalies (GWLA) by using the same
processing method.
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Figure 3. Time series of water storage changes from 2003 to 2016. (a) shows the monthly TWSA (derived
from CSR and JPL) and yearly PRE from 2003 to 2016; (b) shows the time series of GWSA derived
from GRACE and GLDAS. GWLA: groundwater level anomalies; JPL: Jet Propulsion Laboratory; PRE:
precipitation; CSR: Center for Space Research; EWH: Equivalent Water Height.

2.4.6. Statistical Bulletin Data

In the past ten years, human activities in the BS region changed significantly due to the expansion
of agriculture and the increasing population. The Statistics Bureau of ZJK and BS released statistical
bulletins on national economic and social development every year since 2006. At the same time, the
Water Resources Bulletin data (from 2003 to 2016) were also collected [72]. Agricultural planting
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structure changes and population changes data were obtained from the statistical bulletins. The main
data of agricultural planting structure changes include the data of food (low water consumption)
production and vegetable (high water consumption) production. It is worth noting that the population
information obtained by ZJK and Xilin Gol League mainly includes resident population and floating
population. In recent years, with the rapid development of tourism, the number of floating populations
has increased significantly, whereas the resident population has not changed significantly.

2.5. Uncertainty Analysis

At present, uncertainties exist in different GRACE products due to different processing methods
of GRACE data. Landerer and Swenson [73] provide gridded leakage and GRACE measurement
error fields, thus allowing users to strictly estimate the TWS uncertainty in the study area. Scanlon
et al. [74] selected 176 river basins as the study area and found that CSR-M, JPL-M, and CSR Tellus
gridded spherical harmonics rescaled (sf) (CSRT-GSH.sf) had the high correlation. In addition, the
uncertainty of the three data products was also estimated. Wiese et al. [67] discussed the post-treatment
of the JPL RL05M GRACE mascon solution to reduce the leakage errors introduced by the land/ocean
boundaries and the leakage errors introduced by the mascon solution.

In this study, the uncertainty of the TWSA derived from CSR-M was obtained by calculating the
residual. In the calculation of this residual, it is necessary to remove long-term trends and interannual,
annual, and semi-annual amplitudes from original signals. The 13-month moving average method can
be used to eliminate interannual signals. The root mean square of the residual was used to indicate the
uncertainty of the TWSA.

In the uncertainty estimation of TWSA derived from JPL-M, it is necessary to consider both
leakage and GRACE measurement errors. The uncertainty of the measurement has been given on the
website and the uncertainty of the measurement is given by the diagonal elements from the posteriori
covariance matrix from the gravity inversion. Wiese et al. [67] calculated the leakage error of 176 basins
by using a synthetic simulation.

In GWSA calculation, it is necessary to remove GLDAS surface water storage anomalies (SMSA +
SWESA) from GRACE-derived TWSA. The uncertainty in GLDAS surface water storage anomalies
was estimated based on the standard deviation of the time series of four GLDAS models (Common
Land Model (CLM), MOSAIC, NOAH and Variable Infiltration Capacity (VIC)).

3. Results

3.1. TWSA and GWSA from 2003 to 2016

Figure 3 shows the results of the TWSA and GWSA time series in the study area. Figure 3a shows
the monthly TWSA (derived from CSR and JPL) and yearly precipitation (PRE) from 2003 to 2016
and the shadow indicates the uncertainty of CSR-derived TWSA (±1.96 cm) and JPL-derived TWSA
(±2.31 cm), respectively. Before 2009, low precipitation did not result in a larger amplitude of the
TWSA. However, the TWSA in 2009 and 2011 declined significantly in the case of low precipitation.
After 2014, although the amount of precipitation increased, the TWSA declined more significantly.
From the perspective of time series, the decline trend of TWS in the BS region is not obvious. Compared
to the years before 2009, the amplitude of TWSA increased after 2014.

Figure 3b shows the time series of GWSA derived from GRACE and GLDAS. The grey line
represents the GWSA obtained by removing surface water storage anomalies (SMSA + SWESA)
simulated by different models (CLM, MOSAIC, NOAH, and VIC) from TWSA. The blue line and
the red line are the mean values of the GWSA calculated by the TWSA provided by CSR and JPL
and the four models, respectively. After removing surface water from TWSA, the GWSA time series
showed a significant declining trend, especially after 2013. During the whole study period from 2003
to 2016, the declining rate of GWSA derived from GRACE and GLDAS were −0.44 ± 0.18 cm/year
(CSR) and −0.37 ± 0.15 cm/year (JPL), respectively. Less precipitation in 2009 and 2011 caused a



Water 2019, 11, 473 10 of 23

significant decline in GWSA, but precipitation in 2010 and 2012 allowed GWSA to recover a stable
level in previous years. From the beginning of 2014 to the end of 2016, some worrying results were
observed. The declining rate of GWSA increased, although the increased precipitation effectively
promoted the recovery of GWSA, which did not stabilize the GWSA amplitude.

In order to obtain the spatial distributions of the TWSA and GWSA annual trends, the slope
method was used to calculate the trend of each pixel in the GRACE images. The central and southern
TWSA declined significantly in the study area (Figure 4a) and TWSA declined significantly in eastern
and central parts of the study area (Figure 4b). After removing surface water in the GLDAS model
from the GRACE data, the CSR-derived GWSA and the JPL-derived GWSA showed the consistent
declining trend, indicating that the groundwater decline rate in the southern part of the study area
was higher than that in the north.Water 2019, 11, x FOR PEER REVIEW 10 of 23 
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3.2. Vegetation Changes in the Study Area

Figure 5a shows the land cover in the study area in 2015 and Figure 5b shows the trend of the
NDVI (from 2003 to 2016). In Xilin Gol, the NDVI of the grasslands in the western region showed
a declining trend and the NDVI in the southern agro-pastoral zone showed an increasing trend.
However, ZJK showed an overall growth trend of NDVI except the northwest. The increasing trend of
NDVI was more obvious in the southern region. In ZJK, the NDVI in the agricultural area and the
forest region showed an increasing trend (Figure 5a).
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After dividing the value range of NDVI, the number of NDVI pixels with different interval values
can be obtained to more directly indicate the change of time series NDVI (Figure 6). Before 2010,
the number of pixels in the NDVI high-value interval (0.4~0.6) was stable, whereas the number of
pixels in the NDVI interval of 0.2 to 0.4 varied greatly. After 2010, the number of pixels in the NDVI
high-value interval (0.4~0.6) increased significantly. Especially after 2012, the number of pixels in the
NDVI median-value interval (0.2~0.4) also increased significantly and was stabilized. The annual
precipitation data of the time series indicated that the precipitations in 2007, 2009, and 2011 were
lower than the annual average. However, the vegetation growth in 2011 was better than that in 2007
and 2009 and the vegetation growth in 2007 and 2009 was basically the same. Naturally, vegetation
growth under the same precipitation conditions should be similar. In 2011, human activities (irrigation,
reclamation, and crop pattern change) significantly promoted vegetation growth.

3.3. RUEseasonal Calculation Results in the BS Region

Before 2010, human-induced factors in 2004, 2008 and 2009 showed the most significant influences
on vegetation growth (Figure 7a). In Q2nd of 2004, human-induced factors in the northern region
promoted vegetation growth obviously. Human-induced factors promoted vegetation growth in the
southern part of the study area in 2008 Q2nd and in 2009 Q2nd, vegetation growth in the entire
study area was affected by human-induced factors. After 2010, except that vegetation growth in the
smaller area was affected by human-induced factors in Q2nd of 2012, human-induced factors showed
significant influences on vegetation growth in other years. The precipitations in Q2nd of 2011 and
Q2nd of 2013 were respectively 46.31 mm and 31.82 mm, which were significantly lower than those in
the same period of the entire time series. The area influenced by human-induced factors in Q2nd of
2013 was larger than that in Q2nd of 2011 due to better vegetation growth in Q2nd of 2013. In recent
years, the areas affected by human-induced factors in Q2nd were more concentrated in the central and
southern regions.
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In Figure 7b, the RUEseasonal calculation result of Q3rd shows a larger variation than that in Q2nd
due to the unbalanced precipitation and more significant vegetation characteristics in every year of the
time series. There is also a significant difference in annual precipitation among different years. In the
RUEseasonal calculation results of Q3rd, the influences of human-induced factors on vegetation growth
were not significant in 2004, 2008, 2013, and 2016. We found that the precipitation in Q3rd was similar
in 2003, 2005, 2011, 2014, and 2015 (between 210 mm and 230 mm), but their NDVI were different,
as observed in the RUEseasonal results. The calculation results of RUEseasonal in both Q3rd and Q2nd
indicated that the influences of human-induced factors in the southern region of the study area were
more significant than those in the north. The difference was consistent with the analysis results of
NDVI trend.

We divided the study area into three sub-regions (Region A, Region B and Region C) to statistically
analyze the relationship between human-induced factors and groundwater changes (Figure 8). Region
A is the Xilin Gol (mainly covered by grasses); Region B is the eastern part of the study area (mainly
covered by forests and crops); Region C is the central and western regions of the study area (mainly
covered by crops and forests). In time series of Region A in Q2nd and Q3rd, NDVI or precipitation
showed no significant upward and downward trends. The NDVI of Region B and Region C showed
a clear upward trend during Q2nd and Q3rd and the precipitation of Region C in Q2nd showed
downward trend.
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The RUEseasonal results indicated the degree of mismatch between precipitation and NDVI, and
the number of pixels with RUEseasonal value greater than 1 in the statistical region could represent the
influencing degree of human-induced factors in the region. Due to the small area of the Region B, it is
not suitable to independently analyze the GWSA. In this paper, a combined analysis of GWSA was
performed for Region A and Region B. In Region A, the relationship between RUEseasonal and GWSA
in Q2nd and Q3rd was not clear. The influence of human-induced factors on vegetation was not the
main reason for groundwater reduction. In Region B and Region C, the time series of RUEseasonal



Water 2019, 11, 473 15 of 23

was negatively correlated with the time series of GWSA (CSR and JPL) in Q3rd. This indicated that
the human-induced factor that had a greater impact on vegetation in these regions was groundwater
irrigation. For the same Region A and Region B of GWSA, the reason for the decline in groundwater
level in these regions is more likely to be vegetation irrigation in Region B. In the Q2nd in Region C,
the growth characteristics of crops were not obvious due to low temperature. Conversely, Region B
had the more significant vegetation growth characteristics in the Q2nd due to the large forest area. The
crop growth characteristics of the Q2nd were not significant and there was no significant change in the
calculation results of RUEseasonal . In the Q3rd, the area affected by human-induced factors in Region
B and Region C showed a significant increase trend. Especially after 2010, the average area affected
by human-induced factors was significantly higher than that in the period from 2003 to 2010. These
results indicated that in Region B and Region C, the area affected by human-induced factors in the
Q3rd was getting larger and larger, thus accelerating the decline of groundwater level. Although the
area affected by human factors was not significantly correlated with the decline of groundwater level
in Q2nd (Figure 8b), the decline in groundwater level might be caused by irrigation. Less precipitation
did not guarantee the consumption of vegetation during the germination period, especially in 2015.

3.4. Statistical Results of Bulletin Data

By sorting out the bulletin data, we found that there was a significant increase in tourism income
and crop yields (Figure 9). After 2009, the tourism in the BS region rapidly developed (Figure 9a). In
2016, the number of tourists and tourism income were respectively increased by 10 times and 20 times
compared with those in 2006. The percentage of urban water use (including residential water, urban
public water and ecological water supply) increased from 22.8% in 2010 to 38.5% in 2015, whereas
industrial and resident populations were stable.
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Except 2007 and 2009, the grain yield in other years was stable, but the vegetable yield continued
to grow in the period between 2009 and 2014 (Figure 9b). Although there was less precipitation in
2007 and 2009, vegetable yields did not significantly reduce compared to grain yields. The increase in
vegetable yield directly lead to an increase in irrigation water consumption. According to the Water
Resources Bulletin, groundwater supply accounts for more than 80% of the total water supply and
irrigation water is the largest proportion of water consumption.

In the water resources bulletin of Hebei Province, the amount of irrigation water in ZJK was
obtained from the boundary of the administrative district. Integrating the results of the human-induced
factor evaluation index RUEseasonal , ZJK’s irrigation information was obtained. Analysis of the bulletin
data and RUEseasonal , the correlation coefficient is 0.52. This indicates that RUEseasonal can reflect the
influence of human factors on irrigation water to a certain extent.



Water 2019, 11, 473 16 of 23

4. Discussion

4.1. Does the Change in Tourism Patterns Increase Groundwater Consumption?

In this study, the groundwater level changes are shown in Figure 3b. After 2014, the downward
trend of groundwater level became more significant. Although vegetation affected by human-induced
factors increased groundwater consumption, the declining period of groundwater level was beyond
the growth period of vegetation. From the beginning of 2014 to the end of 2016, the declining duration
of groundwater level became longer (from July to February of the next year). Before 2014, the declining
duration of groundwater level in most years was from July to November. In this section, the impact of
tourism on groundwater was discussed below.

Tourism is highly dependent on freshwater resources and become an important factor of fresh
water resources in some tourism cities. Fresh water resources are consumed in different ways and the
direct ways for tourists to use water include washing and using toilets. Simultaneously, the provider
of tourism resources will provide tourists with corresponding tourism services including ski and golf
(snowmaking and irrigation). In addition, fresh water resources are also used to maintain the gardens
and landscapes of hotels and attractions [75–77]. In recent years, the tourism in the BS region has
changed from traditional tourism mode to diversified tourism mode and more and more entertainment
facilities (golf and ski) have been built in this region. Especially in 2015, the project of the 2022 Winter
Olympics in ZJK greatly stimulated the development of skiing activities. The number of tourists in
2016 increased more significantly than that in other years (Figure 8a). However, the data were refreshed
again in 2017. According to statistics data, the number of tourists in this region reached 62.598 million
in 2017. Snowmaking consume lots of water and snowmaking in the USA in May 2004 consumed
approximately 60 million m3 of water [78]. Alpine winter sports require a snow depth of ≥30 cm [79],
but natural snowfall in the study area does not meet the standard (the average annual snowfall is
less than 20 mm). Based on ski pistes length, energy consumption and information, Rixen et al. [80]
estimated the water consumption in snowmaking and calculated the water consumption required
for different lengths of ski pistes, 3 million m3 for 125 km long ski pistes consumed and 2 million m3

for 80 km long ski pistes. According to the length of ski pistes and other environmental conditions,
the water consumption in snowmaking in BS is higher. As people become more enthusiastic about
skiing, more and more people will participate in skiing. Therefore, the water resource management
department should reasonably assess the water consumption in skiing.

GWSC in the BS region in different seasons was calculated (Table 1) and the CSR and JPL data
were averaged to reduce the difference between different data resources. Dividing GWSC into recharge
results and discharge results in different seasons can help us better understand the influences of
human-induced factors on groundwater. In Q1th, GWSC increased significantly after 2011. Based
on the results discussed in this section, we believed that snow (snow-making and snowfall) melt to
supplement groundwater. In Q2nd and Q3rd, the recharge in GWSC was ascribed to precipitation
and irrigation infiltration and the discharge was mainly from irrigation. After 2011, the discharge
in groundwater in Q2nd was more significant than that in Q2nd in previous years. Although the
groundwater discharge in Q3rd did not change significantly, the recharge in groundwater was reduced
under the conditions of increased precipitation. The increase in vegetable yields is indicative of an
increase in planting area, vegetation increased the absorption of precipitation by the soil layer and
reduced infiltration. In Q4th, the groundwater recharge was zero after 2011 and groundwater discharge
was the most significant in 2015. Skiing brings tourism resources while increasing the consumption
of water. The non-agricultural water utilization in Q1th and Q4th also plays an important role in
groundwater consumption (Table 1).
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Table 1. Time series of GWSC seasonal division table.

Q1th Q2nd Q3rd Q4th
R-DR D R D R D R D

2003 0.00 2.10 1.68 0.00 2.05 1.02 0.28 3.15 −2.26
2004 1.16 0.99 1.49 0.68 2.60 0.00 0.54 2.83 1.29
2005 2.87 2.77 2.05 0.12 0.52 0.56 0.79 1.49 1.29
2006 1.09 1.45 0.60 0.70 1.95 1.36 0.27 0.80 −0.40
2007 0.90 1.09 0.64 0.00 0.36 0.76 0.33 1.86 −1.48
2008 0.70 0.30 0.93 0.79 1.25 1.61 0.44 2.06 −1.44
2009 1.45 0.00 0.68 0.31 1.02 1.11 3.81 3.15 2.39
2010 0.00 3.36 2.53 0.00 0.00 1.69 0.61 2.98 −4.89
2011 0.00 1.00 4.28 0.00 1.41 1.24 0.06 1.67 1.84
2012 1.87 0.07 0.00 2.3. 2.50 0.00 0.00 1.70 0.30
2013 2.04 0.39 0.36 0.92 0.90 1.14 1.51 0.00 2.36
2014 0.64 1.85 0.61 2.14 1.52 1.54 0.00 1.36 −4.12
2015 3.48 2.83 2.53 2.98 1.85 1.85 0.00 5.26 −5.06
2016 4.60 0.04 1.41 1.08 0.56 1.66 0.00 2.40 1.39

R represents recharge and D represents discharge. unit: mm.

4.2. Comparison of Human-Induced Factor Assessment Methods Proposed in This Study with Other Methods.

The RUE method proposed in the study was compared with other RUE calculation methods
and the RUE index was calculated in order to assess the influences of human-induced factors on
vegetation [46,49,52,81–83]. Zhang et al. [53] improved the RUE model and assessed human-induced
factors in arid regions with the improved model. Taking Region A and Region C as examples, the
annual RUEmod was not significantly correlated with GWSA. Therefore, the method cannot assess
human activities in the BS region (Figure 10, Tables 2 and 3).
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Table 2. Correlation between GWSA and RUEmod in Region A.

GWSA_CSR GWSA_JPL RUEmod

GWSA_CSR 1
GWSA_JPL 0.98 1

RUEmod 0.22 0.17 1
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Table 3. Correlation between GWSA and RUEmod in Region C.

GWSA_CSR GWSA_JPL RUEmod

GWSA_CSR 1
GWSA_JPL 0.98 1

RUEmod −0.34 −0.36 1

Propastin et al. [84] also proposed a method for assessing human-induced factors based on the
linear relationship between NDVI and precipitation in arid regions. However, human activities in
the BS region are frequent and linear regression cannot achieve the expected results (Figure 11a).
Wang et al. [48] found that average NDVI values in the growing season were highly correlated
with precipitation received during the growing season. Based on the correlation, we converted
monthly-scale data into seasonal scale. After the conversion, we could analyze the influences of
human-induced factors on vegetation more clearly. The advantage of RUEmod and liner relationship
methods were that they could reasonably assess the influences of human-induced factors in arid
regions, but these methods led to the deviations in agricultural areas with more precipitation and more
human activities.
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The study area has the same NDVI value but different precipitation in Q2nd or Q3rd (Figure 11b).
The method proposed in this paper can be used to evaluate the influences of human-induced factors on
vegetation by calculating the relative membership of each pixel (NDVI and precipitation) in time series.
The advantage of this method is that it can be used in agricultural areas and unstable precipitation areas
because both linear correlation method and the methods based on the assumption of stable human
activities were limited in the study area where the liner correlation between NDVI and precipitation
was not significant. Taking Q3rd as an example, according to the method proposed in the study, it
is assumed that the pixels with the maximum precipitation rarely require human activities, whereas
the pixels with the least precipitation require more human activities to maintain vegetation growth.
For time series pixels, if the precipitation is the same, but the NDVI is different, indicating that
human-induced factors affect vegetation growth. If NDVI is the same, but the precipitation is different,
it indicates that the pixel with less precipitation is more likely to be affected by human-induced factors.
Two cases should be considered in the calculation of RUEseasonal . In the first case, when the P

(
ri,j
)

equals 0, the calculation result of RUEseasonal will overflow. In the second case, when the P
(
ri,j
)

equals
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1, the calculation result of RUEseasonal will be no less than 1. To prevent arithmetic overflow and
misclassification, we make decisions on the calculation pixels (Equation (10)):

RUEseasonal



< 1, (P(ri,j) = 0, NDVI(ri,j) = 0)anddryland
> 1, (P(ri,j) = 0, NDVI(ri,j) = 0)andirrigation

> 1, P(ri,j) = 0, NDVI(ri,j) > 0
< 1, (P(ri,j) = 1, NDVI(ri,j) ≤ 1)anddryland
> 1, (P(ri,j) = 1, NDVI(ri,j) ≤ 1)andirrigation

(10)

where dry land and irrigation are land types of pixels.
In this study, the judgment of the pixel land type should consider the two cases of maximum

precipitation and minimum precipitation. In the rainfed land time series, when the precipitation
reaches its maximum value, the NDVI also reaches the maximum value, and vice versa. Irrigation
land is irrigated with additional water and vegetation growth varies slightly with precipitation. If
necessary, standard deviations can also be introduced to assess the stability degree of precipitation
and NDVI for decision making. Compensation can be used to remove some bad points of the results
calculated by RUEseasonal , but some bad points are still not compensated, such as NDVI influenced by
cloud. Although the method proposed in this study cannot consider all cases, it can basically meet the
application requirements.

5. Conclusions

In order to explore the causes for the decline of groundwater level in the BS region, we explore
multiple factors such as crop pattern change and tourism. After comparing various methods for
assessing the influence of human factors on vegetation, we decided to improve the RUE calculation
method and obtained RUEseasonal . Finally, the area affected by human-induced factors in different
growth seasons of vegetation in the BS region was estimated. The increased area affected by
human-induced factors accelerated groundwater consumption. Bulletin data indicated that the area
planted with vegetables increased rapidly. As vegetables consumed more water resources than grains,
groundwater consumption in Q2 and Q3rd was accelerated.

We also found that the groundwater level in the BS region still declined in Q4th (after 2014).
Due to the rapid development of skiing in the BS region, more and more ski pistes were established
in this region. Many studies showed that snowmaking required a large quantity of fresh water.
We thought that the main cause for the decline of groundwater level in the BS region Q4th was
snowmaking. Moreover, compared with previous methods, the RUEseasonal method proposed in this
paper could more effectively evaluate the influences of human factors on vegetation in the BS region,
and RUEseasonal result had a significant negative correlation with the decline of groundwater. Therefore,
the water resource management department of the BS region not only needs to manage crop pattern,
but also pays attention to the changes in social water use.

In the study, we explored the causes for groundwater level decline in the BS region and improved
the RUE calculation method for assessing the influences of human-induced factors on vegetation.
Through combining multi-source data, we explored the internal relationships of the data with different
spatial and temporal resolutions. The study provides the guidance for evaluating the influences
of human-induced factors on vegetation in the region with unstable precipitation and frequent
human activities. The GRACE-FO satellite will be launched soon, it will provide more data for
groundwater monitoring. In future research, we want to introduce more data of different sources and
use multi-source data combination methods to improve the evaluation accuracy of the influences of
human-induced factors on the environment.
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