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Abstract: As an important step for formulating a water-saving agricultural strategy, it is essential to
make quantitative calculations for orchard soil evaporation and confirm its inner mechanism, so as
to reduce ineffective water consumption and improve the utilization efficiency of water resources.
To reveal the effect of water storage pits under water storage pit irrigation conditions in orchard
soil evaporation, micro-lysimeters were used to measure the soil evaporation in two different forms
(soil surface evaporation and pit wall evaporation) under diverse irrigation systems using water
storage pit irrigation in the apple growth period of 2018. To calculate the orchard soil evaporation of
water storage pit irrigation, the pit irrigation coefficient was introduced and a model was constructed.
To illustrate the inner mechanism of orchard soil evaporation, the soil surface resistance under water
storage pit irrigation conditions was analyzed and calculated quantitatively. The results show that:
(1) introducing the pit irrigation coefficient can boost the calculation precision of the orchard soil
evaporation under water storage pit irrigation conditions; (2) when applying the soil evaporation of
the water storage pit irrigation model for calculation of the orchard soil evaporation, R2 can reach 0.92;
and (3) the mechanisms of the two orchard soil evaporation forms under water storage pit irrigation
are very different. When soil surface evaporation and pit wall evaporation were calculated by the soil
surface resistance of water storage pit irrigation model, R2 values were 0.95 and 0.96, respectively.

Keywords: water storage pit irrigation; orchard soil evaporation; energy-balance equation; soil
surface resistance

1. Introduction

The study and measurement of orchard evapotranspiration is important in the utilization and
management of the water in the orchard; its value is equivalent of the sum of crop transpiration T
and orchard soil evaporation E [1,2]. Without affecting the effective transpiration T, it is essential to
reduce the wetted areas and times on the soil surface as far as possible, which is a major technical
measure to reduce orchard soil evaporation E and enhance water use efficiency [3]. In 1998, the water
storage pit irrigation (WSPI) method [4] was put forward by Xihuan Sun. This irrigation method is
suitable for orchards in northern arid and semi-arid regions, which can effectively reduce orchard soil
evaporation E. In the past two decades, research on the WSPI method has made breakthroughs in
various aspects [5–7], which includes the main technical parameters of the WSPI method, soil water
infiltration characteristics and simulation, nitrogen transport characteristics and simulation, and fruit
tree root growth characteristics and simulation. Due to the special field engineering structure of
WSPI, the main sources of orchard soil evaporation are the surface and the pit wall. There is a great
difference between surface evaporation and pit wall evaporation in the function mechanism. In a WSPI
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orchard, due to the existence of the water storage pits, the underlying surface is abruptly changed,
and the evaporation source in the pits is the soil of the pit wall. The micro-climate environment with
high humidity and low wind speed in the water storage pits is very different from the atmospheric
environment. The material and energy exchange interface between the water storage pits and the
atmosphere is the total area of the pit opening. Therefore, the underlying reason of this paper is that
the existence of the water storage pit changes the exchanged mode for the soil of the pit wall and the
atmosphere in terms of material and energy. This paper attempts to explore this difference from the
perspective of the soil evaporation mechanism.

The soil surface resistance, that is, the diffusion resistance of water vapor from the evaporation
front of the soil through the moist soil layer to the surface dry soil layer [8], is generally expressed by rs.
It mainly depends on the surface soil water content [9], water vapor pressure, soil temperature gradient,
matrix potential, pore diameter, and air turbulence occurring at the soil-atmosphere interface, and so
on. At the earliest, thanks to the comparison between unsaturated soil evaporation and saturated soil
evaporation, soil surface resistance has been introduced to explain the transmission of water vapor
from evaporation surface to soil surface by Slatyer et al. [10] and Monteith et al. [11]; Fuchs et al. [12]
assumes that there is a saturated water vapor plane within the soil, firstly quantitatively describing the
soil surface resistance:

rs
s = (λρε/P)(es − e∗s )/LE (1)

In 1982, Shu Fen Sun [13] proposes:

rs
s = 0.335 + 0.035(θs/θ)2.3 (2)

This empirical formula is based on the surface saturated water content and volumetric water
content. The pre-condition for the application is that when the aerodynamic resistance was calculated,
the atmosphere was assumed to be a neutral layer. Therefore, rs

s would be underestimated, and
the calculation of evaporation would be relatively large. Afterwards, other authors have raised the
empirical formulas based on the surface soil water content, field capacity or saturated water content
under different underlying conditions, and the parameters of empirical formulas are determined based
on the field test data [14–17]. Park et al. [18] and Qiu et al. [19] establish a numerical model to evaluate
the effect of litter layer on evaporation. Li Yan et al. [20] propose the evaporation resistance and soil
evaporation model under the condition of stubble coverage, and the parameters are determined based
on the experimental data. Haghighi et al. and Or et al. [21,22] propose the soil surface resistance
model with a bluff body dry surface, which can accurately estimate the latent heat flux of bare soil
and intermittent cluster landscape. However, the above research results are not applicable to the
calculation of orchard soil surface resistance under WSPI conditions. This is due to the existence
of water storage pits in the WSPI orchard, which changes the evaporation source of the orchard.
Therefore, there are two forms of soil surface resistance (soil surface resistance of the surface rs

s and
soil surface resistance of the pit wall rp

s ) in the WSPI orchard. In addition, for the special field layout
mode of WSPI, the model of soil surface resistance, sensible heat flux and latent heat flux have not
been proposed in any previous studies. Therefore, this paper attempts to study the soil evaporation of
WSPI orchard from the perspective of soil surface resistance.

The development of a future evaporation model shall be corrected based on the previous model
or undergo coupling with the original models under different meteorological conditions, vegetation
types and underlying conditions. In this way, it should be a practical model with simple structure, high
precision, few parameters and be easily accessible. The objectives of this paper are: (1) to construct
the orchard soil evaporation model under WSPI

(
LEwsp

)
on the precondition of considering the WSP

effect; (2) to further explore the evaporation mechanism of WSPI; and (3) to provide a theoretical basis
for the achievement of real-time prediction of orchard soil evaporation under WSPI and further field
promotion of WSPI.
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2. Materials and Methods

2.1. Experimental Site Description

This experiment was conducted in an apple orchard at Shanxi Academy of Agricultural Sciences,
situated in Taigu County, Jinzhong City, Shanxi Province (37◦23′ N, 112◦32′ E). The average elevation
of the test site is 781.9 m. The orchard experiences a warm temperate continental monsoon climate that
is typical of the Loess Plateau. Wind and sand are cold and dry in winter and spring and are affected
by polar dry cold air mass. Rains in summer and autumn are hot and heavy and are affected by the
highs of the subtropical Western Pacific and the lows of the Indian Ocean. Here, the mean annual air
temperature is approximately 9.8 ◦C. The mean annual rainfall amounts to 459.6 mm, and rainfall
between June and September accounts for approximately 70% of the annual precipitation. The frost
period is from early October to mid-April, and the frostless season lasts 175 days. The soil texture is
mainly loam, the average soil bulk density is 1.47 g·cm−3, the field capacity is 30%, and the saturated
water content is 50%. The physical parameters of the test soil are within a depth of 0–2 m (see Table 1).
During the apple growth period in 2018, the rainfall was 347.6 mm, the mean air temperature was
20.17 ◦C, the mean minimum air temperature was 13.36 ◦C, the mean maximum air temperature
was 27.48 ◦C, the mean wind speed was 16.04 km·h−1, and the mean net radiation was 169.9 W·m−2.
The relative air humidity was 74.11%. The daily variation of basic meteorological factors is shown in
Figure 1.

Table 1. Physical Parameters of Experimental Soil.

Depth (cm) Field Capacity
(cm3·cm−3)

Saturated Water Content
(cm3·cm−3) Soil Bulk Density (g·cm−3) Soil Texture

0–30 0.3 0.51 1.49 sandy loam
30–70 0.28 0.52 1.44 sandy loam

70–120 0.29 0.44 1.50 sandy loam
120–170 0.32 0.5 1.51 Loam
170–200 0.3 0.52 1.45 Loam
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Figure 1. Diurnal variation of basic meteorological factors in apple growth season of 2018: (a)
Description of net radiation (Rn) and precipitation (Pr); (b) Description of air temperature (Tmean)
and wind speed (v).
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2.2. Experimental Design

The experiment was conducted from April to October during the 2018 apple season. The research
object of the experiment was ten-year-old, three-stage rootstock, dwarf Fuji apples. The apple trees
were planted from north to south, with a plant spacing of 2 m and a row spacing of 2 m. The test
controlled the irrigation amount by measuring the soil water content. The trees were irrigated when the
soil water content reached the lower limit of the irrigation threshold. Three treatments were set up, and
each treatment was repeated three times. Test treatments are as follows: the WSPI1 treatment’s upper
and lower irrigation limit in the growth season was 60% and 80% of the field capacity, respectively;
the WSPI2 treatment’s upper and lower irrigation limit in the growth season was 70% and 90% of
the field capacity, respectively; the WSPI3 treatment’s upper and lower irrigation limit in the growth
season was 80% and 100% of the field capacity, respectively. The irrigation date and total amount of
water applied is listed in Table 2. Each tree was filled with 320 L each time; lots of 320 L of water were
poured into 4 water storage pits. The average irrigation amount of each water storage pit was 80 L.
The field experimental layout of the WSPI is shown in Figure 2.

Table 2. Irrigation date and total amount of water applied under water storage pit irrigation (WSPI)
conditions (L).

Growth Season Irrigation Dates
Treatments

WSPI 1 WSPI 2 WSPI 3

germination stage 05.04 320 320 320

branch shooting stage

05.15 320
05.28 320 320
06.12 320
06.23 320 320
07.02 320

fruit expanding stage
07.28 320 320
08.23 320 320
09.12 320 320

Total irrigation amount 960 1600 2560Water 2019, 11, x FOR PEER REVIEW 5 of 15 
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2.3. Experimental Methods

The meteorological data was measured using the Adcon_Ws wireless automatic weather
monitoring station in the middle of the orchard, which mainly included: precipitation, air temperature,
relative humidity, wind speed, and wind direction. Data acquisition was performed every 15 min.

The small meteorological data of water storage pits were obtained using an NK-3500 handheld
meteorological instrument (Li-cor company, Lincoln, NE, USA). The measured parameters included
wind speed, temperature, and relative humidity. Data were collected from the pit mouth of 10 and
30 cm at 8:00 a.m., 2:00 p.m., and 6:00 p.m. on the test day.

The evaporation of WSPI was measured using micro-lysimeters. The layout of the measuring
points is shown in Figure 2. Each tree was equipped with 5 micro lysimeter measuring points. Three
points were at 20 cm, 60 cm, 100 cm from the tree on the surface, and two points were evenly arranged
along the pit wall (see Figure 2). The measurement time was 8:00 a.m. on the test day. An electronic
balance with an accuracy of 0.01 g was used. Additional tests were required after irrigation or rainfall.

The surface soil water content (0–3 cm) was measured using a drying method. Leaf area index
(LAI) was determined using an LAI− 2200 canopy analyzer (Li-cor company, Lincoln, NE, USA).

2.4. Energy-Balance Equation

The measurement of evapotranspiration (ET), evaporation (E) and transpiration (T) requires
complex, expensive instruments and complicated data algorithms and interpretation [23]. Using the
energy balance equation to calculate evaporation E is a convenient method. The surface energy balance
equation could be found in the references [24–26]:

LE + H = Rs
n − G (3)

where LE, H, Rs
n and G represent latent heat flux, sensible heat flux, net radiation, and surface soil

heat flux, respectively
(
W·m−2). The expressions of G [6] and H [27] are expressed as follows:

G = α
(

Ts(i) − Ts(i−1)

)
(4)

H = ρcp
Ts − Ta

ra
a + rs

a
(5)

where Ts(i), Ts(i−1) represent the mean surface soil daily temperature of day i and day i − 1,
respectively (◦C), α is a common coefficient

(
α = 0.38

0.0864
)
, ρ is the mean air density at constant pressure(

1.29 kg·m−3), cp is the specific heat of moist air at constant pressure
(

1.013× 103 J·kg−1·◦C−1
)

,
Ts is the mean surface soil temperature (◦C), Ta is the mean air temperature (◦C), ra

a is the
aerodynamic resistance at the reference height

(
s·m−1), rs

a is the aerodynamic resistance from surface
to canopy

(
s·m−1).

2.5. Evaluation of Model Performance

IBM SPSS Statistics23 and MATLAB R2014b were used for data analysis and calculation, and the
charts were made using Excel. To evaluate the effects of the relevant factors involved in two types of
the soil surface resistance under a WSPI condition, a multivariate stepwise regression analysis was
performed. Standardized regression coefficients with significance level (p < 0.05) were accepted as
the coefficients of the regression equations. Partial correlation coefficients were used to reflect the
correlation of two types of soil surface resistance to each individual correlative factors. The slope of
linear regression, the coefficient of determination

(
R2), the root mean square error (RMSE), and the

Nash-Sutcliffe efficiency (NSE) were used to evaluate the consistency between predicted and measured
values to quantify model performance.
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NSE = 1− ∑N
i=1(Pi −Oi)

2

∑N
i=1
(
Oi −O

)2 (6)

where Pi, Oi represented the predicted and measured values, respectively, and N was the total number
of test measurements.

3. Model Construction

3.1. Pit Irrigation Coefficient fp

As a deep, three-dimensional and new type of irrigation method, the WSPI method is evenly
equipped with numerous cylinder-shaped water storage pits at a spot under the canopy layer, half the
distance from the tree stem (here, there were -four water storage pits for each tree with a diameter of
300 mm and a depth of 400 mm). The field engineering layout for WSPI mainly includes the excavation
of water storage pits, fortifying measures for pit walls, and anti-seepage measures for the pit bottoms.
The water-saving mechanism of this irrigation method is designed to reduce the vertical movement of
irrigation water as much as possible and promote its horizontal movement along the pit wall. Thus,
irrigation water can directly reach the root system, and wet area of the surface can be reduced. In brief,
this method can achieve the double effects of reducing deep leakage of water and invalid orchard
soil evaporation.

There are two forms of orchard soil evaporation under WSPI conditions: soil surface evaporation
(ES) and pit wall evaporation

(
Ep
)
. The two forms of evaporation differ greatly in mechanism because

of their different environments. The evaporation source of the water storage pit is the pit wall, but its
water-heat exchange interface with the atmosphere is the total area of the pit opening. Therefore, in a
bid to make a precise calculation of the orchard soil evaporation capacity under WSPI, the ratio of the
total area of the pit opening to the occupation area of a single fruit tree is defined as the pit irrigation
coefficient fp. These two forms of evaporation are calculated as follows:

fp =
Swspp

Swsp
(7)

where Swspp is the water–heat exchange area of the water storage pit under WSPI, namely the total
area of the pit opening

(
m2), and Swspp = 4× 3.14× 0.152 = 0.2826; Swsp is the occupation area of one

single apple tree
(
m2), and Swsp = 2 ∗ 2 = 4. The pit irrigation coefficient fp under WSPI in this study

was set to 0.07065.

3.2. Latent Heat Flux under the WSP Effect LEwsp

In the energy system of a WSP irrigation orchard, the net radiation absorbed by the soil is
calculated by the Beer’s exponential decay law:

Rs
n = Rnexp(−c·LAI) (8)

where Rs
n is the net radiation absorbed by orchard soil under WSP irrigation

(
W·m−2), Rn is the solar

net radiation
(
W·m−2), LAI is leaf area index, c is the extinction coefficient of the vegetation for net

radiation. When the surface soil water content is low, the temperature and albedo are high, which
leads to less net radiation fluxes into the soil. As the paper loses sight of the fact that c is bound to
change with the change of the vegetation throughout its whole growth period, its approximate value
shall be taken as 0.5 [28–30].

There are two small energy systems in the surface-pit energy system of the WSPI orchard,
namely the orchard surface soil energy system and the orchard water storage pit energy system.
In the orchard surface soil energy system, the absorbed net radiation is divided into the latent
heat flux (LEs), the sensible heat flux (Hs), and the soil heat flux (Gs) of surface soil

(
W·m−2),
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Rs
n = LEs + Hs + Gs. In the orchard water storage pit energy system, the absorbed net radiation is

divided into latent heat flux
(

LEp
)
, sensible heat flux

(
Hp
)

and soil heat flux
(
Gp
)

of the pit wall(
W·m−2), and Rs

n = LEp + Hp + Gp.
Therefore, the pit irrigation coefficient fp is introduced, and the orchard latent heat flux under

WSPI
(

LEwsp
)

could be simplified as follows:

LEwsp =
(
1− fp

)
LEs + fpLEp (9)

LEwsp =
(
1− fp

)
(Rs

n − Hs − Gs) + fp
(

Rs
n − Hp − Gp

)
(10)

where LEwsp is the orchard latent heat flux under WSPI condition
(
W·m−2).

The calculation formulas of Hs and Hp are as follows;

Hs = ρcp
Ts − Ta

rs
a + ra

a
(11)

Hp = ρcp
Tp − Ta

rs
a + rp

a + ra
a
= ρcp

Tp − Ta

rs
a + ra

a
(12)

where Ta, Ts and Tp represent average temperature of surface soil, atmosphere, pit wall soil respectively
(◦C). As the paper believes that the water-heat exchange interface between the water storage pit and
the atmosphere is the total area of the pit opening. Therefore, when calculating the sensible heat flux of
the pit wall, its aerodynamic resistance rp

a is negligible, the approximate value could be regarded as 0.
The calculation formulas of ra

a and rs
a are as follows [30];

ra
a =

1
ku∗

ln
(Zre f − d0

hc − d0

)
+

hc

nkh

{
exp
[

n
(

1−
z0 + dp

hc

)]
− 1
}

(13)

rs
a =

hcexp(n)
nkh

{
exp
(
−

nZ0g

hc

)
− exp

[
−

n
(
Z0 + dp

)
hc

]}
(14)

where k is the Karman’s coefficient (k = 0.41), Zre f is the reference height Zre f = 2 (m), Z0 is the
theoretical roughness Z0 = 0.13hc (m), dp is zero plane displacement dp = 0.63hc (m), hc is the plant
height (m), taking 2 m, Z0g is the rough length of the ground (m), taking 0.02 m, u∗ is the friction
velocity

(
m·s−1), kh is the eddy diffusion coefficient

(
m2·s−1), n is the eddy diffusion decay constant,

d0 is zero plane displacement of canopy (m). All terms are calculated as follows [30].
The calculation formulas of Gs and Gp are as follows

Gs = α
(

Ts(i) − Ts(i−1)

)
(15)

Gp = α
(

Tp(i) − Tp(i−1)

)
(16)

where Ts(i), Ts(i−1) represent the daily average temperatures of orchard surface soil at day i and day i
− 1 (◦C), respectively. Tp(i), Tp(i−1) represent daily average temperature of orchard pit wall soil at day
i and day i − 1 (◦C), respectively.

In conclusion, with the combination of pit irrigation coefficient fp and the energy balance equation,
Equation (10) is the WSPI orchard soil latent heat flux calculation model LEwsp, which is proposed in
this paper. Equations (11)–(16) are the calculation formulas of the parameters in the LEwsp model.

Figure 3 shows the linear relationship between the predicted and measured values of the surface
soil latent heat flux LEs, the pit wall soil latent heat flux LEp, and the orchard soil latent heat flux
LEwsp, respectively. When applying the model to simulate LEs, LEp, and LEwsp, the slope of the
linear equation reaches: 0.94, 0.94, and 1.20, the fitting degrees

(
R2) are 0.94, 0.93, and 0.93, and the

root mean square error (RMSE) and Nash-Sutcliffe efficiency (NES) values can be found in Table 3.
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This indicates that the orchard evaporation capacity under WSPI conditions could be calculated in an
accurate manner.
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Figure 3. The linear relationship between the predicted and measured values of latent fluxes under
WSPI: (a) LEs; (b) LEp; (c) LEwsp.

Table 3. Results of root mean square error (RMSE) and Nash-Sutcliffe efficiency (NSE) when simulating
LEs, LEp and LEwsp

(
W·m−2).

LEs LEp LEwsp

RMSE 6.58 1.00 7.98
NSE 0.93 0.92 0.81

3.3. Comparison of Two Types of Soil Surface Resistance under WSPI

Three stages should be followed during the period of soil evaporation: the stabilization stage
of the evaporation rate, the declining stage of the evaporation rate, and the water vapor diffusion
control stage. Each stage is controlled by the soil water content, which is the underlying reason for
the different evaporation stages. The effects of soil water content on different evaporation stages is
mainly reflected in the soil surface resistance. For the special field irrigation engineering of WSPI,
the underlying surface was abruptly changed by the water storage pits, which further affects the
orchard soil water–heat exchange form. Therefore, to describe the orchard soil evaporation under the
WSPI conditions from a microscopic point of view, it is necessary to explore the characteristics of soil
surface resistance and conduct a quantitative calculation.

There are two forms of soil surface resistance under the WSPI condition, the soil surface resistance
of the surface rs

s and the soil surface resistance of the pit wall rp
s , which could be calculated as

follows [31]:

LEs = L·hs − ha

ra + rs
s

(17)

LEp = L·
hp − ha

ra + rp
a + rp

s
= L·

hp − ha

ra + rp
s

(18)

hs = h′s·exp
[

ϕsg
R(Ts + 273.16)

]
=

1.323exp
(

17.27Ts
Ts+237.3

)
Ts + 273.16

·exp
[

ϕsg
R(Ts + 273.16)

]
(19)

hp = h′p·exp

[
ϕpg

R
(
Tp + 273.16

)] =
1.323exp

(
17.27Tp

Tp+237.3

)
Tp + 273.16

·exp

[
ϕpg

R
(
Tp + 273.16

)] (20)
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ha =
2.185

273.16 + Ta
·ea =

2.185
273.16 + Ta

·RH
100
·0.6108exp

(
17.27Ta

Ta + 237.3

)
(21)

ra =
1

uk2 · ln
(Zre f − dp + ZH

ZH

)
· ln
(Zre f − dp + Zm

Zm

)
(22)

where L is latent heat of vaporization
(

L = 2.45× 106 J·kg−1
)

, hs and hp are air absolute humidity of

the surface and the pit wall
(
kg·m−3), ha is the air humidity

(
kg·m−3), ra is aerodynamic resistance(

s·m−1), ϕs and ϕp are water potentials of the surface and the pit wall respectively (m), g. is

gravitational acceleration
(
m·s−2), R is cosmic gas constant

(
R = 8.314 J·mol−1·K−1

)
, RH is air

relative humidity (%), Zm is surface roughness of momentum flux (Zm = 0.123hc = 0.246 m), ZH is
the surface roughness of heat flux (ZH = 0.1Zm = 0.0246 m).

The multiple stepwise regression analysis between the soil surface resistance of the pit wall
rp

s and the factors of net radiation flux into the soil (Rs
n), the leaf area index (LAI), the soil water

content of the pit wall
(
θp
)
, the air relative humidity (RH), the relative air humidity in the pit

(
RHp

)
,

the surface mean temperature of the pit wall
(
Tp
)
, the air average temperature (Ta), and the difference

between surface mean temperature of the pit wall and the air average temperature
(
∆Tp

)
are shown in

Table 4. For rp
s , factors of RHp, θp, and ∆Tp were included in the multiple stepwise regression analysis,

which constituted significant factors (p < 0.05) with partial correlation coefficient of 0.893, −0.557, and
0.417, respectively. RHp, ∆Tp, and rp

s were in a positive correlation while θp and rp
s are in a negative

correlativity. This result is very different from previous research on soil surface resistance. When the
air humidity in the pit begins to decline after reaching the maximum level in the wake of irrigation or
precipitation, the same phenomenon was observed in the water content of the pit wall. It can be seen
from Table 4 that the partial correlation coefficient of RHp is at the top value, so the daily evaporation
intensity of the pit wall is not the maximum at the beginning, but is a gradually increasing process.
During this process, the air humidity of the pit decreases step by step, while θp and ∆Tp remain at the
original level. Generally, the daily evaporation intensity of the pit wall reached the peak after several
days of irrigation or rainfall, and relative air humidity in the pit and soil water content of the pit then
decreased with the gradual rising of ∆Tp, until the daily evaporation intensity of the pit wall gradually
decreased towards stability. This result is basically in agreement with the results from Guo [6]. Rs

n,
RH, Tp, and Ta had no significant effect on the soil surface resistance of the pit wall, which is related to
the special microclimate environmental conditions of high humidity, approximate zero wind speed,
and the small amount of net radiation in the pit. Therefore, the influence of Rs

n, RH, Tp, and Ta on rp
s

is weakened.

Table 4. Results of multiple stepwise regression analysis between soil surface resistance (rs
s and rp

s ) and
significant factors in apple season of 2018.

Dependent
Variable

Independent
Variable

Standardized
Regression
Coefficients

t
Statistical

Value

Probability
Value

Partial
Correlation
Coefficient

F Statistical
Value

Significant
of F

Multiple
Correlation

Coefficient R2

rs
s (Constant) 14.505 <0.001 127.237 <0.001 0.833

θ −0.825 −11.931 <0.001 −0.858
∆Ts 0.143 2.072 0.043 0.279

rp
s (Constant) −6.741 <0.001 148.458 <0.001 0.899

RHp 0.763 14.028 <0.001 0.893
θp −0.259 −4.743 <0.001 −0.557

∆Tp 0.146 3.241 0.002 0.417

A multiple stepwise regression analysis was conducted between the soil surface resistance of the
surface rs

s and the factors of net radiation flux in the soil (Rs
n), the leaf area index (LAI), the surface

soil water content (θ), the relative air humidity (RH), the daily mean wind speed (v), the soil surface
mean temperature (Ts), the air average temperature (Ta), and the difference between soil surface mean
temperature and air average temperature (∆Ts) as shown in Table 4. For rs

s, factors of θ and ∆Ts were
included in the multiple stepwise regression analysis. θ was the significant factor for rs

s (p < 0.01) and
was in a negative correlation, of which the partial correlation coefficient was −0.858. This result is
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consistent with the results of [14–18]. ∆Ts was another significant factor for rs
s (p < 0.05), and showed

a positive correlation with the partial correlation coefficient of 0.279. During the irrigation process,
the irrigation water will be directly poured into the pit and reach the root system along the pit wall.
In this way, the influence on orchard surface soil water content θ is small. Therefore, the impact on the
orchard soil surface evaporation is relatively small. During the rainfall process, the orchard surface
soil water content θ increases significantly and rs

s decreases, so rainfall has a greater impact on surface
evaporation. The effect of Rs

n, RH, v, Ts and Ta on evaporation depend on the wet state of the soil
surface, and the above factors have no significant effect on the soil surface resistance in the WSPI
orchard. This is because the surface soil water content is maintained at a low level in the absence of
precipitation. In the current study, the leaf area index (LAI) had no significant effect on the two forms
of soil surface resistance, which may be related to the focus of this paper. The research objects were
dwarf apple trees, and the range variation of LAI was small during the entire growth period (with
an average of 2.88, a standardized deviation of 0.46, a minimum value of 1.98, and a maximum value
of 3.78).

Therefore, the rs
wsp model has been proposed in the paper, with the following expression formula:

rs
wsp =

{
rs

s = −91.214θ + 85.255∆Ts + 1512.281
rs

p = 36.841RHp − 7.208θ + 121.589∆Tp − 1493.804
(23)

The variables are the same as above.

3.4. Verification of the Model

In order to verify the model proposed in the paper, it is essential to verify the experimental data
from 24 May to 31 May 2018.

Figure 4 indicates the linear relationship between the predicted and measured values of the
orchard soil latent heat flux by the LEwsp model and the scatter plot of the absolute value of relative
error. When the LEwsp model was used to simulate the orchard soil latent heat flux under WSPI,
the slope of the linear equation was 1.092 with a fitting degree R2 of 0.916 and a root mean square error
of 6.4801. The absolute value of the relative error was basically less than 20%.Water 2019, 11, x FOR PEER REVIEW 11 of 15 
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Figure 4. (a) The linear relationship between the predicted and measured values of LEwsp; (b) Scatter
plot between observed daily and absolute value of relative error.

Figure 5 shows the linear relationship between the predicted and measured values of the surface
soil latent heat flux LEs. and the pit wall latent heat flux LEp using the rs

wsp model. It can be seen in
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Figure 5 that the slopes of the linear equation reached 0.95 and 0.98, the fitting degrees
(

R2) were 0.95
and 0.96, and the root mean square error (RMSE) values were 4.75 and 0.75, respectively.
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Figure 5. (a) The linear relationship between the predicted and measured values of LEs; (b) The linear
relationship between the predicted and measured values of LEp.

4. Discussion

4.1. Comparison of Different Soil Resistance Models under WSPI

The calculation of soil surface resistance is generally based on an empirical formula, a
semi-empirical formula, or the perspective of physics. Some of the most common formulas with
high precision can be found in Table 5.

Table 5. The types and sources of Soil surface resistance models.

Model Source

rs
1 =

{
33.5 + 3.5(θs/θ)2.3 θ/θs > 0.45
−805 + 4140(θs − θ) θ/θs > 0.45

Camillo [15]

r2
s = rsmin

(
2.5 θF

θ − 1.5
)

Zhang et al. [16,17]

rs
wsp =

{
rs

s = −91.214θ + 85.255∆Ts + 1512.281
rs

p = 36.841RHp − 7.208θ + 121.589∆Tp − 1493.804 This study

Notes: 1 θ is the soil water content at 0–3 cm of the surface layer, θs is the surface layer saturated soil water content e
(taking 50%), θF is the surface layer field capacity (taking 30%), rsmin is the soil surface resistance, when the soil
water content reaches to θF , this paper takes 100 s·m−1 [15].

The linear relationship between the predicted and measured values of LEs and LEp by using the
different soil surface resistance models in Table 5 is shown in Figure 6. Using the rs

1, rs
2, and rs

wsp

models to simulate LEs, the slopes of the linear equation reached 0.26, 0.74, and 0.95, respectively,
the fitting degrees reached 0.73, 0.91, and 0.95, respectively, the root mean square error values reached
28.51, 14.35, and 4.75, respectively, and the Nash-Sutcliffe efficiency reached −1.02, 0.49, and 0.94,
respectively. Using rs

1, rs
2, and rs

wsp models to simulate LEp, the slope of the linear equation reached
13.98, 9.20, and 00.98, respectively, the fitting degree reached 0.17, 0.28, and 0.96, respectively, the
root mean square error values reached 222.43, 113.65, and 0.75, respectively, and the Nash-Sutcliffe
efficiency reached −3629.14, −946.769, and 0.96, respectively.
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Figure 6. (a) The linear relationship between the predicted and measured values of LEs by the rwsp
s

model; (b) The linear relationship between the predicted and measured values of LEp by the rwsp
s model.

The above analysis shows that there is little difference between the rs
s model and other commonly

empirical formulas calculating the surface soil latent heat flux, while a substantial difference exists
between the rp

s model and the common empirical formulas calculating the pit wall latent heat flux.
The reason for this is that pit wall evaporation is obviously inhibitory and affected by the air relative
humidity of the pit. Moreover, the absolute value of the partial correlation coefficient of RHk is higher
than the absolute value of the partial correlation coefficient of θp to rp

s . Therefore, rp
s is proposed for

the special small environment in the water storage pit, and reveals the evaporation mechanism of the
pit wall from the microscopic point of view.

4.2. Effects of Three Experimental Treatments on Soil Evaporation under WSPI

Using the soil evaporation data of the WSPI orchard in 2018, the cumulative evaporation of
the surface soil, the pit wall, and the total soil were calculated under different irrigation treatments.
It can be seen in Figure 7 that the relationship of the cumulative evaporation of surface soil under
three different irrigation treatments is WSPI1 < WSPI2 < WSPI3; the relationship of the cumulative
evaporation of pit wall soil under three different irrigation treatments is WSPI1 < WSPI2 < WSPI3;
the relationship of the cumulative evaporation of total soil under three different irrigation treatments is
WSPI1 < WSPI2 < WSPI3. It can be seen that soil water content is one of the important factors affecting
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soil evaporation, and soil evaporation increases with soil water content. Under the three different
irrigation treatments, the soil evaporation of the surface was greater than that of the pits, and the
surface evaporation of WSPI1, WSPI2, and WSPI3 was greater than that of the pits by 15.10%, 7.15%,
and 20.27%, respectively. The surface soil moisture content is low, so the surface soil evaporation is
small; at the same time the area of the water storage pit is small, and the micro-climate environment
with high humidity and low wind speed in the pits, so the evaporation of pits is relatively small. In
summary, it is the reason for water saving in the WSPI orchard.
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Figure 7. (a) Cumulative evaporation of surface soil under different irrigation treatments; (b)
Cumulative evaporation of soil in water storage pits under different irrigation treatments; (c) Total
cumulated evaporation of soil under WSPI by different irrigation treatments.

5. Conclusions

Considering the WSPI effect on the orchard soil evaporation under the WSPI condition, the pit
irrigation coefficient fp was defined to reach the goal of precise calculation in relation to the two
types of orchard soil evaporation under WSPI. In this paper, the pit irrigation coefficient fp and the
energy balance equation were used to establish the LEwsp model for WSPI, whose variables were easily
obtained, and the precision was high. Therefore, it is recommended that the LEwsp model is applied
when it comes to quantitatively predicting orchard soil evaporation under WSPI conditions.

From the microscopic perspective of analyzing the orchard evaporation mechanism of WSPI,
this paper employed multiple stepwise regression analysis between the soil surface resistances of
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WSPI (including rs
s and rp

s ) and the influencing factors. θ. and ∆Ts. were the significant factors of rs
s

(p < 0.05). RHp, θp, and ∆Tp. were the significant factors of rp
s . (p < 0.05). The rwsp

s . model was then
established. When the rwsp

s . model was used to calculate LEs and LEp, the RMSE 4.7502 and 0.7546,
respectively. The aerodynamic resistance in the pit rp

a was neglected during the calculation period, so
the model needs to be further refined to improve its precision in future research.
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