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Abstract: The purpose of this study is to reduce the uncertainty in the generation of rainfall data
and runoff simulations. We propose a blending technique using a rainfall ensemble and runoff

simulation. To create rainfall ensembles, the probabilistic perturbation method was added to the
deterministic raw radar rainfall data. Then, we used three rainfall-runoff models that use rainfall
ensembles as input data to perform a runoff analysis: The tank model, storage function model,
and streamflow synthesis and reservoir regulation model. The generated rainfall ensembles have
increased uncertainty when the radar is underestimated, due to rainfall intensity and topographical
effects. To confirm the uncertainty, 100 ensembles were created. The mean error between radar
rainfall and ground rainfall was approximately 1.808–3.354 dBR. We derived a runoff hydrograph
with greatly reduced uncertainty by applying the blending technique to the runoff simulation results
and found that uncertainty is improved by more than 10%. The applicability of the method was
confirmed by solving the problem of uncertainty in the use of rainfall radar data and runoff models.

Keywords: rainfall ensemble; blending technique; runoff analysis; uncertainty

1. Introduction

Climate changes caused by human activities are affecting the frequency and intensity of extreme
weather phenomena and causing rises in temperature, changes in precipitation and precipitation
patterns, and rising sea levels. In recent years, Korea has also suffered from frequent local storms and
typhoons due to climate change [1,2]. It is necessary to predict rainfall and runoff accurately and many
methods have been sought to reduce flood damage. It is especially important to minimize rainfall
damage by assessing the reliability of rainfall with characteristics of high rainfall intensity in the short
term, such as heavy rainfall. However, it is difficult to quantify and predict the characteristics of rainfall
by measuring rainfall from a ground gauge because rainfall shows a wide range of spatiotemporal
variability. Radar rainfall data can be used to predict and observe changes in rainfall in real time,
but the data are estimates of rainfall based on indirect observations through the reflectivity from
airborne bodies. Therefore, there are problems of accuracy and uncertainty.

Many studies related to the uncertainty of radar rainfall data have been conducted to solve these
problems. Chiang et al. studied radar rainfall data correction and used a dynamic artificial neural
network to estimate the quantitative precipitation (QPE) from radar data [3]. Seck at al. evaluated three
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geostatistical interpolation techniques, ordinary kriging (OK), conditional merging (CM), and kriging
with an external drift (KED), to merge radar and rain gauge data at high temporal resolutions [4].
Adirosi et al. compared precipitation measurement algorithms, measured by drop size distributions
(DSD), and evaluated the impact of the instrumental errors on these algorithms [5]. Kuriqi calibrated
the radar data for the Grenoble region affected by altitude and geomorphology, and confirmed that the
radar was undervalued and overestimated due to the screening and ground clutter effect [6]. Kang et al.
performed radar rainfall corrections and compared them with ground rainfall data. They used the
SWMM model to simulate runoff [7]. Kim et al. used the Kalman filter (KF) and low pass filter (LF) to
remove noise from the radar data and the result showed that the KF was better than the LF, based
on BDS (Brock–Dechert–Scheinkman) statistics [8,9]. BDS statistics can be applied to the estimated
residuals of any time series model and used as a model selection tool.

One way to evaluate the spatiotemporal uncertainty of radar rainfall data is to generate rainfall
ensembles that can occur. Germann et al. proposed a method in which an error field is added to
radar observations to generate radar precipitation ensembles [10,11]. Dai et al. developed a rainfall
estimation model that can quantify uncertainties in deterministic and random errors, based on the
conditional distribution of errors in radar and ground rainfall data. This was achieved using the
elliptical copula and Archimedean copula functions [12]. Kang et al. proposed a probabilistic method
for expressing the uncertainty of radar rainfall data and applied it to a rainfall event to evaluate the
applicability of a technique proposed to generate rainfall ensembles [13].

The uncertainty in runoff prediction has been studied extensively, but the uncertainty in runoff

models has been relatively neglected, compared to the model structure and the parameter correction of
each model. Bates and Granger applied economic concepts to hydrology to reduce the uncertainty of
runoff results [14]. Al-Safi et al. used a conceptual lumped-parameter rainfall-runoff model (HBV model) to
assess the impact of climate change and found that results show a noticeable reduction in the mean annual
streamflow during the mid-century, particularly for the RCP4.5 relative to the current streamflow [15,16].
McLeod et al. first introduced combined forecasting, where multiple flow-forecasting models are weighted
and combined, which is now recognized as the blending technique [17]. The blending technique is a
method of reducing the uncertainty of models by combining several models to obtain improved prediction
results, and its application is increasing [18,19]. Ajami et al. applied various blending techniques
to the results of the international Distributed Model Intercomparison Project (DMIP), such as the
simple multi-model average (SMA) technique, the multi-model super ensemble (MMSE) technique,
the modified multi-model super ensemble (M3SE) technique, and the weighted average method
(WAM). They compared and analyzed the results [20].

Previous studies attempted to solve the spatiotemporal errors of the radar, but converted radar
rainfall could not be solved completely because of a large error in radar reflectivity. In order to use
radar rainfall in the hydrology field, the uncertainty of rainfall should be expressed by generating
possible rainfall ensembles that can reflect spatiotemporal errors. However, there are only a few studies
on rainfall ensembles that can describe the uncertainty of rainfall. In the present study, we generated
rainfall ensembles using a probabilistic method to express uncertainty of rainfall. The runoff analysis
was performed using the three runoff models (the tank model, the SSARR model, and the storage
function model) with rainfall ensembles as input data. Three blending techniques were applied to
reduce uncertainty, and the optimal runoff hydrograph was obtained.

2. Methodology

Figure 1 shows a diagram of the study. We created probabilistic rainfall ensembles using ground
and radar data to determine the uncertainty because radar rainfall data have spatiotemporal errors.
The generated rainfall ensembles were used as input data for three runoff models to perform a runoff
analysis. The runoff results differ among runoff models, even though the same input data are used,
because of the difference in model structures and assumptions of each runoff model. Therefore, we applied
blending techniques to reduce the uncertainty and calculated the optimal runoff hydrograph.
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Figure 1. Diagram of the study.

2.1. Rainfall Ensemble Technique

A small value added to radar data is called a perturbation, and a combined field with perturbation
is called a rainfall ensemble. The basic concept of applying ensembles to radar rainfall data is shown
in Equation (1). The radar data calculated through the radar observation are deterministic, so it is
possible to generate ensembles by adding uncertainty to the radar data. The combined field of the
radar data (Rt) at time t with the ith perturbation (δt,i) added is expressed as follows:

Φt,i = Rt + δt,i (i = 1, 2, · · · , N) (1)

where:

• Φt,i = the rainfall ensemble at time t (mm/h);
• Rt = the radar data at time t (mm/h);
• δt,i = the ith perturbation generated at time t given the spatiotemporal errors of radar rainfall

(mm/h);
• N = the number of perturbations to be generated. More than 50 random numbers should be

generated to show the uncertainty of the random error in the radar data [21].

The uncertainty (δt,i) in radar data is based on the time–space error structure of the radar rainfall
data. Given the amplification characteristics of uncertainty (δt,i), the observation errors between ground
and radar data can be defined in units of decibels (dB), using Equation (2).

εt = 10log10

(Gt

Rt

)
(2)

where:

• εt = the ratio of ground rainfall to radar rainfall, the observation error at time t (dBR);
• Gt and Rt = the rain-gauge rainfall and radar rainfall at time t expressed in units of rainfall

intensity (mm/h).

Rain-gauge rainfall is a point value, while radar rainfall is an area value. Therefore, the grid value
of the radar rainfall on location at the rain-gauge station is used when calculating the residual, using
Equation (2). It is necessary to simulate the spatiotemporal error of the rainfall to generate rainfall
ensembles. To this end, spatial and temporal correlation coefficients were applied in order to model
the error structure of radar rainfall data. First, Equation (2) is used to calculate the observation error of
the radar and ground rainfall data, and then the mean error is calculated using Equations (3) and (4)
to reflect the weights at corresponding times. Weighting is necessary to avoid irrelevant samples
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erroneously having large influence. By setting the weight to the observed precipitation like wt,xk = Rt,xk ,
we force the expected value of the ensemble for a given location to be equal to the original unperturbed
component at that location [9]. The weight is the ratio of the radar rainfall during the time tth step to
the cumulative radar rainfall at location k.

µk =
1∑Q

t=1 wt,xk

wt,xkεt,xk (3)

where:

• k = the location of the observation station in the watershed;
• Q = the number of time step;
• xk = the location of the radar grid corresponding to observation point k;
• εt,xk = the observation error at k and time t (dBR);
• wt,xk = the weight of observation error at k and time t (dBR);
• µk = the mean error at observation point k (dBR).

The covariance was estimated using the calculated mean error. The covariance among the
observation points refers to the spatial variability, which is also used in the process of estimating
temporal errors. The diagonal matrix of the covariance matrix is easily estimated using Equation (4),
and the spatial covariance is estimated using Equation (5).

Ckk =
1∑Q

t=1 w2t,xk

Q∑
t=1

w2
t,xk

(
εt,xk − µk

)2
(4)

Ckl =
1∑Q

t=1 wt,xk wt,xl

Q∑
t=1

wt,xk wt,xl ×

(
εt,xk − µk

)
×

(
εt,xl − µl

)
(5)

where:

• Ckk = the variance at point k;
• Ckl = the covariance between point k and l;
• Q = the number of time step.

For a number of rainfall observing stations n, the covariance matrix Ckl has a dimension of n× n.
The temporal correlation coefficient is calculated using Equations (6) and (7) with the mean error (µk)
and the weighted rainfall covariance (Ckl) to consider the temporal correlation.

r1,xk =

∑Q−1
t=1 wt,xk wt+1,xk

(
εt,xk − µk

)
×

(
εt+1,xk − µk

)
Ckk

∑Q−1
t=1 wt,xk wt+1,xk

(6)

r2,xk =

∑Q−2
t=1 wt,xk wt+2,xk

(
εt,xk − µk

)
×

(
εt+2,xk − µk

)
Ckk

∑Q−2
t=1 wt,xk wt+2,xk

(7)

where:

• r1,xk , r2,xk = the time lag correlation coefficient (lag 1, 2) at point k.

The rainfall ensemble must reflect the spatial and temporal error of the rainfall. So, it is
necessary to generate correlated random numbers. The covariance representing spatial correlation
can be decomposed into a lower triangular matrix (L) by the Cholesky decomposition algorithm.
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The Cholesky decomposition method is used to generate two or more correlated random numbers.
In the case of a symmetric matrix (C), a lower triangular matrix can be used, such as Equation (8).

C = LLT (8)

where:

• C = Symmetric matrix;
• L = Lower triangular matrix.

The resulting covariance is decomposed into a lower triangular matrix (L) by the Cholesky
decomposition, and the perturbation (δt,i) is expressed as multiplying L by a random number and
adding the mean error (see Equation (9)). The resulting perturbation (δt,i) is applied to Equation (1) to
generate radar rainfall ensembles.

δt,i = µ+ Lyt,i (9)

where:

• µ = the mean error calculated by the kriging interpolation technique using µk (dBR);
• yt,i = the random number range from 0 to 1 allocated for the generation of ensembles, which is

randomly generated values to represent uncertainty.

However, Equation (9) is a time-independent perturbation value and it is necessary to consider
temporal correlation, depending on characteristics of continuous rainfall. Dai et al. confirmed that
uncertainty of radar rainfall is related to the time correlation coefficient of less than three hours [22].
By combining the parameters of the AR(2) model, estimated by Priestley with Equation (9), it is possible
to estimate the perturbation reflecting the spatial and temporal correlation like Equation (10) [9].

δt,i = µ+ υδ′t,i (10)

δ′t,i = Lyt,i − a1,iδt−1,i − a2,iδt−2,i (11)

a1,k = r1,xk

r2,xk − 1

1− r1,xk
2 , a2,k =

r1,xk
2
− r2,xk

1− r1,xk
2 , υ =

 1 + a2,k(
1− a2,k

)
×

(
1− a1,k + a2,k

)
×

(
1 + a1,k + a2,k

) 
−0.5

(12)

where:

• δ′t,i = perturbation field having autocorrelation and the perturbation at time (t−1) and (t−2) (mm/h);
• a1,k, a2,k = parameters estimated by Yule–Walker equations. a1,k, a2,k can be estimated using the

time delay correlation coefficient (r1,, r2) at point k;
• υ = rescaling factor calculated as the square root of the variance of the AR(2) model.

2.2. Multiple-RunoffModel

2.2.1. Tank Model

The tank model is a conceptual rainfall runoff model developed by Sugawara in 1961 [23].
The groundwater layer structure is modeled with tanks in the vertical direction to represent a
watershed and perform a runoff analysis [24]. The tank models are intended to simulate either flood
events or long-term runoff from a watershed, which is simulated by a combination of storage vessels.
These models are mostly classified as deterministic, lumped, linear, continuous, and time-invariant
models [25]. Tank models have the advantage of being applicable in places with insufficient observation
data or watersheds where observation is difficult. The model structure is simple, and a small number
of input data and parameters are required for runoff analysis.
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2.2.2. SSARR Model

The streamflow synthesis and reservoir regulation (SSARR) model was developed in 1956 by the
U.S. Corps of Engineers for the planning, design, and operation of water resource management [26].
The basic tracking equation adopted in the model is the storage equation, which is a continuity equation
that is normally used for basins, watersheds, or reservoirs:

It = Ot +
dSt

dt
(13)

St = TsOt (14)

where:

• It, Ot = the quantities of inflow and outflow at random time t (m3/s);
• St = the quantity of storage (m3);
• Ts = the storage constant.

Equation (14) is rewritten as the relationship between two random points, as Equation (15):

[(I1 + I2)/2− (O1 + O2)/2]∆t = S1 − S2 (15)

The subscripts 1 and 2 denote the starting and ending points, respectively, Im is the average
inflow during ∆t, and ∆t is the computingtime interval. When applying Equation (14) to Equation (15),
Equation (16) is obtained as a tracking equation:

O2 = O1 + ∆t(Im −O1)/(Ts + ∆t/2) (16)

The flow rate can be calculated by repeating the calculation process with the flow rate O2 calculated
in Equation (16) as the next starting flow rate.

2.2.3. Storage Function Model

The storage function model (SFM) is a flood runoff model developed by Kimura in 1961 for
mountainous watersheds [27]. The flood discharge occurring in the natural state is an unsteady flow
that changes very slowly. The storage function model can be interpreted with these characteristics.
The nonlinearity characteristic of flood runoff can be fully considered.

The storage function model classifies the watershed into three conceptual areas according to the
runoff characteristics: The runoff area, the infiltration area, and the percolation area. The runoff area is
an impervious area that contributes to the runoff of rainfall from an early stage. The infiltration area
contributes to the runoff after a certain amount of soil saturation occurs, following the infiltration of
the rainfall into the surface. Finally, the percolation area is where rainfall runs off into the subsurface
without directly contributing to river runoff. The watershed runoff and the channel runoff for the
storage function model are estimated by Equations (17) and (18), respectively.

Q =
A

3.6

[
( f1ql) + (1− f1)qsa,l

]
+ Qi (17)

n∑
i=1

fiIi −Ql = dSl/dt (18)

where:

• A = the area of the target watershed (km2);
• Qi = the quantity of channel inflow (m3/s);
• Ql = the quantity of channel outflow (m3/s).
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2.3. Blending Technique

2.3.1. Multi-Model Super Ensemble (MMSE)

Many blending techniques have been proposed for the combination of multiple models, such as
the use of simple or weighted averages for the predicted values of the model, multiple linear regression
analysis, and Bayesian model averaging. The multi-model super ensemble (MMSE) technique is one of
the common multi-model prediction methods in weather forecasting [28]:

(QMMSE)t = Qobs +
N∑

i=1

xi
(
(Qsim)i,t −

(
Qsim

)
i

)
(19)

where:

• (QMMSE)t = the multi-model prediction value at time t (m3/s);
• (Qsim)i,t = the flow of the ith model at time t (m3/s);

•

(
Qsim

)
i
= the mean flow of the ith model at time t (m3/s);

• Qobs = the mean observed value (m3/s);
• xi = the regression coefficient of each model of the N number of models, which can be obtained by

regression analysis.

2.3.2. Simple Model Average (SMA)

The SMA technique is a multi-model ensemble method proposed by Georgakaos in 2004 [18].
The SMA technique evaluates the ensemble runoff simulation, based on mean value analysis. The mean
value of each model is obtained and compared at each time:

(QSMA)t = Qobs +
N∑

i=1

(Qsim)i,t −
(
Qsim

)
i

N
(20)

where:

• (QSMA)t = the multi-model prediction value at time t obtained by the SMA equation (m3/s);

• Qobs = the mean observation value during the observation period (m3/s);
• (Qsim)i,t = the flow of the ith model at time t (m3/s);

•

(
Qsim

)
i
= the mean flow of the ith model during the entire period (m3/s).

2.3.3. Mean Squared Error (MSE)

The mean squared error (MSE) technique uses simulated runoff and the mean squared errors of
each model to obtain the overall MSE and applies it as a weight to present runoff curves of multiple
models into a single integrated runoff curve. In other words, the MSE technique calculates a single
integrated runoff curve by using weights obtained from the correction of a single model, based on its
performance, and then combining multiple models:

MSEi =
N∑

i=1

(
Qt

i
−QSM−t

i
)2

(21)

Wi =
MSEi

−1∑N
i=1 MSEi−1

(22)

QSME =
N∑

i=1

QSM−t
i
×Wi (23)
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where:

• Qt
i = the observed flow at time t (m3/s);

• QSM−t
i = the flow of the ith model at time t (m3/s);

• MSE = the mean square error of the ith model, calculated using QSM−t
i.

The lower the MSE value, the higher the accuracy of the model is. Therefore, the reciprocal of
the MSE value was taken like Equation (22), and the model with higher performance was assigned a
higher weight. By multiplying and adding the simulated runoff of each model by the weight obtained
from Equation (22), the integrated multi-model estimation (QSME) in Equation (23) is obtained.

3. Result and Discussion

3.1. Study Area and Data Collection

The Jungrang Basin is located in the central metropolitan area of the Korean Peninsula and was
selected as the target watershed. Jungrang Basin is located in the lower part of the Han River, and there
are many rainfall stations. Thus, it is easy to compare the rainfall data of stations with the radar rainfall
data and generate ensembles. The watershed area of Jungrang Basin is 299.60 km2 and the watershed
length is 32.80 km. The average width and altitude of the watershed are 8.1 km and EL. 107.2 m,
respectively. Jungrang Basin is next to a major urban river and a highly populated area with a high
potential risk of flooding.

Figure 2 shows the watershed of Jungrang River, the rainfall stations, and the river. The rainfall
stations in Jungrang Basin include Uijeongbu, Dobong, Gangbuk, Nowon, and Jungrang. Rainfall data
from five rainfall stations near Jungrang Basin were collected to take into account the spatial continuity
of radar rainfall data. For the radar data, we used S-band radar data from the Gwanak Mountain
station, which is operated by the Korea Meteorological Administration. They cover radii of 240.25 km
(KWK) and record volume scans of reflectivity and Doppler velocity. The volume scan of the KWK
radar includes observations at 12 elevation angles (0◦, 0.4◦, 0.8◦, 1.2◦, 1.6◦, 2.0◦, 3.0◦, 4.2◦, 5.7◦, 7.5◦,
9.8◦, 12.5◦). The correction of radar data was performed using the self-consistency of dual polarization
parameters to convert the parameters that are not affected by the system error to the reflectivity [29,30].
The KNU-HSR method developed by Kyungpook National University was used for rainfall estimation.
KNU-HSR is a method to improve the accuracy of rainfall estimation by using rainfall echo of the
nearest radar bin without being affected by topographic echo and beam shielding [31]. In this study,
the reflectivity–rainfall intensity (Z–R) relationship used for rainfall estimation is Z = 219R1.36, and the
rainfall intensity can be expressed as Equation (24).

R(Z) = 1.9× 10−2Z0.735 (24)

where:

• R(Z) = the rainfall intensity (mm/h), estimated using the reflectivity (Z, mm6/m)

The rainfall events and rainfall station sites are shown in Table 1. Both radar and ground rainfall
data were collected at 10-min intervals at the point of rainfall observations.
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Table 1. Rainfall events and characteristics of radar data.

Rainfall Event 12 July 2013 20:00 to 13 July 13:00/
25 July 2015 14:00 to 25 July 23:00

Rainfall Station Yangju, Gwangneung, Uijeongbu, Dongdaemun, Dobong, Gangbuk, Nowon,
Sungbuk, Jungrang, Sungdong, Gwangjin

Radar data: KWK Radar

Latitude, longitude 37.4439◦, 126.9639◦

Spatial resolution 250 m

Scam elevation 0◦, 0.4◦, 0.8◦, 1.2◦, 1.6◦, 2.0◦, 3.0◦, 4.2◦, 5.7◦, 7.5◦, 9.8◦, 12.5◦

Radar height 641 m

Wave length 11 cm

Beam width 0.9◦

Accumulated rainfall for each rainfall event is shown in Figure 3. Event 1 shows a continuous
rainfall pattern with a low intensity of less than 5 mm and Event 2 shows a rainfall pattern with a high
intensity of more than 10 mm in a short time. Figure 4 shows the movement of rainfall in the northeast
direction. In the case of localized rainfall, such as Event 2, the ground observation station can’t know
the spatiotemporal characteristics of rainfall and the radar has the disadvantage of underestimating
the rainfall. Therefore, in this study, we try to know the spatiotemporal characteristics of rainfall by
generating a rainfall ensemble.Water 20182019, 1011, x FOR PEER REVIEW  10 of 19 
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3.2. Generation of Rainfall Ensemble

The spatial error of radar rainfall data consists of the mean error and a covariance matrix. Using the
methods described in Section 2.1, the observation error was estimated using the difference between
the rainfall intensities of ground rainfall gauges and radar. In order to calculate the observation error,
a true value must exist but there is no standard for this. In this study, the observation error was
estimated with the assumption that the ground rainfall is the true value. Since the observation error is
estimated based on the ground rainfall, the runoff obtained using the generated ensemble can express
the uncertainty based on the runoff obtained using the ground rainfall.

An interpolation method should be used for spatial distribution because the mean error obtained
by Equation (3) is a point value. Ordinary kriging, which minimizes the error variance without bias of
the kriging estimation equation, is used for the spatial distribution of the mean error. Figure 5a shows
the result of the interpolation, using the mean error at each station. If the mean error is larger than 0,
the radar rainfall is underestimated compared with the ground rainfall. If it is smaller than 0, the radar
rainfall is overestimated.Water 20182019, 1011, x FOR PEER REVIEW  11 of 19 
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Figure 5. Mean error and digital elevation models (DEM) of Jungrang Basin.

The mean errors of observation stations are in the range of 1.808–3.354 dBR, and the radar rainfall
is underestimated at all observation points. In particular, relatively large observation errors exceeding
2.7 dBR were calculated at the Uijeongbu, Dobong, and Sungbuk observation stations. When comparing
these stations with the digital elevation models (DEM) of Jungrang Basin (Figure 5b), the observation errors
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were high in high-altitude areas. At low-altitude sites along the stream (Gangbuk, Nowon, and Jungrang),
the observation error was relatively low (less than 2.2 dBR). Dobong and Gangbuk observation stations
have a low altitude, but there are more than 500 m of mountain area on the left side. As a result, the radar
rainfall was underestimated and the mean error was estimated to be relatively high at about 2.93 dBR.
It was considered that the radar rainfall underestimated the actual rainfall due to the mountain effect.

To generate a perturbation (δt,i) using Equation (9), the covariance must be estimated. We obtained
the covariance matrix between observation stations using Equations (4) and (5), and the results are shown
in Figure 6. Figure 6a indicates the matrix generated from the estimation of the covariance among stations.
Since the upper and lower sides of the diagonal line are symmetric matrices with the same value, the lower
triangular matrix was produced by Cholesky decomposition, as shown in Figure 6b.

Since an ensemble is a way to express uncertainty, a sufficient number of ensembles must be generated.
In this study, 100 perturbations were generated using Equation (9) to generate an ensemble that could
express the uncertainty of rainfall. Figure 7 shows the maximum and minimum rainfall ensembles obtained
at a chosen time. The minimum ensemble showed a maximum rainfall of 16 dBR, while the maximum
ensemble showed a maximum rainfall of 35 dBR, indicating a substantial error of 19 dBR.Water 20182019, 1011, x FOR PEER REVIEW  12 of 19 
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3.3. Runoff Analysis of Multi-RunoffModels

The result obtained from each model is shown in Figures 8–10. Figure 8 shows the runoff result of the
tank model. The observation data matched well with the radar data at the peak runoff and at the peak
time. However, considering the overall runoff from the initial to the peak runoff, the simulated ground
rainfall matches the observed runoff patterns best. Figure 9 shows the result of runoff of the SSARR model.
From the runoff result of the radar rainfall, the peak runoff time occurs faster than the observed runoff,
even if the correction is performed. This demonstrates the spatiotemporal problems of radar rainfall data.
Figure 10 shows the result of runoff of the storage function model. Compared with the other models,
the storage function model simulates the initial runoff with relatively high accuracy (see Table 2).Water 20182019, 1011, x FOR PEER REVIEW  13 of 19 
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Figure 10. Runoff hydrograph using storage function model.

Table 2. Performance statistics of initial runoff simulation.

Model
Index R2 RMSE

Rain Gauge Radar Rain Gauge Radar
Tank model 0.86 0.92 57.57 48.60

SSARR model 0.88 0.72 58.30 85.47
Storage function model 0.91 0.92 42.83 60.67
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3.4. Estimation of Optimum Runoff Hydrograph Using the Blending Technique

The runoff simulation results of all three models varied from model to model, even though the
same rainfall data were used. Figures 11–14 show the results with the blending techniques after
integrating the runoff results of the models. Figures 11a, 12a, 13a and 14a show the runoff results of the
models using the ground rainfall, radar rainfall, the maximum ensemble, and the minimum ensemble.
Figures 11b, 12b, 13b and 14b show the runoff results in a single runoff curve, which are obtained by
applying the three blending techniques, using the runoff results of the three hydrologic models as input
data. The results of the blended runoff for each rainfall data reflect the observed runoff quite well.
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Three blended runoff hydrographs were derived for each rainfall event. It is necessary to choose
an optimal blending runoff curve that is least different to the observed runoff. To verify the efficiency
of each blending runoff curve, the optimal blending runoff curve was estimated using three evaluation
methods: The mean absolute error (MAE), the root mean squared error (RMSE), and the mean absolute
percentage error (MAPE). The results are shown in Tables 3–6.

Table 3 shows the evaluation index obtained by comparing the three blending techniques with the
observed runoff using the ground rainfall data. The MMSE blending technique showed the best result
with an error of around 5.1% and was selected as the optimum blending runoff hydrograph for the
ground rainfall data. Table 4 shows the results of using the radar rainfall data. The radar rainfall also
showed the best result with MMSE with an error of around 9.2%, so it was selected as the optimum
blending runoff hydrograph for the radar rainfall data as well.

Tables 5 and 6 show the results of using the minimum and maximum rainfall ensemble data.
The ensemble rainfall data indicate the level of uncertainty of rainfall. However, the blending technique
is used to reduce the uncertainty, based on the observed runoff data. When the ensemble rainfall data
are applied to the blending technique, the uncertainty of the rainfall disappears. Therefore, instead
of using the MMSE blending technique with the lowest error, we used the MSE blending technique
with the highest error as the optimum blending runoff hydrograph for the ensemble rainfall data to
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express the uncertainty of ensemble rainfall. The optimal blending technique for each rainfall data is
summarized in Figure 15. The runoff curves for all three rainfall data are close to the observed runoff.

The accuracy of the rainfall ensembles and the blending techniques was evaluated by applying
different rainfall events. The events from 14:00 to 23:00 on 25 July 2015 were selected for the verification,
and the results are shown in Figure 16. During the verification event, the MMSE method again
showed the best result with an error of 7.03–9.46%, and the MSE method showed high uncertainty of
11.31–46.93%. This confirms that the results of the hydrologic models simulated the observed runoff

well when the rainfall ensembles and the blending techniques were applied.

Table 3. Evaluation of blending technique using rain gauge data.

Index
Blending

MMSE SMA MSE

MAE 9.420 14.874 12.486
RMSE 16.279 20.885 20.243
MAPE 0.051 0.084 0.061

Table 4. Evaluation of blending technique using radar data.

Index
Blending

MMSE SMA MSE

MAE 14.859 28.001 26.665
RMSE 19.757 33.496 33.209
MAPE 0.092 0.161 0.141

Table 5. Evaluation of blending technique using maximum ensemble data.

Index
Blending

MMSE SMA MSE

MAE 30.121 33.889 73.337
RMSE 34.607 39.996 82.431
MAPE 0.230 0.200 0.563

Table 6. Evaluation of blending technique using minimum ensemble data.

Index
Blending

MMSE SMA MSE

MAE 13.611 25.562 49.102
RMSE 17.535 30.723 57.938
MAPE 0.171 0.307 0.469
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Figure 15. Optimum runoff hydrograph using the blending technique.
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4. Conclusions

This study generated probabilistic rainfall ensembles with error between radar and ground rainfall
data to confirm the uncertainty of rainfall. Blending techniques were applied to the results of several
runoff hydrologic models to determine a single runoff hydrograph. The results are summarized
as follows:

1. To generate rainfall ensembles, the errors of observed data and the radar data were modeled.
The rainfall ensembles showed that the uncertainty of the rainfall ensemble was high when
the radar was underestimated, due to topographic effects such as rainfall intensity and
mountain shielding;

2. A runoff analysis was performed to confirm the uncertainty of the runoff models by using station
rainfall data, radar rainfall data, and ensemble rainfall data in the tank model, SSARR model,
and the storage function model. Even with the same rainfall data, the runoff results of the models
were all different, which confirmed the uncertainty of the runoff models;

3. To reduce the uncertainty of the runoff models, three integrated runoff curves were generated by
applying three blending techniques (MMSE, SMA, and MSE) to the runoff results of the three
models. The results showed that the MMSE blending runoff curve showed an error of around
5.1%, compared to the observed runoff when using the station rainfall data, and around 9.2%,
compared to the observed runoff using the radar rainfall data. Therefore, the MMSE blending
technique was selected as the optimum runoff hydrograph;

4. A verification event was used to confirm the results. The MMSE technique showed the best result
with an error margin of 7.03–9.46%, while the MSE technique showed the highest uncertainty
with an error margin of 11.31–46.93%.

Taking into account the results obtained in this study, the uncertainty of radar rainfall was
expressed by generating a rainfall ensemble and reducing the uncertainty of the runoff model by
applying the optimal blending technique. A rainfall ensemble reflecting the temporal and spatial error
of rainfall can help make more efficient decisions in flood warning.
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