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Abstract: The surfaces of saline lakes are shrinking at a threatening rate worldwide. Likewise,
the Uchhali complex (formed by three saltwater lakes located in the Salt Range, Pakistan) that serves
as a major regional source of water for humans and as a habitat for water birds must be monitored.
With this objective in mind, we conducted a study coupling hydrochemistry and stable isotope
compositions (δ37Cl, δ18O and δD) in order to characterize its hydrochemical properties and the
main processes controlling them. Results showed that the Uchhali complex salinity has dramatically
increased compared to other similar lakes in the world. While the Uchhali (UL) and Khabbeki
(KL) lakes present a sodium-chloride hydrofacies, the Jahlar (JL) is of a sodium-bicarbonate type.
Hydrochemistry parameters indicate that the weathering of surrounding rocks is the major vector for
the increase of total dissolved solids in the water. On the other hand, the observed enrichment in heavy
isotopes of the water stable isotope compositions implies that the different lakes are undergoing a long
history of intense evaporation. The study of the corresponding δ37Cl isotope compositions supports
the conclusion that evaporation, along with weathering, are the main driving processes. Besides
climate effects that result in the decrease of annual precipitation and the increase of evaporation,
water consumption for domestic purposes (household and agriculture) aggravates the rise of the
lakes’ salinity.

Keywords: saline lakes; the salt range; hydrochemistry; δ37Cl; δ18O; δD

1. Introduction

Water is the key governing element for economic and eco-environmental developments in arid
and semi-arid regions of the world [1]. Water resources, such as groundwaters (GW), lakes, wetlands
and saline lakes, play a dominant role in the development and ecology of a given region [1]. Rural and
urban areas in arid zones rely on these sources for their daily requirements [2]. With an increasing
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population and development, the demand for water resources is increasing day by day and causes
their overutilization. The Soan-Sakesar valley, in the Salt Range (Pakistan) is a semi-arid area (Figure 1)
where groundwater and wetlands (saline lakes) are the major water resources for daily consumption,
explaining their large utilization to meet the regional growing demand. Saline lakes, which provide
a large number of services to water birds, mineral extraction, environmental conservation or to
industrial use, are shrinking worldwide [3,4] due to their overexploitation by humans, particularly
for agricultural irrigation and other domestic purposes [5,6]. As such, the chemistry of this water
resource changes quickly and its salinity usually increases significantly [1,7,8]. In numerous places,
particularly in arid and semi-arid regions, this increase in salinity restricts the availability of drinkable
and fresh water. Consequently, the need to evaluate water salinity and its evolution over time under
natural conditions arises in order to better use and preserve major water resources that are under
anthropogenic pressure.

During the last century (1901 to 2000) a significant raise (~0.57 ◦C) in the average annual
temperature was recorded in Pakistan [9]. This increase accelerated (0.47 ◦C) during the last half
50 years (Figure 1). The highest rise in the annual temperatures (0.87 ◦C) was recorded in 1961 and
the lowest (0.48 ◦C) in 2007 [10]. The Pakistan Meteorological Department (PMD) monitored a rise
in surface temperatures between 1951 and 2000. Throughout the country the annual mean surface
temperature increased by 0.6–1.0 ◦C [11]. This increase may be linked to the 0.5–0.7% increase in
solar radiations that was documented over the southern part of Pakistan. In parallel to this rise in
temperature, a decrease in the annual mean precipitations of about 10–15% in the arid plains and coastal
areas was observed during the same period [9]. These conditions were worsened by numerous El Niño
events that punctually decreased the precipitations as much as 64% (range of 17–64%). Ultimately,
Pakistan’s projected temperature increase is expected to be higher than the modelled worldwide
average [9]. The monitoring of the Indus River System shows declining annual flows, especially
between 1998 and 2003 [12], that the authors attributed to low rain fall, an increase in temperature and
persistent drought from 1998 to 2004. In such conditions, water bodies in arid and semi-arid regions
will become more pressured and their chemistry will change quickly.
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Figure 1. Climate change patterns recorded in Pakistan during the last century: (a) area-weighted 
mean daily temperatures time series. Temperatures are averaged yearly from 1960 to 2013 (modified 
from [9,13]). (b) Annual average precipitation time series (modified from [10]). (c) Annual river flows 
of the Indus River System in Pakistan, from 1947 to 2002 (modified from [9]). 

Until now, research in Pakistan has focused on the characterization of groundwater resources 
[e.g. 14,15], water quality [e.g.16–19], and water management [e.g. 20,21]. However, to our 
knowledge, the environmental quality of the Uchhali complex (UC) wetlands around the Soan-
Sakesar valley (Salt Range) have received little attention, and in particular studies based on a 
geochemical approach are scarce. Previous works on this region have described the ecology [e.g. 22], 
climatic patterns [23] and aquatic biota [24]. The sole study on the presence of metals (e.g. selenium) 
in regional water was carried out by Afzal et al. [25]. Therefore, analyzing the hydrochemical 
characteristics of the UC appears a priority in order to preserve this regional water resource. 
Approaches coupling multiple stable isotope systematics (e.g. Cl, H, O) with more classical 
geochemistry, geology and hydrogeochemistry have already proven their added value for tracking 
the origin, recharge and evolution of water resources and salinity [e.g. 26,27]. In particular, in areas 
like the Soan-Sekaser valley, where current evaporation is very high, stable isotopes and 
hydrochemical indicators are established tools for identifying and measuring relative evaporation 
[e.g. 28,29].  

Studies using stable isotope compositions of water and of water-soluble minerals (including 
halite) are capable of providing insights on the leading processes that govern their budgets in 
numerous environments [e.g. 30]. Stable isotopes have been widely used to identify the origin, 

Figure 1. Climate change patterns recorded in Pakistan during the last century: (a) area-weighted
mean daily temperatures time series. Temperatures are averaged yearly from 1960 to 2013 (modified
from [9,13]). (b) Annual average precipitation time series (modified from [10]). (c) Annual river flows
of the Indus River System in Pakistan, from 1947 to 2002 (modified from [9]).

Until now, research in Pakistan has focused on the characterization of groundwater resources
(e.g., [14,15]), water quality (e.g., [16–19]), and water management (e.g., [20,21]). However, to our
knowledge, the environmental quality of the Uchhali complex (UC) wetlands around the Soan-Sakesar
valley (Salt Range) have received little attention, and in particular studies based on a geochemical
approach are scarce. Previous works on this region have described the ecology (e.g., [22]), climatic
patterns [23] and aquatic biota [24]. The sole study on the presence of metals (e.g., selenium) in regional
water was carried out by Afzal et al. [25]. Therefore, analyzing the hydrochemical characteristics of
the UC appears a priority in order to preserve this regional water resource. Approaches coupling
multiple stable isotope systematics (e.g., Cl, H, O) with more classical geochemistry, geology and
hydrogeochemistry have already proven their added value for tracking the origin, recharge and
evolution of water resources and salinity (e.g., [26,27]). In particular, in areas like the Soan-Sekaser
valley, where current evaporation is very high, stable isotopes and hydrochemical indicators are
established tools for identifying and measuring relative evaporation (e.g., [28,29]).

Studies using stable isotope compositions of water and of water-soluble minerals (including
halite) are capable of providing insights on the leading processes that govern their budgets in
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numerous environments (e.g., [30]). Stable isotopes have been widely used to identify the origin,
evolution, fluid-mixing, water-rock interaction and deposition environment of different systems
(e.g., [31–36]). In particular, Cl isotopes have proven to be valuable geochemical and forensic tracers in
arid and semi-arid contexts (e.g., [37,38]). The distribution of Cl stable isotopes is very sensitive to
low-temperature geochemical processes, for example during halite crystallization or dissolution [37],
salinity [39]. This makes them excellent indicators to differentiate the sources of magmatic fluids,
to trace the origin of mixed brine as well as to study brine deposition conditions, such as evaporation
rate [40]. On the other hand, water stable isotopes (δD, δ18O) have been successfully applied to better
understand the physical environment, the origin of water resources and their mixing [41], to assess
man-induced climate changes and evaporation effects [42] on water bodies.

With that in mind, the main objective of this study was to use an approach coupling water
chemistry and stable isotopes (δD and δ18O) with chlorine isotopes (δ37Cl) to better understand the
impact of climate change on the recent evolution of the Uchhali complex’s hydrogeochemistry and
salinity, as well as the processes that led to the observed increase in salinity and shrinking of the
lakes’ surfaces.

2. Study Site

Most of the arid or semi-arid areas of Pakistan still have about 10% of their wetlands [43]. A total
of 225 significant wetlands have been identified, among 19 which are included in the List of Wetlands
of International Importance of the Ramsar convention adopted in 1971 [43]. The “Uchhali Wetlands
Complex” (UC) is located in the Khushab District, part of the central Salt Range (SR; between 72◦00′

to 72◦30′ E and 32◦29′ and 32◦45′ N coordinates). The UC is bound by a dual parallel ridge system
(Figure 1). Its average altitude is 750 m.a.s.l. and its peak point is mount Sakesar with an elevation of
~ 1500 m.a.s.l. The UC includes three lakes: the Uchhali Lake (UL), the Khabbeki Lake (KL) and the
Jahlar Lake (JL). The Uchhali Lake presents the largest surface (14.3 Km2), a depth of about 4 m and it
is saline (Total Dissolved Solids; TDS = ~36 g/L) [20]. The Khabbeki and Jahlar lakes are smaller with
surfaces of 4.2 and 3.0 km2, respectively. Both lakes are considered as brackish [44]. Based on their
nutrient contents and sizes, the UL is categorized as a large shallow hypereutrophic lake (nutrient-rich
and characterized by frequent algal blooms and thus low transparency) while the others (KL, JL) are
categorized as intermediate-sized shallow hypereutrophic lakes [45]. These lakes are surrounded by
sedimentary rocks and are settled in the synclinal structures of Eocene rocks (Figure 2).Water 2019, 11, x FOR PEER REVIEW 5 of 18 

 

Figure 2. (A) Location map of the Uchhali complex, Soan–Sakesar Valley, Salt Range, Pakistan. The 
lithology of the study area is also reported (modified from [25,44,45]). (B) Stratigraphic column of the 
study area. The Sakesar and Muree formations represent the main water-bearing formations. 

2.1. Hydrogeology and Climate Conditions 

Previous studies identified two major formations from the Eocene and Miocene ages as the major 
water resources of the Soan-Sakesar aquifer system [44,45]: the Sakesar Formation (limestone) of the 
Chharat group (Eocene age) is a freshwater formation and the Murree Formation of the Rawalpindi 
group (Miocene age) is brackish (Figure 2). Rainwater infiltration is the primary source of the 
groundwater (GW) recharge [25,45]. However, all three lakes are mainly fed by local rainfall, small 
springs, seepage from the adjacent irrigated land, and run-off from the surrounding hills of the Salt 
Range. The study area has a drainage pattern that is mostly dendritic (in which the streams randomly 
flow in all directions; Figure 2A). However, trellis (characterized by parallel main streams intersected 
perpendicularly, or nearly perpendicularly, by their tributaries) and rectangular patterns (a drainage 
pattern in which the tributaries intersect perpendicularly the main streams, and exhibit sections of 
approximately the same length, which form rectangular shapes) can easily be observed in the SE 
portion of the area. These patterns are mostly observed on Sakesar limestones due to chemical 
weathering. The Sakesar limestone anticlines are acting as a watershed and control the drainage 
system of the area [44]. Although GW pumping started in the late 1960s and peaked after 2000, it 
caused an added alteration of the GW flow system [14]. While percolation is the major recharge 
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Figure 2. (A) Location map of the Uchhali complex, Soan–Sakesar Valley, Salt Range, Pakistan.
The lithology of the study area is also reported (modified from [25,44,45]). (B) Stratigraphic column of
the study area. The Sakesar and Muree formations represent the main water-bearing formations.

Hydrogeology and Climate Conditions

Previous studies identified two major formations from the Eocene and Miocene ages as the major
water resources of the Soan-Sakesar aquifer system [44,45]: the Sakesar Formation (limestone) of the
Chharat group (Eocene age) is a freshwater formation and the Murree Formation of the Rawalpindi group
(Miocene age) is brackish (Figure 2). Rainwater infiltration is the primary source of the groundwater
(GW) recharge [25,45]. However, all three lakes are mainly fed by local rainfall, small springs, seepage
from the adjacent irrigated land, and run-off from the surrounding hills of the Salt Range. The study
area has a drainage pattern that is mostly dendritic (in which the streams randomly flow in all directions;
Figure 2A). However, trellis (characterized by parallel main streams intersected perpendicularly, or nearly
perpendicularly, by their tributaries) and rectangular patterns (a drainage pattern in which the tributaries
intersect perpendicularly the main streams, and exhibit sections of approximately the same length, which
form rectangular shapes) can easily be observed in the SE portion of the area. These patterns are mostly
observed on Sakesar limestones due to chemical weathering. The Sakesar limestone anticlines are acting as
a watershed and control the drainage system of the area [44]. Although GW pumping started in the late
1960s and peaked after 2000, it caused an added alteration of the GW flow system [14]. While percolation is
the major recharge pathway, evapotranspiration and well production are the main discharge mechanisms.
The water table depth is variable and is generally between 4 to 7 m.b.s. [25,46], but in recent years high
pumping rates have deepened the water table down to a depth of more than 10 m.b.s.

The regional climate is sub-humid sub-tropical inland with hot to temperate summers and cold
winters. The regional climate conditions are highly variable within the last 30 years: the annual
rainfall fluctuated from 300 to 800 mm, and the relative humidity from 22 to 85% [47]. There are two
contrasting rain periods, one being the Monsoon rainy season (i.e., summer rain season) which persists
up to three months (between July to September). Generally, a high rain fall is observed during July and
August. The other rain period is the winter rainy season, which generally starts in January until March.
The average evapotranspiration, estimated by the horticulture station located in the Soan-Sakesar
Valley, is 2.6 mm/day, varying from 1.5 to 6.4 mm/day [44].

From 1985 to 1994 the local mean annual rainfall is 613 mm and the average temperature in
summer and winter are 33 ◦C and 3 ◦C, respectively [45]. But since 2000, lower average annual rainfalls
(0.00 to 111.15 mm) and elevated temperatures (3.16 to 37.6 ◦C) in winter and summer, respectively, are
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reported [46]. Within recent years, December and January are generally the coldest months of the year
and June the hottest. During winter, temperatures often drop below 0 ◦C, and in summer it can reach
as high as 38.4 ◦C [47], hinting at the potential impact of climate change.

3. Materials and Methods

3.1. Sampling

In total, 14 water samples were collected from the three lakes in October 2017, 5 from UL, 5 from
KL and 4 from JL. The samples from JL were collected at the surface of the lake, while for UL and KL
samples were collected at the surface as well as at variable depths using a sampling bucket. The water
samples were collected in clean (rinsed with distilled water at least three times) 500 mL bottles. Before
collecting samples, each bottle was washed three to five times with the lake water. Water temperature,
TDS, and pH were measured in situ (using SG2/SG3 Sevengo meters). The air tight samples were then
transferred to laboratory for further analysis. Chemical analysis of major ions, K+, Na+, Ca2+ and Mg2+

were performed by Plasma spectrometry (ICAP6500DUO, USA) with an analytical error of less than
±5%. SO4

2− concentrations were determined by Ion Chromatography (IC-5000+, Thermo Fisher USA)
with and error <1%. Chloride, CO3

−, HCO3
− were measured by Titration with a precision better than

0.3% (ISL, CAS, 1988; [48]). The stable Cl isotope compositions were analyzed by Positive Thermal
Ionization Mass Spectrometry (TIMS-TRITON) with a precision range of (0.2%�) 1–320 a.m.u. All these
measurements were performed at the Salt Lakes Analytical and Testing Department, Qinghai Institute
of Salt Lakes, Chinese Academy of Sciences.

3.2. Sample Preparation (δ37Cl)

All samples were processed following the two-steps resin method described by [49] and [50].
Briefly, a polyethylene ion-exchange column (diameter of 0.5 cm) was filled with ~2 cm of a H-cation
exchange resin (~300 mesh, resin type: Dowex 50 W × 8). A second polyethylene ion-exchange column
(diameter of 0.5 cm) was filled with 1.5 cm of a regenerated Cs-cation exchange resin. Samples were
first eluted through the H-cation exchange resin column and then through the Cs column. During
the process, the pH of the solution was maintained at 6. Ultimately, samples were collected for
TIMS analysis.

A tantalum (Ta) filament was heated under vacuum for one hour (using a current of 2-3A) before
being covered with 2.5 µL of a graphite slurry containing at least 80% of ethanol plus 80 µg of graphite.
About 2.5 µL of the sample solution, containing at least 10 µg of Cl as CsCl was deposited onto the
filament, which was then dried using a current of 1A for ~2 minutes. Samples were finally placed
into the source of the mass spectrometer until a vacuum around 2.5 × 10−7 mbars is reached. During
analysis the Cs2Cl+ ion current was kept at 4 × 10−12 A by adjusting the source current. Raw data
were obtained on Faraday cups “C” and “H1” associated to mass numbers 301 (133Cs2

35Cl+) and 303
(133Cs2

37Cl+). The 37Cl/35Cl ratio we obtained for the international IAEA ISL-354 NaCl standard was
0.319028 ± 0.000058 (n = 12), in agreement with the certified value of Xiao et al. [51] 0.31964 ± 0.00092.
Precision for the δ37Cl determination was ±0.03%�.

δD and δ18O were measured using a liquid water isotope analyzer (Picarro L2130-i) at the Institute
of Earth Environment, CAS. Detailed method is described in Wan et al. [52] and Liu et al. [53]. Precision
for both isotope systematics was about ±1%�.

The isotope ratios are reported as per mil deviation (δD, δ18O or δ37Cl) of the D/1H, 18O/16O ratios
relative to SMOW (H and O isotope systematics) and ISL-354 standards (Cl isotopes), according to
the equations:
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δD =

 D
1Hsample

D
1HVSMOW

− 1

× 103

δ18O =


18O

16Osample
18O

16OVSMOW

− 1

× 103

δ37Cl =


37Cl

35Clsample
37Cl

35ClISL−354

− 1

× 103

4. Results and Discussion

4.1. Salinity and Hydrofacies

Water samples from all sampling sites show pH > 8.6 and indicate that all lakes are basic alkaline.
Soils in the Uchhali Wetlands Complex catchment area are rich in basic (rock salt) but poor in nitrogen
matter [47]. The Uchhali Lake (UL) is hypersaline with an average TDS concentration ranging between
36 g/L on surface water and 36.21 g/L at maximum depth (~4 m; Table 1). These values are higher
than Arshad (2011) [47], and are similar to those reported for the Soan-Sakesar valley Salt-Range by
Afzal et al. [25,45] between 1994 and 1996 (Table 1). This suggests that evaporation and/or recharge is
inconstant and may be affected by climate change. Cations are dominated by Na+ and Mg2+ (followed
by K+) and anions by SO4

2− and Cl− (followed by HCO3
−). Ion concentrations shows a rough variation

with depth and sampling location (Table 1). The chemistry of the Khabbeki Lake (KL), a medium-sized
shallow hypereutrophic lake, has changed during the last three decades: while it had been previously
classified as a brackish lake with a TDS ranging from 1.3 to 2.4 g/L Afzal et al. (1998, 1999 and
2000) [25,44,45], we are now reporting a higher TDS of 2.6 g/L (Table 1). This significant increase
in its TDS probably results from higher evaporation and lower recharge rates. Its cation and anion
abundances are comparable to those of UL (i.e., Na+ > Mg2+ > K+ and SO4

2− > Cl− > HCO3
−). Both

UL and KL are of Na-Cl type (Figure 3). The Jahlar Lake (JL) shows a pH value of 9.3, a TDS of
7.9 g/L and ion concentrations dominated by Na+ > K+ and HCO3

− > Cl− > SO4
2−. JL is even more

affected by climate change, as within the last 30 years its TDS has shifted from 8.7 g/L in 1994–1996 [25],
to 4.1–4.3 g/L in 2007 [47] and 7.9 g/L in the present study, again hinting at a potential impact of
climate change. This 7.9 g/L TDS indicates that the lake is now of brakish type, within the Na-HCO3

type facies (Figure 3). Variations in the hydrochemical facies, related to the corresponding variations
in the water chemical composition are controlled by both interactions with the local lithologies and
geochemical processes. The Piper diagram from Figure 3 shows that while cations are dominated
by alkalis (Na+ + K+), anions differ for each of the three lakes: bicarbonate type for JL, chloride type
for UL and no dominant anion for KL. The diamond-shaped central field, (used to characterize four
distinct water types; Figure 3) on the other hand, identifies two main populations: sodium chloride
type (JL) and sodium bicarbonate type (UL, KL).
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Table 1. Ion compositions, water (δD, δ18O) and chlorine (δ37Cl) stable isotope compositions of the saline lakes of the Soan-Sakaser Valley (Salt Range, Pakistan) and
their comparison with previous studies. Data sources: 1986 [40], 1994 [39] and 2007 from [47].

Sample D K+ Na+ Mg2+ Ca2+ SO4
2− Cl− CO3

− HCO3
− B3+ δ18O δD δ37Cl TDS Density pH

(m) (mg/L) (%�) (g/L) g/cm3

K-1 0 27.66 500 167.94 17.77 660.2 357.9 140 589.7 2.3 9.24 27.89 −0.01 2.60 1.001 8.66
K-2 4 31.08 498.2 167.68 15.61 643.6 355.1 128 592 2.15 8.87 29.31 0.03 2.63 1.001 8.63
K-3 0 31 502.1 165 16.12 655.5 357.2 133 590.1 2.25 9.01 28 −0.03 2.61 1.001 8.63
K-4 2 29.9 499 167.2 17 645 356.9 127.8 590.3 2.18 9.23 28.9 −0.01 2.6 1.001 8.65
K-5 1 29.91 500.1 166.13 16.44 554 356.12 133.21 590.55 2.23 9.05 28.4 −0.02 2.61 1.003 8.84

Mean - 29.91 499.88 166.79 16.58 631.66 356.64 132.40 590.53 2.22 2.61 1.001 8.68
1986 - 82.11 770.5 130.1 5.81 964.1 478.7 - - - - - - 2.65 - 8.5
1994 - 32.45 508.2 149.57 37.07 417.9 484.03 - - 0.64 - - - 2.4 - 8.9
2007 - - - - - 605.66 208.8 - - - - - - 1.43 - 9.5
U-1 0 151.3 11,180.1 1062 53.64 11,590 10,536 190.6 522.7 8.06 7.73 21.08 −0.03 36.10 1.027 8.84
U-2 3.5 158.4 11,470.34 1085 51.02 11,610 10,532 162.6 550.5 8.03 7.75 22.95 0.01 36.21 1.034 8.84
U-3 1 155.1 11,442.9 1077.1 52 11,601.12 10,514 172.9 543.7 8.03 7.7 22.24 0.02 36.13 1.028 8.81
U-4 0 157 11,278 1072 53.65 11,699 10,525 190 523 8 7.71 21.98 −0.01 36.20 1.024 8.83
U-5 2 155.1 11,334.51 1074.1 53 11,580 10,528.1 181.12 539.41 8.01 7.7 22.19 −0.02 36.0 1.02 8.82

Mean - 1.3 155.38 11,341.17 1074 52.66 11,616 10,527. 179.4 535.8 1.026 8.82
1986 - 344.08 11,707 680.96 traces 16,272 8120.34 - - - - - - 26.83 - >11
1994 - 253.98 9890 1770.5 158.92 14,288.9 9528.1 - - 0.96 - - - 36.5 - 8.81
2007 - - - - - 7208.5 9175 - - ND - - 29.06 - 9.21
J-1 0 115.02 2386.71 36.36 6.78 890.2 1414 789.3 2123 3.06 8.11 23.82 0.09 7.97 1.004 9.35
J-2 0 114 2380.09 36.59 7.2 883 1419.3 788 2133.02 3.05 8.2 23.7 −0.02 7.95 1.005 9.36
J-3 0 114.3 2383.1 37 6.8 889.7 1415.1 777.12 2140.22 3 8.1 23.7 0.02 7.97 1.004 9.32
J-4 0 115.29 2382.87 35.12 6.91 886.01 1415.2 785.1 2132.1 3.05 8.15 23.76 −0.01 7.92 1.004 9.33

Mean - 114.65 2383.19 36.26 6.9225 887.22 1415.9 784.88 2132.08 3.04 1.004 9.34
1986 - 207.2 1897.5 52.29 12.02 984 900.7 - - - - - - 4.96 - 9
1994 - 43.0 1807.8 53.4 9.82 835.7 1035.4 - - 1.23 - - - 8.75 - 9.24
2007 - - - - - 624.3 990 - - ND - - - 4.2 - 9.69
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4.2. Sources and Processes Controlling Ion Compositions of the Lakes

Several processes may induce a salinity rise in our water samples. Discriminating them and
their implications is thus essential. This may be achieved by studying variations of the water ion
composition (Figure 4). As previously discussed HCO3

−, Ca2+ and Mg2+ greatly contribute to the
TDS levels we are measuring, and result from rock weathering, particularly of limestones, dolomite,
Ca-Mg-silicates and gypsum. This is in agreement with a recharge by groundwater and/or rainwater
draining the lithology of mount Sekaser [45]. The (Ca2+ + Mg2+) vs (HCO3

− + SO4
2−) diagram

(Figure 4a) shows that all water samples plot below the 1:1 line, indicating that cations mainly originate
from the weathering of carbonate and silicate rocks, and that HCO3

− comes from the weathering of
carbonate rocks [1,54]. This corresponds to the regional lithology of the drained basin, essentially
made of carbonates and evaporitic formations, that interact with the water hosted in the aquifer.
Ultimately, the final water composition is controlled by the water-rock interaction (WRI) and thus by
both the composition of the sedimentary rocks and the local hydrologic characteristics, such as the flow
path. (Mg2+ + Ca2+)/HCO3

− ratios in our lake samples show large variations (Figure 4b) that we can
potentially relate to the dissolution of pyroxene/amphibole minerals (which yields a ratio of ~0.5 [55]),
and thus give us indications about sources of Mg2+ and Ca2+. (Mg2+ + Ca2+)/HCO3

− ratios lower than
0.5 may be explained by cation exchange processes, either by Ca2+ + Mg2+ depletion or by HCO3

−

enrichment. Conversely, high (Mg2+ + Ca2+)/HCO3
− ratios cannot be attributed to HCO3

− depletion
as the alkaline character of the lakes prevents the formation of carbonic acid H2CO3 [56]. Elevated
(Mg2+ + Ca2+)/HCO3

− values suggest that the higher alkalinity of these waters is balanced by alkalis.
The higher (Mg2+ + Ca2+)/HCO3

− ratios measured in UL limit an additional supply of Ca2+ and Mg2+

and are buffered by Cl− and SO4
2− ions. Additionally, the relationship existing between (Ca2+ + Mg2+)

and the total cations (Figure 4c) shows that all samples are plotting away from the 1:1 line, revealing an
increasing influence of Na+ and K+ as TDS increases. Figure 4d shows a positive relationship between
Na+ and Cl− concentrations, with all water samples plotting above the 1:1 line. This indicates that
most of the Na+ is captured along water flows poor in Cl− [18]. In Figure 4e, Na++K+ increases in
parallel with Cl− + SO4

2−, hinting at a common source for these ions and by extension to the presence
of Na2SO4 and K2SO4 Salts [1]. As Na+ is considered a weathering index, its enriched concentrations
in our samples (Table 1) suggest that the underlying processes for its presence are salt dissolution or
silicate weathering.

The positive trend observed between the Na+/Ca2+ ratio and TDS (Figure 4f) is explained by
the substitution of Ca2+ by Na+ as water flows further. Besides, other geological processes may also
control the water ion balance: while ion exchange will yield waters with Na+/(Na+ + Cl−) ratios >0.5,
a ratio <0.5 suggests water softening [57]. In our study area, the Na+/(Na+ + Cl−) ratios are all higher
than 0.5, which indicates that silicate weathering or dissolution of soil salts is prevailing. However, the
excess of Na+ + K+ over Cl− is not in favor of silicate weathering [54] and suggests that the elevation
of alkalis is not caused by precipitation [58].
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4.3. Dissolution and Deposition

The classical Gibbs diagram (Na+/(Na+ + Cl−) and Cl−/(Cl− + HCO3
−) vs. TDS (Figure 5) shows

that the water composition is dominated by evaporation-crystallization processes. Evaporation of
surface water and wetness in the unsaturated region is the key mechanism in the evolution of GW
chemical composition. The evaporation process always significantly increases ion concentrations in
the residual water and thus leads to higher TDS values.
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Mineral equilibrium calculation is efficient at predicting dissolved mineral reactivity in water [59].
Some minerals such as calcite and dolomite are normally found in equilibrium in surface waters.
Saturation index (SI) is another approach to predict the mineralogy of the subsurface from the analysis
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of waters without having to analyze the solid samples [60]. Here, SI values were calculated using
PHREECQ (version 3.3.7). If SI = 0, the corresponding mineral is in equilibrium in the solution; SI < 0
indicates that the mineral is under-saturated (i.e., further dissolution is possible); whereas SI > 0
indicates that the mineral is supersaturated and will thus have a tendency of precipitating from the
solution [61,62]. Results show (Figure 6) that all calculated SI values for calcite and dolomite in our
water samples are positive, indicating oversaturation for these two minerals. SI values for gypsum and
halite, on the contrary, are all negative, indicating that these last two minerals are far from saturation.
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4.4. Chlorine Isotope Compositions

Stable chlorine isotopes (δ37Cl) are proven tools for studying dissolved Cl, fluid mixing, water-rock
interaction [33,34] as well as saline lake systems [35,36], including the possibility of determining their
evaporation rate [40,63]. In our study, brine samples had δ37Cl values ranging from −0.03 to +0.09%�,
a moderately large isotope range that suggests that they have experienced different evolution processes.
During evaporation Cl stable isotopes fractionate, resulting in a 37Cl-enrichment in the salt deposits [64],
i.e., chlorine isotope fractionation correlates with halite precipitation. However, in our case all samples
were far from the halite (NaCl) precipitation point. It is therefore impossible that their Cl isotope
compositions were controlled by halite precipitation. The most positive δ37Cl (+0.09%�) were measured
in the shallow JL that yielded a TDS around 8 g/L (Figure 7a). The lowest δ37Cl were measured in
the KL that corresponded to the highest TDS compared to previous studies (see Table 1). However,
this isotope variation does not appear to be correlated with the corresponding Cl concentrations
(Figure 7b). This isotope difference might be explained by different flow paths and/or origin of the
groundwater. Cl in the aquifer may have percolated from subsurface rocks or come from pore fluids.
Nevertheless, the most 37Cl enriched samples were hypothesized to be from evaporitic (NaCl) residues
in the near-surface as well as from water interaction with Cl-containing minerals (e.g., NaCl, KCl from
the regional salt deposits). Sherif et al. (2019) [65] stipulated that the presence of certain rock types
ultimately controls the δ37Cl observed in the aquifer, and that pore fluids in confining shales may
be a significant source of Cl in groundwater [66]. Similarly, the presence of silicates (δ37Cl between
+0.4 and +7.5%�) and mafic rocks (up to +4%�; [67]) will imprint chlorine isotope compositions in
groundwater. Intensive evaporation, a process that enriches the precipitating phase in 37Cl relative to
the coexisting brines [40,68], will also impact the δ37Cl isotope compositions. These results suggest
that further work on Cl isotope ratios from these lakes as well as from local ground and fresh water is
needed to better understand the variations of chlorine isotopes in the UC.
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4.5. Water Stable Isotope Compositions

Just like chlorine isotopes, water stable isotope compositions (δ18O and δD) can be used as tracers
in hydrology and water resources contexts. They bring key information on the groundwater (GW)
origin and recharge, water contamination, water-rock interaction, and most importantly; they are
influenced by evaporation rates [31,32,41,69,70]. We therefore measured both δ18O and δD for each
UC water sample in order to better constrain its formation. Results (Table 1) showed that δ18O values
range between +7.7 and +9.2%� (with an average value of 8.3 ± 0.6%�), and from +21 to +29%� for
δD (with a mean value of 25 ± 3%�). All samples (Figure 8) were plotting away from both the global
meteoric water line (GMWL) and the local one (LMWL; calculated in Islamabad). Samples plot on
a typical evaporation line [1,71] with a lower slope of ~5. Similar slopes were reported for arid/semiarid
regions in China [1] and for some African lakes [70]. This again confirms that the Uchhali complex is
undergoing strong evaporation.Water 2019, 11, x FOR PEER REVIEW 14 of 18 
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5. Conclusions

Our study indicates that the saline lakes of the Salt Range (Pakistan) are highly impacted by
climate change. Within the last 10 years, the lower precipitations and higher temperatures increased the
salinity of these lakes. The Ucchali Lake is the least affected of all with a TDS concentration similar to
the one recorded by previous studies. In contrast, the Khabbeki and Jahlar lakes (Ramser site) present
significantly higher TDS, indicating that they are the most affected by climate change. The study of
local hydrochemistry demonstrates that these changes in the TDS concentrations are due to intensive
evaporation, although the role of rock weathering should not be neglected. Still, water stable isotope
compositions follow a clear high evaporation slope line showing that this process controls the overall
regional salinity. This conclusion is supported by the study of δ37Cl isotope compositions that also hint
at possible multiple origins for water. On top of all these natural processes, human activities such as
water pumping for agriculture and other domestic purposes also contribute to the observed TDS
increase. Finally, our study suggests the necessity of implementing a continuous monitoring as well as
remediation strategies for the conservation of these crucial water resources for local populations.
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