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Abstract: Extended-range runoff forecasting is important for water resources management and
energy planning. Experimental extended-range runoff was hindcasted, based on an extended-range
climate model, developed by National Climate Center of the China Meteorological Administration,
and semi-distributed hydrological model HBV-D. The skill of the runoff forecasts was explored using
mean square skill score (MSSS), anomaly correlation coefficient (ACC), and areas under the relative
operating characteristics curve (AUC) for three terciles for three experimental 51-day periods during
flood season (June 1 to July 21, July 1 to August 20 and August 1 to September 20) for two rivers in
China. The results revealed decreasing trends of the five indices, and varying length of the continuous
longest skilful time slice from 3 days to 6 weeks depending on index, period and river location.
In most cases, skilful abnormal terciles forecast occurred more often or with similar frequency to
deterministic forecasts. It suggests that ensemble probability forecasting is a method with potential
for extended-range river runoff forecast. Further, abnormal terciles are more skillful than normal
terciles, and above normal are more skillful than below normal. In terms of a temporal mean of
the MSSS and ACC, deterministic forecasts are skillful for both rivers in all three periods, but more
skillful for the Beijiang River than for the Yiluo River in most cases.

Keywords: extended-range runoff forecast; DERF2.0; HBV; Yiluo River; Beijiang River

1. Introduction

Reliable and timely runoff forecasts have potential to provide critical information with lead times
ranging from minutes to years. Such information is vital for numerous users, e.g., the emergency
services, hydropower generators, irrigators, and rural and urban water supply authorities,
as well as environmental managers in their role of mitigating disasters, controlling hydropower
activities, determining industrial, domestic and agricultural water allocations and protecting the
environment [1–4]. To meet the requirements of various users, in past half decades, couples of
hydrological forecast models and forecasting systems have been proposed and developed. For example,
a hydrometeorolgical ensemble predictions system (HEPS) was launched operationally in 2008 in
Switzerland, which coupled a hydraulic model and a semi-distributed hydrological model with
climate forcing from two climate models [5]. The Australian Bureau of Meteorology regularly
issues seasonal stream flow forecasts for various river basins based on the Bayesian joint
probability model, including probability distribution, terciles and exceedance probability forecasts
(http://www.bom.gov.au/water/ssf/). The National Weather Service Advance Hydrologic Prediction
Service provides hydrologic forecasts including the chances of flood or drought for almost 4000
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locations across the United States with forecast periods ranging from hours to months, using various
models (https://water.weather.gov/ahps/forecasts.php). A hydrological outlook across the UK is
published monthly, including terciles forecast for river flow and groundwater by expert merging
of a statistical analogue and persistence method, Ensemble Streamflow Prediction method, and a
hydrologic modeling system. (http://www.hydoutuk.net/latest-outlook/).

Data-driven models and process-based models represent two general approaches used in
hydrological forecasting. Date-driven models do not explicitly incorporate hydrological processes [6]
and therefore should be used with caution for conditions outside the observed domain. No definitive
conclusion has been drawn regarding identification of the model capable of producing optimum
runoff forecasts [7]. Process-based hydrological forecasts often contain large uncertainties that are
attributable primarily to the hydrological models, initial conditions of the basin and atmospheric
forcing [8]. In recent years, mixed approaches have emerged, which merges the merits of statistical and
dynamical models i.e., [4,9]. Thus, numerous approaches or models have been investigated to improve
hydrological forecasting. Among them, ensemble climate-model-based hydrological forecasting as an
emerging field of interest since the early 21st century [10], is effective in achieving hydrological forecasts
with longer lead times in comparison with the traditional Ensemble Streamflow Prediction method [11].
It has been used successfully both for cascading uncertainties and for improving the skill of hydrological
forecasting [12–14]. However, obtaining accurate runoff forecasts remains a challenge, especially
in relation to the medium and the long term during the flood season [7]. For example, errors or
biases induced by coarse grid scales of outputs of climate models are still issues, although different
post-processing such as bias correction and downscaling were proposed [4,9]. Process-based forecast
uncertainties need further investigation using different methods such as ensemble techniques [15–19].
In addition, flood frequency distribution and runoff generation are worth analyzing to gain skillful
runoff, especially flood forecasting [20]. Assessing the impacts of model selection and climate change
is important [3,21].

The aim of this study was to explore the operational potential of extended-range runoff forecasts
by one-way coupling an operational extended-range climate model and a hydrological model. It was
achieved by assessing the assets and shortcoming of the approach for two rivers in China with different
locations and different climate. Such research is fundamental regarding hydrological forecasting and for
improving forecasting skills. The remainder of the paper is arranged as follows: Section 2, Study area,
gives a brief introduction of the studied river basin. Section 3, Data and Method, introduces available
climate and hydrological data, the hydrological model and climate model, experimental design of
runoff forecasting, and verification methods. Section 4, Results, assesses both the performance of the
hydrological model in relation to the two rivers and the skill of the deterministic and tercile runoff

forecasts for the two river basins during three different periods in the flood season. Finally, Section 5,
Discussion, and Section 6, Conclusions, are presented.

2. Study Area

The Yiluo River in China is the largest tributary between the middle and lower reaches of the
Yellow River below the Sanmenxia Dam (33.5◦–35◦ N, 109.5◦–113.5◦ E). The basin has a drainage
area of 18,881 km2 and it supported a population of 7.7 million in 2010 [22]. The annual average
mean temperature is 10–13 ◦C and the mean annual precipitation is about 660 mm. Dominated
by the East Asian summer monsoon, 60% of the annual precipitation falls during the flood season
(June–September) [23], which can easily cause flooding in summer. The annual runoff is approximately
2.74 billion m3 [24]. Modulated by the seasonal precipitation pattern, the runoff during the flood
season accounts for approximately 46.5% of the annual total [25]. In this study, the runoff through
the Heishiguan hydrological station was forecasted. The area of the watershed above this station is
18,563 km2 [23], which accounts for 98.3% of the total area of the Yiluo River basin. The locations of the
Yiluo River and Heishiguan station are shown in Figure 1.

https://water.weather.gov/ahps/forecasts.php
http://www.hydoutuk.net/latest-outlook/
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Figure 1. (Upper) Locations of the Yiluo and Beijiang rivers in China. Hydrological stations (dark red flag),
climate stations (red star), grid notes of the dynamic extended-range forecast (DERF2.0) (black square) as
well as sub-basins division of the (lower left) Yiluo River and (lower right) Beijiang River.

The Beijiang River is the second largest tributary of the Pearl River in southern China (23.1◦–25.5◦N,
111.9◦–114.8◦ E. The basin has a drainage area of 46,710 km2 [26] and it supported a population of
8.0 million in 2010, which is a value derived from gridded population data of China [27]. The annual
mean temperature of the basin is 18–21 ◦C [28] and the mean annual precipitation varies within
the range 712–4040 mm [29]. Overall, 75% of the annual precipitation falls during the flood season
(April–September), which is when 70–80% of the annual runoff occurs [29,30]. In this study, the runoff

through the Shijiao hydrological station was forecasted. The area of the watershed above the station
constitutes 82.1% of the total area of the Beijiang River basin. The locations of the Beijiang River and
Shijiao station are shown in Figure 1.

3. Data and Method

3.1. Available Datasets

This study used a digital elevation model (DEM) with scale 1:250,000, developed by the National
Geomatics Center of China [31] and a digital land use map with scale 1:500,000, developed by the
Ministry of Land and Resources of China [32]. Spatial soil data with 30 arc-second resolution and soil
properties were generated from a harmonized world soil database [33]. Their spatial resolution was to
resample to 1 km when setting up the hydrological model.

Climate data included observed and simulated daily precipitation and daily mean air temperatures.
The observed meteorological records at 12 climate stations (Figure 1) obtained during 1968–2016
were acquired from the National Meteorological Information Center of the China Meteorological
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Administration, and were used to calibrate and validate the hydrological model. Simulated climate data
during 1983–2016 were hindcasted using the dynamic extended-range forecast (DERF2.0) operational
system, developed by National Climate Center of the China Meteorological Administration. They were
used to reforecast runoff as climate forcing of the hydrological model.

Digital daily flow records during 1970–2000 at the Heishiguan hydrological station were obtained
from the Yellow River Resources Bureau. Digital daily flow records during 1970–1990 and monthly
flow records during 1991–2000 at the Shijiao hydrological station were obtained from the Pearl River
Resources Bureau. The Heishiguan and Shijiao data were used to calibrate and validate the HBV-D
model for the Yiluo River and the Beijiang River, respectively. To evaluate the performance of the
hydrological model for daily flow through Shijiao station during 1991–2000, daily values were estimated
using the recorded monthly flow data.

3.2. Methods

3.2.1. Hydrological Model

HBV-D is a semi-distributed basin-scale hydrological model. It divides a basin into small
hydrological units based on certain parameters, e.g., elevation, land cover type and climate conditions.
It is a derivative of the Nordic HBV model. Compared with the original HBV, HBV-D improves
the description of land cover characteristics and has more physically sound evapotranspiration
schemes [34]. HBV-D has been applied to studies in China across the scales from small watersheds to
large basins covering various climatic conditions [22,35–37], because of its simple structure and climate
inputs, which only asks for daily temperature and precipitation.

The parameters of the HBV-D model for the two river basins were calibrated and validated
using observed daily climate and streamflow data during two periods, i.e., 1970–1980 and 1981–2000,
respectively. The performance of the model was evaluated using the Nash–Sutcliffe efficiency (NSE),
coefficient of determination (R2) and percentage bias (PBIAS). Generally, performance of a model can
be considered satisfactory if the value of both NSE and R2 is >0.50 and that of PBIAS is <±25% for
flow simulation [38]. Although the natural hydrology of both studied rivers has been disturbed by
human activities, the human alteration of the natural flow was not considered in the hydrological
model because of the difficulty in recreating the undisturbed conditions.

3.2.2. Climate Model

DERF2.0, the dynamic extended-range forecast operational system version 2.0, was developed by
National Climate Center of the China Meteorological Administration. It was based on the atmospheric
circulation model BCC_AGCM2.2, which is a spectral model with horizontal T106 truncation resolution
(~1.0◦ × 1.0◦) and 26 vertical levels. DERF2.0 has operated daily since June 2014, and produces 57-day
daily climate forecasts for four ensemble members using a lagged average forecasting strategy with
6-h intervals of atmospheric initial conditions. It has higher skill for precipitation and temperature
forecast in China than its previous version DERF1.0, and ever skillfully forecasted flood in 1998 and
drought in 2016 in China [39].

3.2.3. Runoff Forecasting

In general, runoff forecasting can be divided into four processing steps: (1) the hydrological
model setup, (2) climate prediction processing, (3) runoff prediction, and (4) post-processing activities.
The hydrological model comprises a process of selecting, parameterizing and linking a suite of models
to simulate the hydrologic system to be forecasted. Its aim is to reduce the uncertainty associated
with the hydrological model. The aim of climate prediction processing is to remove bias from the
raw output of the climate model, or to interpolate the climate prediction of the model depending
on the requirements of the hydrological model. Post-processing activities are intended to provide a
probability prediction of runoff by combining the ensemble forecast and the reforecast information.
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In this study, semi-distributed hydrological model HBV-D was selected, because it only requires
daily temperature and precipitation as climate input. It can simulate runoff of the study area well [22]
using the climate forcing from Water and Global Change Program (WATCH) meteorological forcing
dataset [40]. However, the model was parameterized once more using observed climate forcing.
Following this, the forecasted daily temperature and precipitation from DERF2.0 were interpolated to
the center of each sub-basin using the inverse distance weighting method, and were corrected using
the percentile method [41] to reduce bias and variance. Thirdly, runoff was forecasted using calibrated
HBV-D forced by corrected climate with the hydrological initial conditions obtained by spinning up
the HBV-D model for two years using observed climate data. Following these steps, ensemble runoff

for three periods: June 1 to July 21 (Period1), July 1 to August 20 (Period2) and August 1 to September
20 (Period3) during 1991–2016 was reforecasted by the HBV-D simulation using the climate forcing of
24 members at six integrations of lead times. The dates of the DERF2.0 initial conditions, forecasted
periods and leads are listed in Table 1. Finally, the ensemble mean and three terciles forecasts for the
three periods in every year during 1991–2016 were estimated based on the hindcast dataset.

Table 1. DERF2 operation date/forecasted periods and ensemble members lead times.

Date of DERF2.0 Initial Conditions/Forecasted Period
Lead Time

Period1 Period2 Period3

May 26/Jun 1 to Jul 21 Jun 25/Jul 1 to Aug 20 Jul 26/Aug 1 to Sep 20 7–57 days
May 27/Jun 1 to Jul 21 Jun 26/Jul 1 to Aug 20 Jul 27/Aug 1 to Sep 20 6–56 days
May 28/Jun 1 to Jul 21 Jun 27/Jul 1 to Aug 20 Jul 28/Aug 1 to Sep 20 5–55 days
May 29/Jun 1 to Jul 21 Jun 28/Jul 1 to Aug 20 Jul 29/Aug 1 to Sep 20 4–54 days
May 30/Jun 1 to Jul 21 Jun 29/Jul 1 to Aug 20 Jul 30/Aug 1 to Sep 20 3–53 days
May 31/Jun 1 to Jul 21 Jun 30/Jul 1 to Aug 20 Jul 31/Aug 1 to Sep 20 2–52 days

3.2.4. Runoff Reforecast Verification

The runoff reforecast during 1983–2016 was verified for Period1, Period2 and Period3 using
indices of the mean square skill score (MSSS), anomaly correlation coefficient (ACC), and relative
operating characteristics (ROC) for three terciles.

The MSSS, which is applicable to non-categorical deterministic forecasts only, provides a
comparison of forecast performance relative to forecasts of climatology. The MSSS was estimated using
Equations (1)–(3). Further details regarding the MSSS are available in the literature [42]. In this study,
the MSSS was used to compare the ensemble mean of the runoff reforecast with the reference runoff,
which was estimated using the multi-year mean of simulated runoff driven by the observed climate.
A forecast can be considered perfect if the MSSS = 1, whereas it is determined worse than the reference
forecast if the MSSS < 0.

MSSS = 1−MSE/MSE∗ (1)

MSE =
1
n

n∑
i=1

(
Rsim

i −Robs
i

)2
(2)

MSE∗ =
( n

n− 1

)2 n∑
i=1

(
Robs −Robs

i

)2
(3)

Here, MSE and MSE* are the mean square error of the ensemble mean of the runoff forecast and
the climatology forecast, respectively, Rsim

i and Robs
i are the ensemble mean of the runoff forecast and

the observed runoff, respectively, in year i and Robs is the mean of Robs
i during 1983–2016.

The ACC is another index with which to evaluate climate-hydrological forecasts. It is regarded
as a measure of the strength and direction of the linear relationship between observations and the
forecast. A forecast can be considered perfect if the ACC = 1, whereas it is determined worse than the
climatology if the ACC < 0.
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The ROC can also be used for verification of probability forecasts [42]. In this study, the standardized
areas under ROC curves (AUCs) for three tercile categories of daily runoff were calculated. A forecast
system can be considered perfect if the AUC = 1, whereas a forecast system can be considered to have
no valid information if the AUC = 0.5. A forecast system for which the value of the AUC is >0.5 can
be considered to have certain skill. The areas for above normal, near normal and below normal are
denoted AUC_A, AUC_N and AUC_B, respectively.

4. Results

4.1. Calibration and Validation of the HBV-D Model

For the calibration and validation periods, the model performance statistics are all considered
satisfactory in relation to the Yiluo and Beijiang rivers (Table 2), i.e., both NSE and R2 are >0.5 and
PBAIS is <±25% for both periods. Additionally, the HBV-D model is also shown well able to simulate
monthly runoff using gridded climate forcing (NSE > 0.73, R2 > 0.80 and PBIAS < ±15%) during
1971–2000 for monthly flow through the two hydrological stations [16]. From the hydrographs shown
in Figure 2, it can be seen that the monthly and seasonal patterns of observed runoff are reproduced
well. This, together with the successful application of the HBV-D model in different climatic regions,
verified that the model could be used to predict the runoff anomaly when forced with accurate
precipitation and temperature forecasts and proper initial conditions.

Table 2. Performance of the HBV-D model in daily runoff simulation.

Hydrological Station
(Calibration/Validation Periods) Series NSE R2 PBIAS

(%)

Heishiguan
(1970–1980/1981–2000)

Daily 0.64/0.56 0.81/0.76 18.0/17.6
Monthly 0.77/0.71 0.90/0.88

Shijiao
(1970–1980/1981–2000)

Daily 0.74/0.81 0.87/0.90
−5.9/−0.9

Monthly 0.94/0.93 0.97/0.97
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Figure 2. Monthly precipitation and observed/simulated runoff at (a) Heishiguan station on the Yiluo River
and (b) Shijiao station on the Beijiang River for periods of calibration (1970–1980) and validation (1981–2000).

4.2. Runoff Forecast Skill

As shown in Figure 3, the daily MSSS shows a declining trend. The length of the skilful time slice
varies with forecasted period and river location. Among the three periods, the MSSS reduces most
rapidly for both rivers in Period2. As listed in Table 3, the shortest time slice lasts only three days
for the Yiluo River in Period2, whereas the longest time slice lasts one month for the Yiluo River in
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Period3 and for the Beijiang River in Period1. Thus, the highest mean MSSS for the Yiluo River (0.19)
is in Period3 and that for the Beijiang River (0.16) is in Period1, whereas the corresponding lowest
values for both rivers (0 and 0.07, respectively) are in Period2 (Table 3). The intermediate skilful time
slice for the Yiluo and Beijiang rivers lasts two or three weeks with mean MSSS values of 0.13 and 0.12,
respectively. Additionally, the daily skilful forecasts on other days can be observed in Figure 3 and they
can be inferred from Table 3. Skill is evidently higher (lower) for the Beiijiang River than for the Yiluo
River for Period1 and Period2 (Period3) in terms of mean MSSS and length of the first skilful time slice.
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Figure 3. Skilful daily indices for (a–c) the Yiluo River and (d–f) the Beijiang River for Period1, Period2
and Period3, respectively (Only positive values of the mean square skill score (MSSS) and anomaly
correlation coefficient (ACC), and AUC-0.5 are illustrated to show skilful days. a and d, b and e, c and
f are for Period1, Period2 and Period3 respectively.).

Table 3. Temporal mean of MSSS, ACC and AUC during the 51-day forecasted periods.

River Index
Jun 1 to Jul 21 Jul 1 to Aug 20 Aug 1 to Sep 20

Period1 Period2 Period3

Yiluo River

MSSS 0.13/15/33 0.0/3/22 0.19/30/30
ACC 0.26/23/39 0.07/5/27 0.25/31/31

AUC_A 0.82/34/47 0.58/14/25 0.67/21/47
AUC_N 0.66/21/43 0.53/5/24 0.57/12/40
AUC_B 0.78/27/48 0.53/5/26 0.67/17/35

Beijiang River

MSSS 0.16/30/30 0.07/15/18 0.12/23/23
ACC 0.30/41/41 0.14/18/22 0.28/24/38

AUC_A 0.65/39/48 0.90/28/44 0.61/15/36
AUC_N 0.52/8/26 0.65/12/40 0.56/14/33
AUC_B 0.67/30/42 0.84/18/35 0.65/37/42

Note: The three numbers (left to right) in each row of the columns for each period represent the value of the index,
number of days of the first continuous skilful time slice and number of all skilful days, respectively.

The variation of the ACC is similar to that of the MSSS. The lowest mean ACC value is also
observed for Period2, but the highest observed value for both rivers is in Period1, i.e., 0.07 and 0.26
respectively for the Yiluo River, and 0.14 and 0.30 respectively for the Beijiang River. Compared with
the MSSS, the ACC score is obviously higher, i.e., the first continuous skilful time slice lasts longer and
the total skilful days are more, as illustrated in Figure 3 and listed in Table 3. The longest daily skilful
time slice lasts about six weeks for the Bejiang River in Period1, which is 11 days longer than the MSSS.
The shortest daily skilful time slice lasts five days for the Yiluo River in Period2, which is two days
longer than the MSSS. The most days with positive daily ACCs is seen in Period1, i.e., 6 (11) days more
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for the Yiluo River (Beijiang River) than the corresponding number for the MSSS. Moreover, the least
skilful days of the ACC are 22 days, which is 5 days more than the MSSS. Compared with the Yiluo
River, the skill is higher in terms of the mean ACC in three periods and the length of the first skilful
time slice of the ACC in the first two periods, while it is lower for Period3 for the Beijiang River.

Trends that first decline and then become flat can be observed in the AUC curves for the three
terciles in Figure 3. The continuous daily skilful time slices for the abnormal terciles are longer than the
normal terciles, and those for above normal terciles are longer than the below normal terciles in five out
of six cases. The longest slice lasts 39 days, while the shortest lasts 5 days. However, the most skilful
days are 48, while the least skilful days are 26 among 9 cases. The maximum and minimum values of
the mean AUC_A are 0.82 and 0.58 (0.90 and 0.61), respectively, for the Yiluo River (Beijiang River).

In most cases, skilful AUC days for abnormal terciles occur more often than or with similar
frequency to deterministic forecasts.

4.3. Reproducing Ability of Ensemble Runoff Forecast

Figure 4 illustrates the reproduction of the ensemble forecast for the two rivers during Period1.
Some daily observations fall outside the range of the ensemble forecasts on certain days for both rivers
(Figure 4), as well as for other periods (not shown), which partially explains the negative indices on somedays.
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5. Discussion

Decreasing trends of the five indices were observed during the three 51-day periods, and the
length of the skilful time slices varied with forecast period and geographic location. This might be
attributable to a decrease of the skill of climate forcing with lead time and to seasonal and regional
variations. Previous studies have indicated that the skill of precipitation and air temperature forecasts
drops markedly beyond a period of one month [43,44]. However, it is interesting that skilful daily
forecasts were detected in this study after some negative values were derived. It could be a result of the
combined influence of initial hydrological conditions and climate forcing, together with the variation
of their relative contributions with lead time [11], season, land surface condition and river location.

Runoff forecast skill was found higher for the Beijiang River than the Yiluo River in most
deterministic forecast cases explored. This could be attributed partially to better performance of the
HBV-D model for the Beijiang River than the Yiluo River (Table 2). The opposite case found for Period3
might be attributable partially to the slightly lower precipitation skill of DERF2.0 for the Beijiang River
than the Yiluo River in terms of the MSSS and ACC in August and September (see Figures 21 and 23
of [45]). However, it will be necessary to conduct further studies to investigate the reasons.

It could be expected that runoff forecast skill would be improved when using a multi-model
ensemble, which outperforms a single-model ensemble in terms of probabilistic forecast skill and
reliability [3,44], and when conducting post-processing of the coupled global climate model and/or
hydrological outputs [4,14,46–48]. However, only a slight skill improvement was detected for the
runoff forecasts driven by corrected climate data in comparison with those using raw DERF2.0 output
(results not shown). Moreover, it would be potentially more beneficial to use multiple climate models
rather than multiple hydrological models for a given river basin. This is because the uncertainties
associated with climate model forecasts are more likely to be the main reason for the low skill in
seasonal hydroclimate forecasting in comparison with those associated with the initial conditions and
the hydrological models [14].

This study assessed the potential of the proposed extended-range hydrological model in two
rivers targeting three periods. It is vital for a possible operational system to assess its skill in more
river basins for more periods, and to improve skill by using various approaches such as multi-model
ensemble, model parameters calibrating, and post-processing.

6. Conclusions

All five daily indices examined in this study showed decreasing trends for both rivers during the
three periods considered. The highest daily value derived was almost equal to 1. Moreover, the length
of the continuous skilful time slice was found to depend on the index, period and river location.
The longest continuous skilful time slice was about six weeks, whereas the shortest was only three
days for the deterministic forecasts and five days for the probabilistic forecasts.

The mean of the deterministic forecast skill during the 51-day periods was found higher for the
Beijiang River than for the Yiluo River in all three periods, except for in the terms of MSSS in Period3.
In terms of the mean MSSS, the lowest skill (<0.8) was observed in Period2 for both rivers among the
three periods, but the highest skill was 0.19 in Periods3 for the Yiluo River and was 0.16 in Period1
for the Beijiang River. In terms of the mean ACC, the lowest skill was 0.07 and 0.14 for Periods2,
but the highest skill was 0.26 and 0.30 for Periods1 for the Yiluo River and Beijiang River respectively,
among the three periods.

In producing the ensemble probabilistic runoff forecasts, in most cases, the continuous skilful
time slices for the abnormal terciles were found longer than for the normal terciles, and those for the
above normal terciles were found longer than for the below normal terciles.

Ensemble probability forecasting is a method with potential for extended-range river runoff

forecasting, compared with deterministic methods. In most cases, when using the DERF2.0 climate
model and the HBV-D hydrological model, it was found that skilful AUC days for abnormal terciles
occurred more often or with similar frequency to deterministic forecasts. This study confirms
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that ensemble runoff forecasting is superior to deterministic forecasting even when applying a
single-model ensemble.
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