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Abstract: The lowermost Mississippi River (LMR) is one of the largest deltaic systems in North
America and one of the heavily human-manipulated fluvial river systems. Historic hydrographic
surveys from the mid-1900s to the early 2010s were used to document the thalweg morphology
adjustments, as well as the riffle–pool sequences. Extensive aggradation was observed during 1950s to
1960s, as the Atchafalaya River was enlarging before the completion of the Old River Control Structure
(ORCS). Following the completion of the ORCS, reductions in sediment input to the LMR resulted in
net degradation of the thalweg profile patterns since the mid-1960s except for the 1992–2004 period.
Different flood events that supplied sediment might be the cause of upstream aggradation from
1963–1975 and net aggradation along the entire reach from 1992–2004. Furthermore, the change
pattern of thalweg profiles appear to be controlled by backwater effects, as well as the Bonnet Carré
spillway opening. Results from riffle–pool sequences reveal that the averaging Ws ratios (length to
channel width) are 6–7, similar to numerous previous studies. Temporal variations of the same riffles
and pools reveal that aggradation and degradation might be heavily controlled by similar factors
to the thalweg variations (i.e., sediment supply, backwater effects). In sum, this study examines
decadal-scale geomorphic responses in a low-lying large river system subject to different human
interventions, as well as natural flood events. Future management strategies of this and similar
river systems should consider recent riverbed changes in dredging, sediment management, and
river engineering.
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1. Introduction

1.1. Study Aims

Large alluvial rivers in the world usually have immense socio-economic importance. Different
human activities, such as channelization, flood control, or dredging for navigation affected several
large drainage systems such as the Nile, Mississippi, Indus, Yangtze, and Euphrates rivers [1,2]. Fluvial
geomorphological responses to human impacts are highly dynamic and complex, and the lowermost
Mississippi River (LMR) is a notable example (Figure 1). Due to preventing the main channel of
Mississippi River from suddenly changing its course (avulsion) into the Atchafalaya River [3], the first
phase of the Old River Control Structure (ORCS) was completed in 1963 by the United States Army
Corps of Engineers (USACE). After the completion of these structures, different studies discussed
whether the ORCS blocked sediments and resulted in sediment deficiency, or stabilized the channel
gradient and caused riverbed aggradation [4–16]. In a recent modeling study, Wang and Xu [17] found
that, proportionally, more riverbed materials were carried downstream in the Mississippi mainstem
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than to the outflow channel. However, they also cautioned that a solid conclusion could not be drawn
because the comparison of the modeling results is based on a very limited number of field measurements.
Therefore, given the complex morphodynamic behavior in the LMR region, understanding long-term
(decadal scale) variations regarding to river thalweg morphology due to anthropogenic disturbance is
an important task. With hydrographic data exceeding a century in timespan recorded by the USACE
(from the 1870s to 2013), the LMR is an ideal site to study geomorphological response over decadal
scales. In addition, the riffle–pool undulation on thalweg profiles is also likely to be indicative of
longer-term morphological adjustment and enables an analysis of downstream trends in the riverbed
form resistance [18–20].
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(BCS, near RK 205), as well as the two cities of Baton Rouge (RK 370) and New Orleans (RK 164). The 
yellow square indicates the location for Figure 4B. 
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with coarse-grained channels of <2% slope [21,23–25]. The morphology of riffle–pool sequences is 
considered as a fundamental process of channel adjustments in both vertical and planform 
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Figure 1. The geographical map of the lowermost Mississippi River (LMR) with different locations.
Artificial levees along the channel (red lines) are also marked in this map. Our study reach (river
kilometer (RK) 490 to RK 0) is located from downstream of Tarbert Landing (TBL, RK 493) to the Head
of Passes (HOP, RK 0). Some important structures are also labeled on the map, such as Old River
Control Structure (ORCS, RK 500), Morganza Spillway (MS, near RK 451), and Bonnet Carré spillway
(BCS, near RK 205), as well as the two cities of Baton Rouge (RK 370) and New Orleans (RK 164).
The yellow square indicates the location for Figure 4B.

Alluvial river channels commonly exhibit a dynamic, three-dimensional variation in the planform,
cross-sectional, and longitudinal aspects [21,22]. At the reach scale, the channel thalweg is modified
into a series of bathymetric lows and highs. These vertical undulations in bed elevation are
generally referred to as riffle–pool sequences. Riffles represent the topographically shallow section
of an undulating channel bed, while pools are the topographically deep areas of the channel bed
(Figure 2A). The riffle–pool sequences are commonly placed in both straight and meandering rivers with
coarse-grained channels of <2% slope [21,23–25]. The morphology of riffle–pool sequences is considered
as a fundamental process of channel adjustments in both vertical and planform dimensions [26–30].
Furthermore, riffle–pool morphology is also important in terms of mesoscale habitats, as different
physical conditions would determine different habitat type [31,32]. Human activities, such as
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channelization or dredging, could modify the riffle–pool forms [33]. Therefore, to examine the variation
of the riffle–pool morphology after massive human alterations is another major goal for this study.

In sum, this study aims to examine the variations of thalweg profiles, as well as the riffle–pool
sequences, from pre-construction of the ORCS (pre-1963) to recent time (2010s) in the LMR by using the
hydrographical datasets. This paper focuses on the lowermost reach of the LMR (Figure 1), extending
from the ORCS juncture to the Head of Passes (HOP), which extends from river kilometer (RK) 490 to 0.
In general, this study serves as an important extension/comparison to both studies of Joshi and Jun [34],
as well as Wang and Xu (see details in Section 1.2). We believe this study will further contribute to
understanding of thalweg geomorphology response to a series of engineering interventions in the
LMR region over a relatively long-term period (decadal scale).
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channel (modified from Keller and Melhorn [27]). (B) Definition of bed-form parameters, including
the lengths of riffle–riffle or pool–pool, and how the regression line is used to estimate riffle height or
pool depth.

1.2. Study Site

The Mississippi River and tributaries drain approximately 41% of the conterminous United
States (US); it is also the largest fluvial system around the world. In addition to its role as the largest
river in North America, the Mississippi River is a backbone of commerce and industry [4,11,35–38].
The average values of maximum and minimum discharge in Tarbert Landing (TBL) at RK 493 vary from
3143 to 45,845 m3/s, respectively [14,15]. The drainage area above TBL is estimated to be 2,913,478 km2.
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The LMR is classified as a 10th-order river [39], and the channel bed is composed of latest Pleistocene
and Early Holocene fluvio-deltaic sediment [40]. The D50 (median particle size) values were reported
between 0.05 and 0.28 mm in the LMR, with a gradually finer trend in the downstream direction
(Figure 3) [4,37,41,42]. In addition, Keown [41] also indicated that grain size historically became finer
from the 1930s to post-1965.

In terms of artificial constructions, since the first artificial levee was erected in New Orleans
around the 18th century, the LMR was gradually constrained by different engineering structures
such as levees, floodwalls, and revetments [43]. Following the catastrophic flood in 1927, massive
upgrades and newly constructed artificial structures were authorized as part of the Mississippi Rivers
and Tributaries Project. The history of these engineering interventions was documented by some
earlier studies [44–46]. Several outlets and spillways were constructed in the LMR. The spillways
and construction times are chronologically as follows: (1) Bonnet Carré Spillway (BCS) near RK 205,
completed in 1931; (2) Morganza Spillway (MS) near RK 451, completed in 1954; (3) the ORCS near
RK 500, completed in 1963 [47]. The ORCS allows 30% of the combined discharge to pass into the
Atchafalaya River, while the other 70% of the total discharge is carried by the LMR [4,48,49]. Despite
several other engineering activities after the completion of ORCS [14], it is widely recognized that the
LMR is a completely engineered river after the completion of the ORCS in 1963 [49]. However, several
studies [4–11] found channel degradation and sediment deficits in the Mississippi deltaic area resulting
from dams and other structures (especially the ORCS) trapping vast amounts of sediments upstream
within its upper stream. Consequently, there was minimal planform movement of the LMR in the
past decades mainly due to confinement by artificial levees, and the protection of these by concrete
revetments [5,6].
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Figure 3. The riverbed materials along the study area (modified from Mossa [4]). The upper graph
shows downstream changes in bed material using different terms (i.e., gravel, sand, silt, clay), and the
lower graph shows grain size in numbers (i.e., D50 is the median grain size, while D84 and D16 are the
84th and 16th percentiles used to represent the coarse fraction, respectively).

Contrasting these other studies, Joshi and Jun [34] analyzed the riverbed adjustment by using
18 cross-sections near gauging stations, as well as river stage data, from 1992–2013. They found the
channel degradation was only observed in a 60-km reach (out of 500 km in total), whereas all the
other reaches were either experiencing gradual aggradation, or showed no significant change over
time. They concluded that, since the LMR generally received less flow than it did beforehand due to
ORCS regulation, there were lower water velocities, which could further benefit in sediment deposition
along the reach. Similar observations with sediment deposition in the LMR were also observed by
Biedenharn et al. [50], as well as Wang and Xu [14]. Biedenharn et al. [50] analyzed the stage and
discharge data from gauging stations from 1880–1992 and summarized that the river in the post-cutoff

period (1943–1992) had a much greater stream power than in the pre-cutoff (1880s–1930s).
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Furthermore, Wang and Xu [14] utilized the hydrographic survey data from 1992–2013 and
identified both degrading and aggrading sub-reaches; nevertheless, this study also indicated that a
vast amount of sediment was deposited in the LMR channel, especially between RK 386 and 163. Note
that one important aim of this study is to extend and compare the study period from Wang and Xu [14]
and Joshi and Jun [34]. As both these studies merely focused on the period from the 1980s to the 2010s,
our study covers from the 1950s to present. Therefore, we believe this study will give a broader view
from past to present on the channel dynamics of the LMR.

1.3. Previous Studies on Riffle–Pool Sequence

The morphological characteristics and controlling variables of riffles and pools were intensively
investigated in different aspects, such as meander wavelength or channel width [24,28,30,51,52], flow
velocity or energy [24,30,51,52], and sedimentation processes [53–56]. In addition, the maintenance of
the pool–riffle form was also discussed in several studies [57–59], such as the role of obstructions in the
pool, sediment routing around the pool, and sediment structure differences between pools and riffles.
Although some arguments remain regarding the initiation and maintenance of riffle–pool sequences,
such as velocity (or shear stress) reversal hypothesis [55,60], several observations in common are
supported by numerous studies. One of these observations is the spacing between pools or riffles
being roughly 5–7 times the channel width (denoted as the Ws ratio, Figure 2B). Furthermore, since the
meander wavelengths usually consist of two riffle–pool sequences, the meander wavelengths should
be 10–14 times the channel width [27,28,53,61–65].

Despite over 100 scientific papers discussing the pool–riffle sequence, most of these studies
examined the variations of riffle–pool sequences within small channel systems or mountainous
rivers [64,66,67]. Only few studies focused on highly engineered large river systems, especially for
long-term observations [19,22,33,68]. The lack of studies focusing on the riffle–pool sequence in
these river systems can be summarized as being due to two different reasons. Firstly, erosion and
sedimentation rates in large alluvial floodplains are often various and complex to estimate. Secondly,
the study of riffle–pool morphology usually requires detailed field surveys, which is particularly
difficult in large river systems [22,69].

Keller [33] was the first to discuss whether the development of riffle–pool sequences could be
affected by the variety of stream conditions, especially between natural and channelized streams.
Keller’s [33] pioneering study only examined small portions of six rivers (<1 km) without discussing
the possible thalweg changes over time. On the other hand, Dury [68] used long-term monitoring data
(approximately 100 years) to investigate the changes in riffles and pools in Hawkesbury River, Australia.
Our study also utilizes long-term (>50 years) decadal-resolution data to examine the variations of
thalweg profiles, as well as the riffle–pool sequences from a period of moderate human impact (before
the completion of ORCS) to a period of heavy human impact (post-ORCS construction in 1963).

1.4. Relevant Studies in the LMR

Numerous prior studies summarized different aspects of human modifications of the LMR,
such as sedimentation deficit [5–8,38,70] or geomorphological or hydrodynamic responses to human
impact [50,70–73]. Only few studies [19,22,65,69] aimed to investigate the temporal and spatial
variations of the thalweg profiles and riffle–pool sequences. Among these studies, Hudson [22]
was the first to discuss pool–riffle morphology in the LMR. This study aimed to investigate the
pool–riffle morphology changes before massive engineering modification. Therefore, their study area
was upstream (from Cairo, Illinois to approximately the TBL) from the 1880s to 1910s. Therefore, their
study area and period do not overlap with our study.

Harmar et al. [19] was another notable research that analyzed riffle–pool sequences and
morphological adjustments by using hydrographic surveys from RK 1017–574 (between the confluence
of the Arkansas River and 8 km upstream from ORCS) from 1949–1989. They suggested that the greatest
changes occurred during the post cut-off period (1949–64) upstream from Vicksburg, Mississippi.
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However, this study used cross-sectional data from prior to the 1990s, and the morphological
adjustments or sedimentation rates in the LMR might have varied after different modern flood events,
such as the 1993 or 2011 floods [74–76]. Furthermore, similar to Hudson [22], this study also did not
overlap with our study area. Note that, although Gibson et al. [65] also studied riffle–pool sequences
in the LMR, their study solely used 2013 hydrographic survey to identify pools in the LMR. In sum,
our study is a pioneering and unique attempt to document all the hydrographic surveys from the late
1940s to early 2013s. This study may further help understand how the lowermost Mississippi river
adjusted to increasing engineering and human modification.

2. Materials and Methods

2.1. Constructing Thalweg Profiles

The hydrographic surveys collected by USACE along the LMR comprise across-channel sounding
points with elevations [19]. These hydrological surveys are repeated roughly each decade, which not
only contribute insights into the thalwag changes at decadal intervals, but also enable a more rigorous
analysis of morphological changes than previously possible. These cross-sections are longitudinally
spaced at 250–400-m intervals along the entire LMR, with 15–50 sounding points per cross-section;
the number of sounding points depends on channel width. These sounding points were spaced at
30–40-m intervals along each cross-section. With sufficient spatial and temporal resolution, several
previous studies utilized these datasets for their research [6,14,19,22,34,37,69,77,78]. In our study,
these hydrographic transects were employed to construct the thalweg profiles for six different times,
including 1952, 1963, 1975, 1992, 2004, and 2013. All the hydrographic data share the same horizontal
coordinate system (i.e., State Plane system, Louisiana south). Table 1 summarizes all the hydrographic
surveys and their characteristics.

Table 1. Summary of different hydrographic surveys used in this study.

Name Adopted in the
Article

Dates of
Survey

Number of Maps in
Series

Cross-Section Numbers
Used

1952 1949–1952 80 1892
1963 1961–1963 86 1829
1975 1973–1975 86 1831
1992 1991–1992 86 1831
2004 2003–2004 104 1832
2013 2013 86 1832

In order to construct profiles of thalweg elevation, we delineated the lowest elevation point in each
cross-section from the hydrographic survey sheets (Figure 4A). A series of shapefiles were generated in
different years by digitizing all the thalweg points in the respective hydrographic survey. Furthermore,
the channel width was measured as the distance between two bankfull lines (Figure 4A). With channel
width in each riffle or pool, we could further estimate the widths in riffles or pools, and calculate
different ratios (e.g., Ws, see details in next section). Note that all the elevation data were utilized in
our analysis, except the data covering a 5-km-long chute at Profit Island near RK 400 (the cross-sections
in yellow of Figure 4B).

To allow direct comparison between hydrographic surveys, each cross-section was referenced to a
normalized channel distance, based on the river miles (RM) above HOP measured by USACE in 1962;
all the RM were converted to RK afterward. Note that we averaged thalweg depths every 1000 m to
create the thalweg profiles for temporal comparisons, which also allowed our results to compare with
Hudson and Kesel [69]. Furthermore, the elevation soundings during 2004 and 2013 were vertically
referenced to the North American Vertical Datum of 1988 (NAVD 88), while other elevation soundings
in all the older hydrographic surveys were based on the National Geodetic Vertical Datum of 1929
(NGVD 29). For consistency, these survey data were converted to NAVD 88 using the CORPSCON
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program developed by USACE [79]. In addition to the hydrographic survey data, daily discharge
recorded at TBL by USACE was also employed to characterize hydrological changes from 1949 to 2013.Water 2019, 11, x FOR PEER REVIEW 7 of 26 
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Figure 4. (A) The diagram from the hydrographic survey in 2013 shows the schematics of how the
channel width (blue lines with arrows) and thalweg points (red circles) are determined. The bankfull
or water surface lines are marked by the United States Army Corps of Engineers (USACE), and the
channel width is defined by the distance between two bankfull lines. (B) The map shows a sand bar
dividing the cross-sectional survey in 2013. Those cross-sections in red were located in the main channel
and, therefore, were kept in our study, whereas the cross-section in yellow was deleted from our study.
See the location in Figure 1.

2.2. Riffle–Pool Identification and Analysis

Carling and Orr [80] reviewed over 50 studies and concluded that there are only four robust,
objective analytical techniques to identify riffle–pool sequence (Table 2), and most of the studies
adopted one of these principal techniques. Among all the identification techniques, the “bed-form
differencing technique” developed by O’Neill and Abrahams [81] is the most common method that
was employed by several studies [19,22,64,65,82]. This method, therefore, was employed in our
study. O’Neill and Abrahams [81] addressed that the topographic high or low would be identified
as a riffle or a pool once the cumulative bed-form elevation exceeds the tolerance value (T). In this
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study, T of 6 m was selected based on the results from Harmar et al. [19], as well as Harmar [83],
as both studies performed sensitivity analyses by employing similar hydrographic surveys to this
study. Note that riffles and pools were identified by using the constructed thalweg profiles from
1952, 1963, 1992, and 2013. Delineating the riffles and pools between 1952 and 1963 typifies the
changes of riffle–pool sequences prior to completion of the controlled diversion at ORCS with less
engineering, whereas post-1963 riffle–pool sequences feature the patterns with controlled diversion
and increased engineering structures such as revetments. In addition, using 250–400-m gaps between
two intermediate cross-sections might sometimes result in not capturing pools or riffles. However,
several studies [19,22,65,83] employed these hydrographic transects, and suggested that these data
provide sufficient resolution for the identification of riffles and pools.

Table 2. Different methods for analyzing riffle–pool sequences.

Method Description Studies Advocating
This Method

Zero-crossing
analysis

Fitting a regression model for the bed profiles to identify
positive (riffle) and negative (pool) residuals departures from

zero (regression line).
[28,68,84]

Bed-form
differencing
technique

This method identifies pools and riffles by checking if
cumulative elevation changes exceed a certain tolerance value.
The tolerance value is usually based on the standard deviation

of successive differences in bed elevations.

[81]

Power spectral
analysis

Similar to spectral analysis, describing thalweg data as both
periodic and random fluctuations. A second-order recreation is

used for autoregressive process.
[29]

Control-point
method

Extending the base flow water surface upstream from the low
point in each riffle crest until it intersects the bed upstream;

then, the pool lengths can be defined.
[51]

Once all the riffles and pools were identified, different features of riffle and pool morphology could
be measured, such as channel width, amplitude of each riffle or pool (riffle height or pool depth, and
the length (or spacing) between two consecutive pools or riffles (Figure 2). The length of each bed-form
is the distance between a pool and the other downstream pool, or riffle and the other downstream riffle
(Figure 2A). Furthermore, the amplitude of each sequence was decided with the maximum deviation
beneath (pool) or above (riffle) the regression line (Y = 0 regression line in Figure 2B). With the results
of amplitude and length, different ratios, such as Ws or W/D (width-to-depth ratio), could be estimated.
The entire procedures were performed using SPSS, Python code, and ArcGIS. Note that the entire LMR
was divided into the upper and lower reaches at the BCS (Figure 1). The reason for employing this
break point is outlined in next section.

3. Results

3.1. Thalweg Profiles

Figures 5 and 6 display six different hydrographic surveys profiles from 1952 to 2013. Four profiles
identified pools and riffles (Figure 5A–D). All these thalweg profiles exhibit a general declining trend
toward the downstream direction that reverses approaching the HOP. All the thalweg profiles show
periodic oscillations in the downstream direction, which are mainly regulated by well-developed
riffle–pool sequences; however, the thalweg profiles in the last 30-km reach (RK 30 to HOP) rise sharply
by about 20 m. Because the riffles and pools become more difficult to identify due to their decreased
amplitude, all the identified riffles and pools are located upstream of RK 30.
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distance from RK 490 to HOP at RK 0. The elevation values are above the North American Vertical
Datum of 1988 (NAVD 88).
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Figure 6. Two other thalweg profiles in 1975 (A) and 2004 (B) are only used for comparing the cumulative
elevation changes of thalweg in different times without identified riffles or pools. The elevation values
are above NAVD 88.

A comparison of downstream variations in thalweg elevation between the two endpoints (1952
and 2013 profiles) are displayed in Figure 7. A linear regression line was employed on the profile
of Figure 7A, with an estimated slope coefficient of −0.008 (see formula in Figure 7A). This slope
coefficient represents the overall elevation change of 8 cm for every 10 km in the downstream direction.
Over the 65-year duration, the characteristics of the thalweg elevation change demonstrate that most
of the riverbed experienced channel aggradation (i.e., most of the y-axis values >0 on Figure 7A).
However, the trend in Figure 7A does not reveal where and when the highest rates of degradation
occurred. Therefore, a cumulative elevation change (Figure 7B) was generated for further comparison.

The trend in Figure 7B reveals a clear difference between upstream and downstream of the BCS
(RK 205). A constant increasing trend upstream of the BCS indicates consistent aggradation rate
throughout this reach. Meanwhile, there is no constant trend downstream BCS, with a decreasing trend
(RK 205–125), which relatively flattened (RK 125–30), before increasing to HOP (RK 30–0). Following
these observations, it would be more appropriate to examine thalweg profiles by employing two
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different reaches (upstream and downstream BCS), rather than one. Hence, two major reaches were
divided in this study: upper (RK 500 to RK 205) and lower (RK 205–0).

Water 2019, 11, x FOR PEER REVIEW 11 of 26 

 

employing two different reaches (upstream and downstream BCS), rather than one. Hence, two major 
reaches were divided in this study: upper (RK 500 to RK 205) and lower (RK 205–0). 

 
Figure 7. Changes to the thalweg profiles between 1952 and 2013 in the LMR: (A) linear regression 
(dashed line) of elevation change; (B) cumulative elevation change, where the dashed line with an 
arrow represents a constant aggradation trend. Different locations are also labeled to represent the 
relative position. Note that location of the BCS (labeled as a dashed line) serves as the break point of 
the upper and lower reaches in our study. 

3.2. Cumulative Elevation Changes 

The cumulative elevation changes were generated using all the intermediate hydrographic 
surveys from 1952 to 2013 (Figure 8). Notable changes in both the upper and lower reaches in 
different time periods can be found from Figure 8. From 1952–1963, before the completion of ORCS, 
the general trend increased with a relatively flat span around RK 205 to RK 120, which implies a 
consistent aggradation along the entire study reach. The trend line from 1963–1975 (orange line in 
Figure 8) shows a different pattern than that from 1952–1963. Although local aggradation occurred 
in the reach upstream of RK 360, it was less than the earlier period with minimal change (flat) between 
RK 360 and 205, whereas the lowermost reach (downstream RK 205) experienced pronounced 
degradation. Therefore, the phenomenon of net sediment erosion can be found just following 
completion of the ORCS in 1963. 

Both the trend lines after 1975 (1975–1992 and 2004–2013) also show a net degradation patterns 
(blue and purple dashed lines in Figure 8). Specifically, although local aggradation occurred in the 
trend line of 1975–1992 (RK 360–265), the general trend still reveals net degradation in both periods. 
The only exception is the trend line of the 1992–2004 period; the red line in Figure 8 shows net 
aggradation during this period, which is similar to the trend line in 1952–1963, but the cumulative 
change is considerably less. In general, the vertical adjustments (aggradation, degradation, or no 
notable change) between 1952 and 2013 are summarized in Table 3. A prominent finding, similar to 

Figure 7. Changes to the thalweg profiles between 1952 and 2013 in the LMR: (A) linear regression
(dashed line) of elevation change; (B) cumulative elevation change, where the dashed line with an
arrow represents a constant aggradation trend. Different locations are also labeled to represent the
relative position. Note that location of the BCS (labeled as a dashed line) serves as the break point of
the upper and lower reaches in our study.

3.2. Cumulative Elevation Changes

The cumulative elevation changes were generated using all the intermediate hydrographic surveys
from 1952 to 2013 (Figure 8). Notable changes in both the upper and lower reaches in different time
periods can be found from Figure 8. From 1952–1963, before the completion of ORCS, the general trend
increased with a relatively flat span around RK 205 to RK 120, which implies a consistent aggradation
along the entire study reach. The trend line from 1963–1975 (orange line in Figure 8) shows a different
pattern than that from 1952–1963. Although local aggradation occurred in the reach upstream of RK
360, it was less than the earlier period with minimal change (flat) between RK 360 and 205, whereas
the lowermost reach (downstream RK 205) experienced pronounced degradation. Therefore, the
phenomenon of net sediment erosion can be found just following completion of the ORCS in 1963.

Both the trend lines after 1975 (1975–1992 and 2004–2013) also show a net degradation patterns
(blue and purple dashed lines in Figure 8). Specifically, although local aggradation occurred in the trend
line of 1975–1992 (RK 360–265), the general trend still reveals net degradation in both periods. The only
exception is the trend line of the 1992–2004 period; the red line in Figure 8 shows net aggradation during
this period, which is similar to the trend line in 1952–1963, but the cumulative change is considerably
less. In general, the vertical adjustments (aggradation, degradation, or no notable change) between
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1952 and 2013 are summarized in Table 3. A prominent finding, similar to the observation previously
discussed, is that the BCS also appears to be a change point between the upper and lower reaches.
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Figure 8. The cumulative elevation changes with the upper reach and lower reach (divided by the BCS)
shown by intermediate hydrographic surveys from 1952 to 2013. A positive trend represents sediment
deposited on the riverbed, while a negative trend indicates sediment erosion in the study area.

Table 3. Vertical trends (degradation, aggradation, or no change) in thalweg profiles during different
periods from 1952 to 2013 (See Figure 8). The numbers in this table represent distance in river kilometers
(RK; i.e., 205–120 indicates the sub-reach from RK 205–RK 120).

Period Degradation Aggradation Slight/No Change

1952–1963 – 490–205, 120–0 205–120
1963–1975 205–0 490–360, 40–0 360–205
1975–1992 270–0 360–270 490–360
1992–2004 – 490–205, 120–0 205–120
2004–2013 310–40 40–0 490–310

3.3. Riffle–Pool Amplitude, Length, and Ws Ratio

Most of the previous studies reported that lengths of pool–pool or riffle–riffle should be 5–7 times
the channel width (Ws ratio). Although the greatest number of pools and riffles is not always spaced
from 5–7 channel widths apart (most of the values concentrate from 3–5), the average numbers still
fall in this range (with the only exception for the riffle average value in 1992 = 8.06) (Figure 9). These
patterns are consistent with previous studies [27,28,53,61–63].

The statistics of spacing (e.g., pool–pool length and riffle–riffle length), pool depths, and riffle
heights in both upper and lower reaches are summarized in the length values of Table 4. It is observed
that the results of the lengths (both pool–pool and riffle–riffle) in both upper and lower reaches nearly
overlap with each other (see Figure S1, Supplementary Materials). The riffle heights are displayed in
the amplitude values from Table 4; the results show relatively stable from 1952–2013 for both upper
and lower reaches, where the values range from 6.7–7.9 m. Nevertheless, the average pool depths
fluctuate from 9.1–12.0 m, greater than the average riffle heights.



Water 2019, 11, 1175 13 of 25
Water 2019, 11, x FOR PEER REVIEW 13 of 26 

 

 
Figure 9. Frequency of pool–pool length (in orange) and riffle–riffle length (in blue) by channel widths 
(W/D ratio) at different times: 1952 (A), 1963 (B), 1992 (C), 2013 (D). Averaged W/D ratios of riffles or 
pools are also displayed in this figure. 

Table 4. The average values of the length (i.e., the length between two consecutive pools or riffles), 
amplitude (i.e., riffle height, pool depth), and W/D ratio (width-to-depth ratio) for riffles and pools in 
different survey years. These average values are displayed by riffles in the upper reach (UR) and 
lower reach (LR), as well as pools in the upper reach (UP) and lower reach (LP). The values in both 
length and amplitude represent distances in meters. 

 Year UR UP LR LP 

Length (m) 

2013 6099 6099 5220 5209 
1992 5890 5918 5534 5563 
1963 4781 4728 5056 5046 
1952 4932 4972 5373 5389 

Amplitude (m) 

2013 6.67 11.33 6.97 9.11 
1992 6.84 11.99 7.04 10.66 
1963 7.25 9.86 7.89 10.17 
1952 7.41 10.89 7.59 11.15 

W/D ratio 

2013 141.00 70.10 107.86 78.71 
1992 136.93 68.38 103.42 65.80 
1963 130.99 88.96 104.92 76.31 
1952 125.94 82.64 106.60 69.48 

4. Discussion 

4.1. Cumulative Elevation Changes 

Based on the patterns in Figure 8, net aggradation occurred from 1952–1963, before the 
completion of the ORCS; this finding is different from the results of Hudson and Kesel [69] or Harmar 
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Figure 9. Frequency of pool–pool length (in orange) and riffle–riffle length (in blue) by channel widths
(W/D ratio) at different times: 1952 (A), 1963 (B), 1992 (C), 2013 (D). Averaged W/D ratios of riffles or
pools are also displayed in this figure.

Table 4. The average values of the length (i.e., the length between two consecutive pools or riffles),
amplitude (i.e., riffle height, pool depth), and W/D ratio (width-to-depth ratio) for riffles and pools in
different survey years. These average values are displayed by riffles in the upper reach (UR) and lower
reach (LR), as well as pools in the upper reach (UP) and lower reach (LP). The values in both length
and amplitude represent distances in meters.

Year UR UP LR LP

Length (m)

2013 6099 6099 5220 5209
1992 5890 5918 5534 5563
1963 4781 4728 5056 5046
1952 4932 4972 5373 5389

Amplitude (m)

2013 6.67 11.33 6.97 9.11
1992 6.84 11.99 7.04 10.66
1963 7.25 9.86 7.89 10.17
1952 7.41 10.89 7.59 11.15

W/D ratio

2013 141.00 70.10 107.86 78.71
1992 136.93 68.38 103.42 65.80
1963 130.99 88.96 104.92 76.31
1952 125.94 82.64 106.60 69.48
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4. Discussion

4.1. Cumulative Elevation Changes

Based on the patterns in Figure 8, net aggradation occurred from 1952–1963, before the completion
of the ORCS; this finding is different from the results of Hudson and Kesel [69] or Harmar et al.
upstream [19]. Both studies concluded that, following massive construction of artificial cut-offs and
reservoirs, the degradation rates were high during the same time span (1952–1963). Note that both of
these studies [19,69] examined the river upstream of the ORCS, whereas our study scrutinizes the LMR
further downstream. Perhaps some of the bed sediment which eroded upstream during this period
was transported into the reach downstream, resulting in net deposition in our study area.

It is widely recognized that the completion of the ORCS changed the flow and sediment regime
of the system [4,6,7,9,85]. What is uncertain is whether the structure could cause the entire LMR to
shift from aggradation to degradation. As a result, net degradation occurring after 1963 is expected.
Therefore, Figure 8 reveals that, despite some local aggradation, the trend lines of 1963–1975, 1975–1992,
and 2004–2013 share a similar net degradation pattern. Upstream degradation (RK 490–360) from
1963–1975 might have been affected by the 1973 flood, as both in channel and overbank sediments
deposition were found near the ORCS [86]. Furthermore, the disparity between the 1952–1963 trend line
and the dashed line (Y = 0 line in Figure 8) gradually increases in a downstream direction. Nevertheless,
although net degradation occurred in the LMR after 1963 (except for the 1992–2004 period), the scales
of disparity (between post-ORCS trend lines and Y = 0 dashed line) are relatively small. Therefore, the
thalweg profiles seemed to gradually reach an equilibrium state after the ORCS completion.

As mentioned above, the trend line in 1992–2004 is the only time period with net aggradation
after the completion of the ORCS in 1963. One possible reason for net aggradation might be due to
the 1993 flood. Several studies [12,14,37,87] reported that discharge over 2.5–2.6 × 104 m3/s would
trigger channel erosion in the LMR. On the contrary, they also suggested that, if discharge was less than
this threshold value (i.e., 1.8–2.5 × 104 m3/s), it would cause channel aggradation. Figure 10 displays
both the peak discharge and duration (days) at TBL by applying the previous criteria. The duration
of deposition tendency during the 1993 flood (185 days) is prominently longer than any other years
(orange histogram in Figure 10). Therefore, one possibility is that the 1993 flood may have contributed
to vast amounts of sediment deposition [14]. However, in contrast, using data from instantaneous
discharge measurements with higher temporal resolution from TBL (RK 493), manipulated as in
Mossa [88], suggests that bed changes at this location were minimal when comparing before and
after the 1993 flood with thalweg elevation rising and falling by ~3 m during the year (Figure 11).
Unfortunately, these data only exist for selected locations with frequent discharge measurements; thus,
it is not possible to examine other locations with this degree of detail.

In addition, the functioning of the BCS might also explain downstream aggradation from1992–2004.
The BCS is designed to divert flood discharge from the main Mississippi River into Lake Pontchartrain,
in order to ensure that the discharge flowing through New Orleans is less than 3.5 × 104 m3/s. Until the
2011 flood event, the BCS was opened 10 times since its completion during 1931 [42,89], with eight of
the 10 instances occurring during our study period (Table 5). As the water surface recedes during floods
near this location, the drawdown effect might decelerate the sediment deposition in the downstream
reach and flatten the trend lines, especially from 1952–1963 and 1992–2004 (RK 205–120 in Figure 8
and Table 3). Note that the BCS was not opened during the 1993 flood (Table 5); therefore, none of the
sediments coming from upstream would have an opportunity to exit the river and, thus, would either
be deposited upstream or downstream of this reach. Given all the previous explanations, the pattern
of channel aggradation from 1992–2004 is reasonable and has several possible explanations [14].
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Figure 11. The stage (blue), mean bed (green), and thalweg (red) elevations at TBL from 1990 to 1995 
manipulated from data collected by the USACE. Although high stages could be found during the 1993 
flood, and ~3 m fluctuations in both mean bed and thalweg elevations occurred, this site had no net 
aggradation. 

Figure 10. The peak discharges (black line with dots) at TBL from 1949 to 2013. The BCS was opened
during every flood event except the 1993 flood [89] (see Table 5). In contrast, the duration of discharge
from 18,000–32,000 m3/s is also marked on the histogram. Peak discharges during seven flood events
above the red dashed line (40,000 m3/s) are marked with a red number. The duration in days of
discharge from 18,000–25,000 m3/s (orange color, tending to deposition) and above 25,000 m3/s (blue
color, tending to erosion) are also marked on the histogram. It is observed that the longest period
(185 days) of deposition occurred during the 1993 flood, whereas the longest erosion duration (120 days)
took place during the 1973 flood.
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Figure 11. The stage (blue), mean bed (green), and thalweg (red) elevations at TBL from 1990 to 1995
manipulated from data collected by the USACE. Although high stages could be found during the
1993 flood, and ~3 m fluctuations in both mean bed and thalweg elevations occurred, this site had no
net aggradation.
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Table 5. Opening dates of the Bonnet Carré Spillway (BCS) due to different flood events from 1950
to 2011. This table also includes maximum bays open, maximum water discharge, and estimated
sediment deposition (modified from Day et al. [89]).

Year †
Dates Spillway

Opened
Max. Number of

Bays Open
Max. Discharge

(m3/s)
Sediment Deposition

(106
×m3)

1950 February 10–March 19 350 6315 3.8
1973 April 8–June 21 350 5523 11.5
1975 April 14–26 225 3115 1.5
1979 April 17–May 31 350 6457 3.8
1983 May 20–June 23 350 7590 3.8
1997 March 17–April 18 298 6797 6.9
2008 April 11–May 8 160 4531 1.5
2011 May 9–June 20 330 8949 7.2

† This table excludes the 1994 opening, which was for experimental purposes, not for flood control.

If we neglect the trend lines that were affected by the flood events (i.e., trend line from 1992–2004,
RK 490–360 in the 1975–1992 trend line), all the trends in Figure 8 post-ORCS (after 1963) show a
relatively similar pattern, i.e., no change or aggradation upstream of the BCS (RK 205), while showing
degradation in the lower portion (RK 250–40). This thalweg deformation pattern may result from
backwater effects [14,37,87,90]. Backwater effects usually occur within the backwater zone; in the
Mississippi River, the backwater zone extends from the HOP to RK 650 [42]. Backwater effects take
place when a river approaches its outlet, where the flow decelerates because of lateral spreading and
vertical deepening in the channel [91,92]. Several models demonstrate that the lower part of the LMR
(last 150-km reach) may experience erosion, but deposition in the upper part [42,87,90]. Another related
explanation is that the LMR is tidally influenced and the salt-water wedge moves further upstream
during low water, such that an underwater sill needed to be constructed near RK 102 on the bed
of the river to guard the water supply at New Orleans during drought [93,94]. Moving toward the
mouth, bi-directional tides may mute out riverine processes and related forms, resulting in far more
subdued bed-forms.

Finally, thalweg aggradation occurred in the last 40-km reach (Figure 8), except for the 1963–1975
period; different studies [14,37] also reported similar observations. The high deposition rate might
be triggered by different factors, such as accelerating sea level rise in the recent decades [95], as well
as natural crevasses and river passes [14], resulting in the reduction of flow velocity in this reach. In
addition, salt-water wedge intrusion also causes seasonal sediment deposition in the estuary [96].
Nevertheless, channel degradation that occurred sometime from 1963–1975 might also have resulted
from the 1973 flood. Within roughly 3–3.5 × 104 m3/s of daily discharge passing through New Orleans
(downstream BCS) during this flood event [97], Chatanantavet et al. [87] suggested a strong erosion
tendency near the LMR estuary. Therefore, it is reasonable to observe the degradation from 1963–1975
in this reach.

4.2. Statistical Results of Riffles and Pools

The distribution of Ws ratio (Figure 9) shares similar patterns to several other studies [27,33,84];
as their histograms also depicted that the greatest percentage of the Ws ratio fell within a range of 3–5,
although average values fell within 5–7. Both Hudson [22] and Gibson et al. [65] reported average
Ws ratios of around 7 by examining the thalweg data at RK 1618– 483 [22] or RK 490–0 [65]; these
results are consistent with our results. In general, the Ws results from this study are coherent with
most of the previous studies. Nevertheless, averaged pool depths reported by Gibson et al. [65] were
higher (16.4 m) than the similar results from this study (9.1–12.0 m; see the amplitude values in Table 4).
Note that Gibson et al. [65] measured the pool depths by directly using the difference between the
deepest pool point and the highest point of the adjacent riffle. Therefore, by combining the mean riffle
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heights and pool depths in our results (the amplitude values in Table 4), our results also ranged around
16.1–18.9 m, consistent with the amplitude measurements reported by Gibson et al. [65].

The shortest length of both pool–pool and riffle–riffle occurred in 1963, while both longest lengths
were found in 1992 (the length values in upper part of Table 4). Small-scale oscillations were measured
for both lengths and pool depths, but the riffle heights were stable. The pattern change may suggest
that the configuration of riffle–pool sequences adjusts due to flood events during the time intervals [19].
In the upper reach, the greater pool length value appeared in both 1992 and 2013, together with the
smaller pool depth value occurring at the same time (middle part in Table 4). Similar findings were
reported by Harmar et al. [19] upstream; their study suggested that the greater values of amplitude
and length (for both riffle and pool) in 1975 might have resulted from the 1973 flood (Figure 10). They
proposed that, to exhaust additional energy during a short period of extreme high flow, the riverbed
tends to adjust its morphology to enhance bed-form resistance. This model might explain our findings,
as the 2013 results may reflect the bed-form adjustments resulting from the 2011 or 2008 flood events.
Correspondingly, the outcomes from 1992 might have resulted from the 1983 flood.

4.3. Cross-Sectional and Temporal Adjustments of Riffle–Pool Sequences

The results from W/D (width-to-depth ratio) can indicate the form resistance of
cross-sectional geometry, which depend on the characteristics of the sediment material or bankfull
confinement [19,22,24,28,98]. The W/D results are displayed in Figure 12 (upper reach) and Figure 13
(lower reach), as well as W/D ratios in Table 4. There are two important discoveries revealed by
Figures 12 and 13; firstly, the W/D ratios display a clear difference between riffles and pools. The dashed
line of 50 W/D roughly divides riffles (usually with a larger ratio) from pools (usually with a smaller
ratio). This division is expected because riffles are known to be both wider and shallower morphological
features, thereby providing a greater form resistance than pools [19,28]. Secondly, the average W/D
ratios (Table 4) decrease from the upper reach (W/D ratio for riffles = 134, and for pools = 78) to the
lower reach (W/D ratio for riffles = 106, and for pools = 73). A potential reason for the variations of
W/D ratios may be due to the characteristics of the riverbed sediments. Figure 3 shows the decreasing
trends of bed material size in the downstream direction mentioned previously (Section 1.2), and the
percentage of fine sand, silt, and clay in the bed material increases [4,41], particularly below RK 255
where the bed comprises Pleistocene and interdistributary clays [99]. Bank sediments, which control
width, also become finer downstream, and the channel becomes less sinuous [99–102]. This scenario,
along with the reduction in flow velocity, is conducive to an escalation in the strength of riverbanks and
less capacity to incise the channel [22,103], permitting the development of narrower channel widths.

The decadal changes of pools and riffles in different times are also determined by comparing
the elevation changes for the pools or riffles in the same location from three intervals (1952–1963,
1963–1992, and 1992–2013). The black lines in Figures 14 and 15 reference the scour (negative elevation
change) and fill (positive elevation change). In detail, despite some scour that occurred from 1952–1963,
the general pattern in both Figure 14A,B still demonstrate a net riverbed aggradation. Moreover, the
patterns in 1963–1992 show slight degradation for both riffles and pools (Figure 14C,D). These results
are consistent with the outcomes from cumulative elevation changes. The patterns of riffles (Figure 14C)
can be well explained by the backwater effects, as net degradation occurred in downstream RK 270,
while aggradation could be observed in upstream RK 270. The results from pools, on the contrary,
have three positive peaks roughly ≥10 m, with the peak at RK 224 >20 m (Figure 14D). By neglecting
these three peaks, the overall pattern shows net scour downstream of RK 203. In fact, prominent peaks
are found in RK 224 from both Figure 14B (negative peak) and D (positive peak). If we exclude the
1963 elevation data in RK 224 (−59.5 m), and directly compare the values between 1952 (−40.3 m) and
1992 (−37.6 m), the outcome is more consistent with other results. Thus, it is possible that there was an
error during the 1963 survey, and future studies should be aware of this possibility.
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reference to the x-axes at 0. We compared the differences in elevation for the same pools or riffles
during these two time spans.

Figure 15 displays the elevation change of riffles and pools from 1992 to 2013 (i.e., between
1992–2004 and 2004–2013). Most of the results cluster between −6 and 6 m; only three peaks are either
larger than 6 m (RK 471 and RK 34 in Figure 15A), or smaller than −6 m (RK 174 in Figure 15B). If we
exclude these three peaks, the averaged values are both close to 0. Thus, by only examining Figure 15B,
the riffle–pool sequences probably reach a stable status. In addition, Figure 15A,B were plotted by
employing the sub-reaches divided by Wang and Xu [14], where these sub-reaches A–E were based on
the different riverbed deformation trends. Their study concluded that reaches A and E experienced
riverbed aggradation; in contrast, riverbed degradation occurred in reaches B and D (Figure 15). It is
clear that the temporal elevation changes in riffles or pools between 1992 and 2013 are not identical to
their findings. In addition, the entire riffle–pool pattern does not agree with the deposition or erosion
patterns in these sub-reaches determined by Wang and Xu [14].

However, both of the trend lines from 1992–2004 and 2004–2013 in Figure 8 share an identical
pattern to the riverbed deformation results from Wang and Xu [14]. Although the methods used in this
study and by Wang and Xu [14] are different (their study generated riverbed profiles by averaging
all the sounding points in a one-mile-long reach), the similar patterns suggest that the results from
either thalweg change or averaging riverbed deformation can represent in-channel adjustments in the
LMR. Therefore, given all the above mentioned findings, another possibility is that the disagreements
between this study and that by Wang and Xu [14] regarding temporal changes of riffles or pools might
be as a result of the vague definition of the riffle–pool sequence. Wang and Xu [14] did not indicate how
they determined pool and riffles (i.e., tolerance value), whereas we used 6 m in this study. Therefore,
the discrepancy of riffle–pool patterns between both studies is expected. In sum, temporal adjustments
of riffles or pools are consistent with the thalweg deformation trends in this study. Furthermore, as the
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patterns of the thalweg profiles and average riverbed deformation from Wang and Xu [14] are similar,
the temporal variations regarding the entire LMR channel (i.e., thalweg, riffle–pool sequences, riverbed
deformation) might be heavily controlled by similar factors, such as sediment supply or backwater
effects. In addition, both the thalweg and averaged riverbed deformation can be proper indexes for the
channel deformation.
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Figure 15. Similar to Figure 14, this figure delineates both scours and fills of riffles (A) and pools (B) from
1992–2013. The sub-reaches A–E are divided by adopting the concept from Wang and Xu [14]; different
sub-reaches and their respective locations in RK are as follows: A = RK 500–412, B = RK 412–386, C =

RK 386–163, D = RK 163–37, and E = RK 37–0.

5. Conclusions

An examination of hydrographic surveys from the mid-1950s to 2013 provided insights into
morphological adjustment of the thalweg profiles, as well as the pool–riffle sequences in the LMR.
This study covered the period from pre-construction to post-construction of the ORCS to scrutinize
geomorphological response to the channel engineering, which is both time- and reach-dependent.
By examining the thalweg elevation changes, the adjustments reveal a prominent variation in each
period. The channel bed experienced aggradation along the entire LMR in pre-ORCS construction from
1952–1963. In addition, the results after 1975 (1975–1992 and 2004–2013) demonstrate a general trend
of net degradation. The only exception occurred from 1992–2004, as the trend line shows that a net
aggradation occurred within this period. The thalweg changes may be influenced by flood events, as
both upstream aggradation and downstream degradation from 1963–1975 might have resulted from the
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1973 flood. Net aggradation from 1992–2004 may be attributed to the input and deposition of sediments
from upstream during the 1993 flood. In addition, due to the backwater effect, salt-water wedge,
and the occasional flood-related diversion of flow and sediment near the BCS, the thalweg elevations
substantially varied between the upper (RK 500 to RK 205) and the lower (RK 205 to RK 0) reaches.

Several findings of this study concern riffle–pool sequences. Firstly, the Ws results fall within the
5–7 ratio criteria, which is consistent with most previous studies. Secondly, the decrease of W/D ratios
from the upper to the lower reaches reveals the decreasing ability to erode banks due to sediment
cohesion in the lower reach. Thirdly, comparing temporal change in the same riffle or pool reveals that
both scour and fill also follow a similar pattern as the cumulative elevation changes. The riverbed
experienced aggradation from 1952–1963. After 1963 (from both 1963–1992 and 1992–2013), the trends
show slight degradation, and eventually reach dynamic equilibrium. In addition, both patterns of
the thalweg and averaged riverbed deformation [14] are extremely similar, which suggests that the
in-channel deformation might be affected by similar factors, such as backwater effects. In addition,
backwater effects might have impacted not only the bed elevation changes, but also the riffle pattern
from 1963–1992.

In sum, our findings suggest that the LMR, the lower reach of one of world’s largest river systems,
experiences notable channel bed change due to flow regulation, as well as flood events. In the future,
as global sea level keeps rising, it is believed that studies like these can benefit from understanding of
morphodynamics in this large river system, and help in building strategies related to river management
and engineering structures needed to protect the water and sediment resources of this low-lying deltaic
area and its people.
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