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Abstract: Wastewater reuse for agricultural irrigation in many developing countries is an increasingly
common practice. Regular monitoring of indicators can help to identify potential health risks;
therefore, there is an urgent need to understand the presence and abundance of opportunistic
pathogens in wastewater, as well as plant phyllosphere and rhizosphere. In this study, an anaerobic
biofilm reactor (ABR) was developed to treat rural domestic wastewater; the performance of pollutants
removal and pathogenic bacteria elimination were investigated. Additionally, we also assessed
the physicochemical and microbiological profiles of soil and lettuces after wastewater irrigation.
Aeromonas hydrophila, Arcobacter sp., Bacillus cereus, Bacteroides sp., Escherichia coli, Legionella sp.,
and Mycobacterium sp. were monitored in the irrigation water, as well as in the phyllosphere and
rhizosphere of lettuces. Pathogens like B. cereus, Legionella sp. and Mycobacterium sp. were present
in treated effluent with relatively high concentrations, and the levels of A. hydrophila, Arcobacter sp.,
and E. coli were higher in the phyllosphere. The physicochemical properties of soil and lettuce did
not vary significantly. These data indicated that treated wastewater irrigation across a short time
period may not alter the soil and crop properties, while the pathogens present in the wastewater may
transfer to soil and plant, posing risks to human health.
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1. Introduction

Currently, water scarcity has become a global problem; many countermeasures have been taken to
meet the challenge in China and other countries. Reclaimed wastewater provides an effective leverage
to complement other conventional water resources supply, as well as alleviate water quality problems
associated with pollutants discharge. In particular, wastewater reuse for agricultural irrigation is
regarded as a viable way to address the imbalance between water demand and supply, and may
contribute to a sustainable agriculture [1,2]. However, wastewater reuse for agricultural irrigation
may have two implications: the first may affect soil fertility and crop productivity, and the second
may pose human health risks and environmental hazards due to the accumulation of chemical and
microbiological contaminants [3]. Wastewater and agriculture are two sectors where the economic
and environmental benefits of joint water management have been demonstrated through several
case studies around the world [4,5]. Conventional end-of-pipe solutions for wastewater treatment
have been criticized from a sustainable view-point, in particular regarding recycling of nutrients in
effluent, instead of being discharged directly [6]. A novel planning model, consisting of a reuse-centric
performance assessment and optimization model to help design wastewater treatment plants for reuse
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in agriculture. The coupled application indicated that wastewater supplementation could increase
profits by $20 million annually, and conserve 35 mm3 of water in local rivers each year in China [7].

Wastewater is usually considered as a reservoir and vehicle for various human pathogens, and
discharges into the natural environment may pose direct or indirect exposure risks. Comparing estimates
from quantitative microbial risk analyses and epidemiological studies have raised public concerns
regarding the health risks in wastewater irrigation [8,9]. Apart from conventional indexes related to
water quality criteria, there is a need to be concerned about the microbiological quality of irrigation
water in terms of its effects on the soils and crops. In particular, the principal concern was focused on
the microbial contamination of eaten raw or simple processed vegetables and fruits, such as lettuces and
tomatoes [10,11]. Opportunistic pathogens are defined as pathogens that usually do not cause diseases
in healthy individuals, however, may cause disease in the immunocompromised population [12].
During the past decade, the numbers of human infections caused by opportunistic pathogens has
increased dramatically. Wastewater is commonly viewed as a vector that transfers opportunistic
pathogens to soil and fresh produce during irrigation. A study has identified the microbial risk factors
in the preharvest fruits and vegetables, including Listeria monocytogenes, Salmonella, and Escherichia
coli O157:H7, and demonstrated that contaminated water was a crucial issue for microbiological
safety of fresh produce [13]. Contaminated water may be a significant source of foodborne pathogens
associated with ready-to-eat fresh vegetables. To better understand the transfer of Salmonella enterica
from contaminated water to the crops, the persistence of Salmonella enterica in the phyllosphere and
rhizosphere of parsley was investigated following spray irrigation with contaminated water [14].
Utilization of reclaimed water for irrigation involved in high microbial loads that depended on the
degree of sewage treatment, raw or partially treated wastewater for agricultural irrigation should be
considered for assessment of microbial water quality.

Many reports were mainly focused on fecal indicators such as Fecal Coliforms and Escherichia coli
to evaluate potential health risks, neglecting pathogenic bacteria, viruses, and protozoa groups [15,16].
Consequently, current standards and guidelines for microbiological quality of wastewater may result
in underestimation or overestimation of the risks for public health. The aim of this study was to
evaluate the removal of contaminants using an anaerobic biofilm reactor to allowable irrigation limits,
and characterize the presence of opportunistic pathogens from the processes to the irrigated soils
and vegetables.

2. Materials and Methods

2.1. Reactor Operation and Experimental Design

The experimental site is located in the suburb of Beijing. The reactor has a self-made set
of small-scale anaerobic reactors with nylon materials placed into the reactor in a radial pattern.
The reactor was composed of three stages and a cylinder shaped with a conical bottom, which has
shown to be capable of conducting loads of 360 L at the hydraulic retention time (HRT) of 72 h (Figure 1).
No disinfection facility was installed with the reactor.
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Lettuce (Lactuca sativa L.) was used as the testing object to evaluate microbial contamination
irrigated with different water sources. The lettuce seeds were planted under an open field in 2 × 2 m
trial plots. A total of 12 plots were designed as three irrigation treatments using potable water (PW),
raw wastewater (RW), and treated effluent (TE). Surface irrigation was performed from the seedling
stage; each plot was irrigated according to water demand (5 L per square meter every two days in
one plot). The experiment plots lasted for approximately two months from planting to harvesting.
Each treatment was applied in four replicates with a randomized block design.

2.2. Sample Collection, Processing, and DNA Extraction

For physicochemical parameters and pathogenic bacteria testing, raw wastewater and treated
effluent samples were collected between June and October of 2017 at a monthly interval. Approximately
1 L water samples were pooled in sterilized polyethylene bottles in triplicates. The water samples were
transported to the laboratory immediately for further analysis. The pH and electrical conductivity (EC)
were tested using a portable multi-parameters meter (HACH HQ40d, HACH Company, Loveland, CO,
USA) on site, and chemical oxygen demand (COD), total nitrogen (TN), ammonia nitrogen (NH3-N),
and total phosphorus (TP) were measured based on the standard methods of China’s discharge
standard of water pollutants for municipal wastewater treatment plants [17]. The levels of total
heterotrophic bacteria, Total Coliforms, and Salmonella were determined by spread plate method using
selective chromogenic media (Hopebio, Qingdao, China). Fecal Coliforms were numerated using the
multi-tube fermentation method with EC broth (Hopebio, Qingdao, China). Helminths were detected
by microscopic examination. For pathogens detection, 100 mL of each water sample was filtered
through 0.22 µm mixed cellulose membranes (47 mm diameter, Millipore Filter Corporation, Bedford,
MA, USA) with glass filtrator (Jinteng T-50, Jinteng Experimental Equipment Corporation, Tianjin,
China). The filter membrane was folded in half four times and placed into a 1.5 mL microcentrifuge
tube, and then frozen at −80 ◦C until required analyses.

Samples of lettuces were collected using random sampling two months after sowing. The leaves
were sampled aseptically using sterilized scissors and placed into sterile homogeneous bags (Hopebio,
Qingdao, China). The method for collection of epiphytic microbial pellets was performed as described
by Zhang et al. [18]. Briefly, leaves were aseptically transferred into polypropylene tubes containing
100 mL potassium phosphate buffer (0.1 M, pH 7.0), and then ultrasonication was performed at a
frequency of 40 KHz for 7 min in an ultrasonic cleaning bath to dislodge the microbial pellets from
the leaf surface. The rhizosphere samples containing soil were sampled from each plot by cutting
above the ground with a sterile blade, and the soil adhering to the lettuce was removed by shaking
loosely. The soil samples homogenized and sieved after freeze drying to wipe off crude particles for
further analyses.

Genomic DNA from each sample was extracted in Lysing Matrix tubes using FastDNA SPIN Kit
for Soil (MP Biomedicals, Solon, OH, USA) following the manufacturer’s protocol. Raw DNA was
purified, and the concentrations were determined by Nanodrop-2000 spectrophotometer (Nanodrop
Inc., Wilmington, DE, USA) and frozen at −80 ◦C until used.

2.3. Preparation of qPCR Standard Curves

Conventional PCR was conducted to identify the targeted microbes, and the PCR product was
loaded onto 1% (W/V) agarose gel electrophoresis to confirm expected band size.

The obtained PCR products were gel-purified and ligated into the pGEM-T Easy Vector
(Promega, Madison, WI, USA), then transformed into competent E. coli DH5α (Biomed, Beijing,
China). The positive clones were screened on X-Gal-IPTG-Ampicillin-indicator plates by color-based
recombinant selection, and further confirmed insert fragments by PCR amplification with T7 and SP6
primers and sequenced by Ruibo BioTech Co, Ltd. (Beijing, China). The nucleotide sequences were
submitted and aligned by BLASTn in NCBI. After determination, the positive clones were selected to
extract plasmid DNA using E.Z.N.A.® Plasmid Mini Kit Spin Kit (Omega Bio-tek, Doraville, GA, USA)
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according to manufacturer’s instructions. The concentration of the plasmid DNA was determined by
Nanodrop 2000 UV-Vis Spectrophotometer (Thermo Scientific, Wilmington, DE, USA), which was used
as pathogenic gene standards. The gene copy number was calculated directly from the concentration of
the extracted plasmid DNA [19]. Concentrations of these pathogens in wastewater, phyllosphere, and
rhizosphere samples were quantified by assaying 10-fold serial dilutions of standard plasmid DNA.

2.4. Quantitative PCR Assay

Quantitative analysis of selected pathogens in prepared samples was performed by real-time
quantitative PCR with SYBR green. The sequences of the primers targeting genes are listed in Table S1.
Amplification was performed with the CFX96 Real-Time PCR Detection System (Bio-Rad, Hercules,
CA, USA). 2 µL of template DNA was added to 23 µL of reaction mixture in a total volume of 25 µL
containing 2 × SYBR® Premix Ex Taq™ (Tli RNaseH Plus) (Takara Biotechnology, Dalian, China),
0.2 µM of each primer. The thermal cycling conditions were as follows: initial denaturation at 95 ◦C
for 30 s, 45 cycles of 95 ◦C for 5 s, 53–60 ◦C for 30 s, 72 ◦C for 30 s, followed by a melt curve stage: from
65 ◦C, gradually increasing 0.5 ◦C·s−1 to 95 ◦C. All qPCR samples were run in technical triplicate, and
corresponding negative (DNase/RNase-free distilled water) control was included. PCR efficiency and
correlation coefficients of the standard curves were in the range of 89.40%–110.00% and R2 from 0.989
to 0.999, indicating a good linear relationship to quantitative requirements (Table S2). The detection
limit for qPCR was 10–100 copies of plasmid from three independent runs.

2.5. Data Analysis

To test the linearity and the dynamic range of the real-time quantitative PCR reaction, the external
standard curves were generated by 10-fold serial dilutions of known copy number of plasmid DNA.
The qPCR results were analyzed with CFX Manager Software (v 2.0, Bio-Rad), and the amplification
efficiency (E) was estimated by the formula E = (10−1/slope) − 1. All graphs were generated by OriginPro
8.0 (OriginLab, Northhampton, MA, USA). Data were analyzed using One-way ANOVA and Tukey’s
HSD test (p < 0.05) was used for comparison between treatments. All statistical analyses were
performed using SPSS 20.0 (IBM, Armonk, NY, USA).

3. Results

3.1. Operational Performance of the Reactor

All the quality parameters of wastewater were measured according to the discharge standard of
pollutants for municipal wastewater treatment plant [17]. Details on reactor parameters are described
in Table 1. During the five months of this study, there was a steady increase in chemical oxygen demand
(COD) removal efficiencies of treated wastewater from 75% to 92%. The concentrations of TN, NH3-N,
and TP were steadily increased in effluent, and its direct discharge would degrade surface water
quality. The treatment process achieved 1–2 logs removal of heterotrophic bacteria and Total Coliforms.
Total bacteria count in the raw wastewater was 108 per 100 mL and 106–107 for the treated effluent, 102

for the potable water. No Faecal Coliforms were found in the treated effluent and potable water.
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Table 1. Operation parameters of raw domestic wastewater and treated effluent.

Water Parameters Raw Wastewater Treated Effluent Potable Water Criteria of
Irrigation Water [20]

Discharge
Standard [17]

pH 6.75–7.41 6.36–7.86 7.53 5.5–8.5 6–9
EC (µS·cm−1) 556–814 382–866 293 ≤1000 -

COD (mg·L−1) 135–218 11–54 10 ≤100 a or 60 b 50–60
TN (mg·L−1) 11.8–22.5 13.2–16.4 <0.5 c – 15–20

NH3-N (mg·L−1) 8.4–17.7 6.7–17.6 0.16 - 5–8
TP (mg·L−1) 2.5–5.2 2.0–7.9 0.21 - 0.5–1

Total bacteria
(CFU·mL−1) 3.6 × 106–4.3 × 106 1.67 × 104–3.4 × 105 <100 - -

Total Coliforms
(CFU·mL−1) 1.0 × 104–6.0 × 105 1.0 × 103–7.17 × 104 not detectable - -

Faecal Coliforms
(CFU·100 mL−1) 2.4 × 104 not detectable (<3) not detectable ≤20 a or 10 b 1–10

a Vegetables need processing, cooking or peeling; b rabbit food, melons and fruit; c –: no data.

3.2. Physicochemical Properties of Soils and Lettuces

The physicochemical and microbiological properties of the soils irrigated by potable water and
wastewater are summarized in Table 2. The observed data showed no difference in pH among the
soils irrigated with potable water and wastewater, while EC was significantly higher in soils irrigated
with wastewater than potable water. The organic matter (OM) content was similar in all soils irrigated
with different water sources. Compared with PW, the concentrations of total nitrogen and available
potassium in the soils irrigated with RW and TE were higher; these nutrients might be absorbed and
converted from soils to crops [21]. As regards heavy metals, the average concentrations of Pb, Cu, Zn,
Hg, As, Cr, and Cd were comparable in all treatments, except for the lower concentration of Zn and Cr
in the soils irrigated with PW. The values of these metals were below the recommended maximum
levels proposed by the Environmental Quality Standard for Soils [22]. Compared with PW and RW,
total bacteria in soils irrigated with TE showed a significant increase (p < 0.05). Total Coliforms in soils
irrigated with RW and those irrigated with TE resulted in significant increases (p < 0.05).

Table 2. Characteristics of the irrigated soils as compared with the guidelines for soil quality.

Parameters LPW LRW LTE [22] [23]

pH 7.36 a 7.18 a 7.50 a 6.5–7.5 6.5–7.5
EC (µS·cm−1) 563 a 1210 b 1587 b - -

Organic matter (%) 1.57 a 1.67 b 1.73 b - -
Total nitrogen (%) 0.113 a 0.123 a 0.130 a - -

Available P (mg·kg−1) 53.8 a 51.7 a 55.1 a - -
Available K (mg·kg−1) 154 a 172 a 169 a - -

Pb (mg·kg−1) 18.4 a 23.6 b 18.9 a 35–500 50–80
Cu (mg·kg−1) 24.4 a 25.5 a 25.4 a 35–400 50–200
Zn (mg·kg−1) 81.1 a 98.1 a 136.5 b 100–500 200–300
Cd (mg·kg−1) 0.23 a 0.22 a 0.24 a 0.2–1.0 0.3–0.6
Cr (mg·kg−1) 34.45 a 40.40 a 43.65 a 90–300 250–300
Hg (mg·kg−1) 0.111 a 0.119 a 0.139 a 0.15–1.5 0.25–0.35
As (mg·kg−1) 9.74 a 9.76 a 10.55 a 15–40 20–30

Total bacteria (CFU·g−1) 2.1 × 107 a 2.0 × 107 a 7.5 × 107 b - -
Total Coliforms (CFU·g−1) 1.3 × 106 a 6.1 × 106 b 3.1 × 106 c - -

Abbreviations: LPW, treatment irrigated with potable water; LRW, treatment irrigated with raw wastewater; LTE,
treatment irrigated with treated effluent. Mean values (n = 3) in each row followed by the same lowercase letter are
not significantly different using Tukey’s HSD test at p < 0.05.

Average values of the main growth and quality parameters of lettuces measured at harvesting
time are listed in Table 3. Plant height, fresh weight, soluble sugars, and soluble proteins did not
show significant differences between the compared treatments. Nitrate content in the leaves of each
treatment was lower than that in the stems. Data showed significant accumulation in the level of Total
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Coliforms in edible vegetables irrigated with RW (p < 0.05), although possessing the same orders of
magnitude as the control.

Table 3. Quality and microbiological parameters of lettuces irrigated with potable water (PW), raw
wastewater (RW), and treated effluent (TE).

Parameters LPW LRW LTE

Height (cm) 25.75 a 24.55 a 25.69 a
Fresh weight (g) 50 a 47 a 49 a

Soluble sugars (%) 0.79 a 0.67 a 0.73 a
Soluble proteins (mg·g−1) 10.99 a 10.64 a 10.67 a
Nitrate-Stem (mg·kg−1) 515 a 521 a 494 a
Nitrate-Leaf (mg·kg−1) 261 a 145 b 170 b

Total bacteria (CFU·g−1) 3.5 × 106 a 5.3 × 106 a 4.7 × 106 a
Total Coliforms (CFU·g−1) 1.2 × 104 a 5.3 × 104 b 2.0 × 104 a

Note: Mean values (n = 3) in each row followed by the same lowercase letter are not significantly different using
Tukey’s HSD test at p < 0.05.

3.3. Abundances of Selected Opportunistic Pathogens in Wastewater

The detection and quantification of the wastewater samples using real-time qPCR equipped with
nine primer sets, including A. hydrophila, Arcobacter sp., B. cereus, Bacteroides sp., E. coli, Legionella sp.,
Mycobacterium sp., total bacteria, and total fungi are displayed in Figure 2. The overall abundances
of pathogens per litre of wastewater ranged from 104 to 1011 gene copies when targeted genes were
quantified over the time. The levels of A. hydrophila, Arcobacter sp., Bacteroides sp., and E. coli in TE were
declined by 1–3 orders of magnitude. A. hydrophila in this study was not significantly different in RW,
except it was increased by 3 logs in September. The other dominant potential pathogen in wastewater
was Arcobacter sp., one typical of emerging pathogens. It was found that the mean level of Arcobacter
sp. in June, July, and October was markedly higher in RW than other periods of time. In particular,
the removal efficiency reached a maximum in September and October. However, concentrations of
B. cereus, Legionella sp., and Mycobacterium sp. in TE experienced an increase in gene copies of 0.9 to
2.84, 0 to 1.47, and 0.68 to 1.77, respectively. The abundances of 16S and 18S rRNA genes in both RW
and TE had the same changing trends, and ranged from 9.86 log10 to 12.13 log10 copies·L−1 and 6.75
log10 to 9.13 log10 copies·L−1, respectively. The results showed that TE harboured large amounts of
potential pathogens even after treatment; the risk assessment of these pathogens in environments by
wastewater reuse should be further researched. B. cereus, Legionella sp., and Mycobacterium sp. were
detected in TE by which the concentrations increased; this indicated that opportunistic pathogens
commonly found in the wastewater and an ineffective elimination in the effluent with or without
disinfection. The amounts of Legionella sp. and Mycobacterium sp. in TE reached 7–8 logs, but their
infective doses are unknown [24]. Many species and total abundances of opportunistic pathogens were
found in wastewater, which may threaten public health.
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3.4. Abundances of Potential Pathogens in Phyllosphere and Rhizosphere

One of the main concerns for wastewater reuse is the microbiological quality due to the possibility of
disease transmission. It has been found that pathogenic microorganisms are not completely eliminated
by conventional wastewater treatment processes and also detected in final effluents for reclamation
purposes [25]. Wastewater reclaimed through the anaerobic biofilm reactor, as well as raw wastewater
and potable water was employed to cultivate lettuces in a greenhouse, by means of surface irrigation.
Our study highlighted that potential risks associated with the reuse of treated wastewater occurred not
only from conventional fecal indicators, but also from known and emerging pathogens. In the present
study, the presence of pathogenic bacteria was investigated in the phyllosphere and rhizosphere of
lettuce following irrigation with different water sources. The concentrations of opportunistic pathogens
were determined on leaf surfaces ranging between 2.5 log10 copies·g−1 and 9.0 log10 copies·g−1, leaf
surfaces of lettuce were contaminated with wastewater reuse (Figure 3A). Compared to the potable
water, the abundances of A. hydrophila, Arcobacter sp., and E. coli in phyllosphere were higher in lettuces
irrigated with raw wastewater and treated wastewater. Lettuce plants irrigated with wastewater
carry the human pathogens, and thereby result in the contamination of sprouts, leaves, and roots.
Data indicated that the abundances of B. cereus, Bacteroides sp., E. coli, Legionella sp., and Mycobacterium
sp. in rhizosphere were higher than other pathogens (Figure 3B). The quantities of B. cereus and
Mycobacterium sp. were introduced into the soils up to six orders of magnitude, although there were
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no differences among different treatments (p > 0.05). Irrigation water used in this study was found to
be a potential risk factor for the introduction of pathogens, but high concentrations of some pathogens
were detected on lettuce rhizosphere regardless of the irrigation treatment.
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Figure 3. Pathogenic bacteria in the phyllosphere (A) and rhizosphere (B) of lettuce irrigated with
potable water and wastewater for two months irrigation (error bars indicate standard deviation from
average, n = 3). Mean values (n = 3) in each group followed by the same lowercase letter are not
significantly different using Tukey’s HSD test at p < 0.05.

4. Discussion

Wastewater treatment is intended to reduce organic and inorganic pollutants, as well as microbial
contaminants. In this study, we found that the wastewater treated by the anaerobic reactor was
less efficient in removing nitrogen and phosphorus; Fecal Coliforms, Salmonella, and helminths were
undetectable in TE. Although the treated wastewater did not meet the discharge standards (TN less
than 15 mg·L−1, NH3-N less than 5 mg·L−1, TP less than 0.5 mg·L−1) [17], the water quality could
conform to the guideline standards for reuse in irrigation. The concentrations of heavy metals in all
water sources were far below the guidelines values of farmland irrigation, and then the cumulative risk
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of heavy metals in soils and crops was low. Irrigation using RW and TE resulted in significantly higher
soil EC levels, and it might increase the risk of soil salinization. Microbial contamination was assessed
by measuring total bacteria and Total Coliforms on samples from soils and crops at harvesting time,
results showed total bacteria in soils and on crops irrigated with water from PW and RW were not
significantly different (p > 0.05), while the quantities of Total Coliforms were higher in RW than PW.
The low quantities of Fecal Coliforms (3 CFU 10 g−1 to 56 CFU 10 g−1) and E. coli (1 CFU 10 g−1 to 4
CFU 10 g−1) observed on vegetable crops and soil showed that it was possible to irrigate with treated
wastewater [26]. Another study indicated that the treated wastewater source did not significantly affect
fecal indicators of tomato fruit and soil, but the community composition and dynamics of bacterial
population in soil is influenced by the different water sources used for irrigation [27]. As compared to
freshwater, treated effluent did not present any adverse effect of fecal pollution on crop quality and
soil, and therefore did not cause risks for human health.

Considerable efforts have been devoted to the development of anaerobic treatment processes,
suitable for treating low strength wastewater, such as decentralized treatment of domestic wastewater
from the rural area. Over the past decades, the growth of interest in the use of wastewater for agriculture
irrigation in arid and semi-arid regions was robust on account of the scarcity of conventional water
supplies. The microbial contamination of raw and treated wastewater is limited to focus on the presence
and enumeration of fecal indicators and helminths in many studies, for evaluating the pathogens
removal performance [28]. Very strict microbiological standards in terms of fecal indicators for treated
wastewater have been adopted in many countries. Investigating the fate of bacterial indicators is
relevant to assess their persistence in the environment and possible transfer to the receiving surface
water or to the food chain. This study showed that fecal indicators and other physicochemical
properties in treated effluent conformed to irrigation standard in China, despite not meeting discharge
standards. However, the quantities of these indicators may not reflect the actual abundances and
species of pathogenic microorganisms in the environment.

Wastewater has been reported many times as a potential reservoir of pathogenic microorganisms,
indicating that wastewater contains abundant dissolved nutrients that can be used for bacterial growth
and multiplication. This study presents different concentrations of opportunistic pathogens and fecal
indicators in domestic wastewater over the duration of five months. Aeromonas species are generally
considered to be aquatic pathogens that are resident in water environments, which could pose a risk to
public health. In a recent study, a two-season microbiological investigation of treated effluent with
emphasis on Aeromonas sp. was conducted. They found that a rise of A. hydrophila was observed in
summer in raw sewage, treated wastewater, and effluent-carrying canal [29]. The removal efficiency
of microbial contaminants was evaluated from a local wastewater treatment plant and highlighted the
potential risk associated with wastewater reuse for agricultural irrigation. A. hydrophila could still be
recovered from the chlorinated effluent; despite the treatment process achieving 3.5 logs removal of
heterotrophic bacteria and Fecal Coliforms [30]. A relatively high concentration of A. hydrophila was
detected in treated effluent, and the quantity was maintained at high levels (4–5 logs). Arcobacter sp.,
Bacteroides sp., and E. coli from wastewater possessed high abundances that belonged to opportunistic
pathogens in the intestine and indicators of fecal pollution, these entering agricultural environments
might pose a potential risk to human health. Among the Arcobacter species only A. butzleri, A. skirrowii, A.
cryaerophilus, and A. cibarius were identified as being associated with animal and human infections [31].
Arcobacter sp. as an emerging human pathogen of animal origin was one of the most dominant
bacterium in domestic wastewater, and the concentration was high as a previous study revealed [32].
Few studies have assessed the occurrence of Arcobacter sp. in wastewater, their quantities were found to
be reduced during the treatment processes but were not entirely eliminated in effluent [33,34]. In reality,
people would expect a functioning treatment system to produce treated effluent with lower pathogen
loads than raw wastewater, but often this is not the case. The concentrations of B. cereus, Legionella
sp., and Mycobacterium sp. were higher in TE than RW. B. cereus is a common food-borne pathogen,
and the risk of disease transmission is influenced by the level and persistence of contamination in
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water, soil, and crops. Irrigation with poor-quality water is one way that fruit and vegetables can be
contaminated with food-borne pathogens [35]. Legionella sp. and Mycobacterium sp., which caused
non-enteric illnesses, had been detected in wastewater and potable water systems, and they could
proliferate within free-living amoebae where they are protected from the adverse environment [36,37].
Legionella sp. and Mycobacterium sp. have been observed to regrow in reclaimed water and distribution
systems due to biofilm development and disinfectant dissipation [38,39]. Therefore, there is a need to
develop management strategies for prevention relevant to bacterial regrowth before treated wastewater
is used for agriculture irrigation. Spray irrigation, toilet flushing, and cooling towers that generated
aerosols were evaluated for Legionella health risks in reclaimed water using quantitative microbial risk
assessment, data showed that Legionella median annual infection risks and annual clinical severity
infection risks for toilet flushing can exceed a 10−4 annual risk of infection benchmark [9]. The levels
of opportunistic pathogens detected in treated effluent samples may not pose any risks to healthy
humans, however, young children, the elderly, and the immunocompromised population could be
at risk.

Contaminated water could enhance the persistence and survival of pathogens in soils and
vegetables, thus increasing human health risks. Agricultural irrigation is the most commonly utilized
way of reusing wastewater, however, the presence of pathogenic microorganisms in wastewater is one
major impediment for wastewater reuse. The accumulation and persistence of fecal-sourced microbes
from wastewater in soil and crop is one of the major concerns associated with wastewater irrigation.
Irrigation with wastewater may introduce the high bacteria counts in soil, showing that pathogens
could invade the roots and colonize crops [40]. The phyllosphere and rhizosphere are known to be
source-reservoir combinations for opportunistic human pathogenic bacteria. A range of bacterial
pathogens were monitored in the phyllosphere and rhizosphere of lettuce irrigated with different water
sources, it was found that there were no significant differences in some pathogens (B. cereus, Bacteroides
sp., Mycobacterium sp.) among the irrigation treatments. A case study related to drip irrigation with
treated wastewater showed that fecal indicator contamination (Total and Fecal Coliforms) was not
associated with the different water sources, and thus did not result in the transfer of fecal indicator
bacteria or microbial pathogens to the irrigated soil or crop [41]. Other studies have investigated the
effectiveness of onsite wastewater reuse systems in reducing human-originated fecal contaminants,
the risks of diverse pathogens in wastewater that expose pathogens in the wastewater discharge
was well studied within the Environment Canada guidelines [42,43]. The abundances of pathogens
in soils irrigated with treated graywater and fresh water were of the same orders of magnitude,
suggesting treated graywater irrigation has no effect on soil pathogens diversity or abundances [44].
Aeromonas has been isolated from a wide range of fresh produce [45]. The potential for contamination
via irrigation water showed an increased incidence of enteropathogens. Traditional eating habits of
consuming raw eaten or lightly cooked vegetables may represent an important source of risk for human
health due to the fact that they are carriers of food-borne pathogens associated with contaminated
water irrigation. Wachtel et al. described E. coli contamination of the roots of cabbage irrigated with
sewage-contaminated water, although the edible part of the plant was unaffected [46]. Occurrence of
emerging food-borne pathogenic Arcobacter sp. was assessed from pre-cut ready-to-eat vegetables,
the results revealed a widespread distribution of virulence-associated genes among the Arcobacter
on raw vegetables [47]. The quantities of A. hydrophila, Arcobacter sp. and E. coli in the phyllosphere
and rhizosphere were significantly increased in raw wastewater irrigation. This could be attributed
to the plant direct contact with contaminated irrigation water. B. cereus is commonly found in soil
and spoilage food, a notable result from the study showed the difficulties in eliminating B. cereus and
E. coli on raw fruits and vegetables [40]. In this study, no significant differences were observed in B.
cereus and Mycobacterium sp. between the phyllosphere and rhizosphere irrigated with different water
sources, while the concentrations were maintained at a high level. The contamination of vegetables
may occur during the production steps, where either contaminated organic fertilizers or irrigation
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water obtained from different sources. It is suggested that agricultural practices need to be highlighted
to help protect human health.

In summary, understanding the ecology of pathogens and naturally occurring microorganisms is
essential before interventions for elimination or control of growth can be devised. It should be pointed
out that the qPCR used in this study might overestimate the abundances of opportunistic pathogens
due to insufficient discrimination between live and dead bacterial cells. Therefore, the abundances and
fates of active pathogens in different environmental media should be determined in future studies.
Considering the dominant sources of microbial contamination in the environment, more specifically in
raw or treated wastewater, efforts should be focused on maximizing the benefits and minimizing any
detrimental effects on public health or environments.

5. Conclusions

The reuse of domestic wastewater for agricultural irrigation is regarded as an option to address
water scarcity, which could partially substitute for chemical fertilizer as nutrient sources. In the present
study, we revealed that the phyllosphere and rhizosphere contained different levels of opportunistic
pathogens, which deserves greater consideration. Apart from fecal indicators, some pathogens can
still persist in the final effluent, which pose risk to environmental and human health. Wastewater
for reuse in irrigation could act as a potential source of pathogens. Although irrigation of treated
wastewater appeared to pose potential risks, treated wastewater for reuse presented a promising
practice to alleviate water scarcity through appropriate management strategies. The detection of
opportunistic pathogens in wastewater would facilitate decision-making in effective technology and
management solutions to reduce microbial risks in receiving soils and crops. Meanwhile, although
fecal contamination pertaining to wastewater reuse in agriculture is a crucial indicator in current
standards, comprehensive microbial risk assessments are recommended for wastewater irrigation of
crops. It is concluded that wastewater irrigation should track microorganisms including viral, bacterial,
and protozoan pathogens, rather than only focusing on fecal indicators.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/11/6/1283/
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