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Abstract: This paper proposes a combined management strategy for monitoring water distribution 
networks (WDNs). This strategy is based on the application of water network partitioning (WNP) 
for the creation of district metered areas (DMAs) and on the installation of sensors for water quality 
monitoring. The proposed methodology was tested on a real WDN, showing that boundary pipes, 
at which flowmeters are installed to monitor flow, are good candidate locations for sensor 
installation, when considered along with few other nodes detected through topological criteria on 
the partitioned WDN. The option of considering only these potential locations, instead of all WDN 
nodes, inside a multi-objective optimization process, helps in reducing the search space of possible 
solutions and, ultimately, the computational burden. The solutions obtained with the optimization 
are effective in reducing affected population and detection time in contamination scenarios, and in 
increasing detection likelihood and redundancy of the monitoring system. Last but most 
importantly, these solutions offer benefits in terms of management and costs. In fact, installing a 
sensor alongside the flowmeter present between two adjacent DMAs yields managerial advantages 
associated with the closeness of the two devices. Furthermore, economic benefits due to the 
possibility of sharing some electronical components for data acquisition, saving, and transmission 
are derived. 

Keywords: water distribution monitoring; optimal sensor placement; water network partitioning; 
topological centrality 

 

1. Introduction 

Installing an efficient monitoring and control sensor system gives the possibility to carry out 
main tasks on Water Distribution Network (WDN) management and protection. Securing these 
critical infrastructures is a crucial task for ensuring society’s welfare and prosperity. In fact, WDNs 
are strongly vulnerable to malicious and intentional actions [1] since they are made up of thousands 
of exposed elements. From a practical and economic point of view, securing all the apparatuses is 
not feasible. Thus, the design of an effective and cost-effective quality monitoring system represents 
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a crucial management strategy for ensuring the delivery of good quality water to users. Optimal 
sensor placement becomes a necessary step for satisfactory water quality monitoring systems, also 
allowing identification of the source contamination [2]. These systems should provide a fast and 
accurate detection, distinguishing between normal variations and contamination events; 
furthermore, they should be economical, easy to integrate into network, and reliable [3]. This 
problem has been extensively studied for the past 20 years and several approaches have been 
proposed to identify optimal locations of sensors (Byoung et al. (1992) [4] defined the concept of 
maximum coverage to locate sensors formulating the problem as integer programming problem; 
using the same objective as the maximum coverage, Kumar et al. (1997) [5] employed a 
mixed-integer programming method; Watson et al.(2004) [6] used a mixed-integer linear 
programming model, showing that the problem of sensor placement must simultaneously consider 
multiple design objectives; Berry et al. (2005) [7] pointed out the difficulty of solving sensor 
placement by means of integer programming optimization; Ostfeld and Salomons (2004) [8] studied 
the problem in unsteady conditions using a genetic algorithm framework integrated with EPANET; 
Uber et al. (2004) [9] used a greedy heuristic solution methodology providing a heuristic 
(non-optimal) solution procedure scalable to large networks, taking into account uncertainty in 
threat scenario). The problem received lots of attention especially after the events of 11 September 
2001. However, although many research works have been carried out in this field, the challenge of 
the optimal sensor placement is still open in many aspects, such as identification of optimal sensor 
locations and evaluation of performance and applicability to real-world scenarios. Models and 
algorithms for solving this arduous problem include deterministic and stochastic optimization 
techniques, optimizing one (Kessler et al. (1998) [10] defined the total volume of contaminated water 
consumed ahead of detection; Ostfeld and Salomons (2005) [11] enhanced previous study by taking 
into account the randomness of flow rate of the intruded pollutant, stochastic demands, and reaction 
time of the sensors; Berry et al. (2009) [12] incorporated into a mixed-integer programming 
formulation the probability of sensor failure) or more objectives (McKenna et al. (2007) [13] 
demonstrated the importance of considering sensor failure rates showing the trade-off between the 
sensor detection limit and the number of sensors; Dorini et al. (2008) [14] considered four objectives 
in the model and used a noisy cross-entropy sensor locator algorithm to find the optimal solution; 
Huang et al.(2008) [15] considered three objectives in their formulation solved by using a competent 
genetic algorithm while the contamination events were simulated by a development of Monte Carlo 
method; Propato and Piller (2006) [16] used a mixed-integer linear program methodology including 
notions of statistical and uncertainty analysis in the design process; Wu and Walski (2008) [17] 
combined four objectives into a single objective), such as detection likelihood, expected 
contaminated water volume, affected population, detection time, and the contaminated population. 
The interested reader can refer to Hart and Murray (2010) [18,19] for a review of this topic. The 
optimal sensor placement problem was also dealt with at the Battle of the Water Sensor Networks 
(BWSN) [20]. The main difficulty is that, given WDN complexity, efficient numerical techniques are 
needed to support optimal monitoring system design and the huge number of all potential 
contamination events in a WDN makes the problem computationally intractable (as each of these 
events is characterized by a different injection location, duration, mass rate, and starting time). 
Indeed, the optimal sensor placement in a network represents a combinatorial optimization problem 
that has been proven to be NP-hard [21]. For example, Krause et al. (2008) [22] showed that, using 30 
parallel processors, it took 8 days to simulate random contamination events that could occur at 5 min 
intervals over a 24 h period from any of the 12,527 nodes in a medium-sized distribution network. In 
recent years, new concepts in sensor network design have been studied; Sankary and Ostfeld (2016) 
[23] investigated the possibility of adopting a mobile wireless sensor network to wirelessly transmit 
data to fixed transceivers in real time; Rathi et al.2016 [24] proposed a novel strategy for the selection 
of contamination events with associated risk to be used in design of sensor network; Zheng et al. 
2018 [25] investigated the characteristics of the sensor placement strategy effectiveness using several 
metrics, and providing guidance for selecting the most appropriate strategy for the preparedness for 
contamination events. 
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On the other hand, the “divide and conquer” concept has recently been gaining attention in the 
field of WDNs, showing to be one of the most efficient management strategies. The option of 
dividing large-scale networks into smaller and manageable subsystems, called district metered areas 
(DMAs), offers undisputable advantages for the monitoring and control of consumption, pressure, 
leakage, and water resource quality. In the scientific literature, numerous works were dedicated to 
the design of DMAs. Most of them are based on the application of decomposition algorithms [26,27] 
based on graph [28–32] and spectral theories [33,34], multi-agent method [35], social network theory 
[36], modularity index [37–39]. Though being significant contributions to the field, the works 
mentioned above are mostly focused on DMA design. Therefore, they fail to analyze the positive 
effects brought by the creation of DMAs to WDN management, for reducing the impacts of potential 
contamination events.  

The global aim of this paper is to provide a general management framework for WDN 
monitoring, while exploring the benefits of water network partitioning (WNP) for: 

• reduction in inauspicious consequences of contamination (both accidental and intentional) in 
terms of limitation of contaminated areas (direct action); 

• optimal placement of quality sensors (indirect action). 

While the analysis of the former aspect is presented hereinafter as a follow-up of the work of 
Ciaponi et al. (2018) [40], the analysis of the latter aspect is entirely novel. In this context, the 
possibility of installing some or all sensors at boundary pipes will be considered, resulting in a 
two-fold advantage: numerical, due to the reduction in the research space of possible candidate 
solutions for sensor installation, and managerial, due to easiness of access and to cost savings for the 
possibility of sharing some electronical components for data acquisition, saving, and transmission. 

In the following sections, first the methodology is presented, followed by the applications to a 
real case study, testing different scenarios and comparing different sensor locations with four water 
quality-based parameters, in order to validate the results.  

2. Materials and Methods  

The methodology used in this work is the combination of two main procedures, used for WNP 
and sensor placement, respectively. These procedures, both derived from the scientific literature, are 
described in the following Subsections 2.1 and 2.2, respectively. Subsection 2.3 deals with the 
postprocessing of the sensor placement solutions obtained in 2.2. 

2.1. Procedure 1—WNP 

According to Perelmann et al. (2015) [41], WNP is carried out in two main phases: a) clustering, 
in which the optimal shape and size of the clusters are defined by minimizing the number of edge 
cuts (boundary pipes) and by simultaneously balancing the number of nodes of each cluster, and b) 
dividing, in which clusters are separated from each other by closing isolation valves at some 
boundary pipes and installing flow meters at the remaining boundary pipes. 

In this work, the clustering layout is obtained exploiting the properties of the normalized 
Laplacian matrix L = D − A, in which D is the diagonal matrix containing the node degree ki of each 
node, and A is the adjacency matrix. In this matrix, the elements aij = aji = 1 if nodes ni and nj are 
connected by a pipe; otherwise, aij = aji = 0. Shi and Malik (2000) [42] demonstrated that through the 
first C smallest eigenvector of the normalized Laplacian matrix, the relaxed version of the min-cut 
problem can be solved. In fact, it corresponds to the minimization of the Rayleigh quotient. If C is the 
number of clusters in which the network must be divided, the first C smallest eigenvectors of the 
Laplacian matrix are considered and used to create a new matrix UnxC. A k-means algorithm is 
applied to the rows of UnxC for grouping the nodes of the network in C clusters. The main trick is to 
change the representation of the nodes in the eigenspace of the first C eigenvectors, which enhances 
the cluster-properties of the nodes in such a way that they can be trivially detected in the new 
representation. The spectral clustering algorithm proved to show a superior performance to other 
clustering procedures, in that the provided clustering layout features both a well-balanced cluster 
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size and a minimum number of edge cuts [43]. The main spectral clustering steps in the case of a 
WDN are described by Di Nardo et al. (2018b) [44]. The graph of the WDN can be considered 
un-weighted (every connection between the nodes has the same importance, aij = aji = 1) or weighted 
(the value aij = aji can be related to pipe features, such as diameter d and length l). In the applications 
of this work, aij and aji were set at 1. The optimal number of clusters C (from a topological point of 
view) in which to subdivide the network is chosen as a function of the number n of nodes, according 
to the relationship Copt = n0.28 [45]. The clustering phase provides the optimal cluster layout and, as a 
result, the edge-cut set, consisting of a group of Nec boundary pipes between clusters. In 
correspondence to each boundary pipe, the flow transfer between the adjacent clusters must always 
be known, if it is larger than zero, in order to make the dividing effective. Therefore, the choice must 
be made whether either a gate valve must be closed, or a flow meter must be installed in the generic 
boundary pipe. Following this choice, the sum of closed gate valves (as numerous as Ngv) and 
installed flow meters (as numerous as Nfm) must be equal to Nec. Closing gate valves has the effect of 
reducing the service pressure and, therefore, leakage in the WDN. However, if service pressure falls 
below the desired threshold value hdes, this negatively impacts on WDN reliability. In this work, the 
trade-off between leakage and WDN reliability was explored through the bi-objective optimization, 
performed through the NSGAII genetic algorithm [46]. In this optimization, several decisional 
variables equal to Nec was considered, to encode, inside individual genes, gate valve closure (gene 
value equal to 1) or flow meter installation (gene value equal to 0) at boundary pipes. The first 
objective function f1 to minimize was the daily leakage volume Vl (m3): 

f1 = Vl (1)

where Vl is calculated as the sum of the temporal integral of the nodal leakage outflows, evaluated as 
a function of nodal pressure heads through the Tucciarelli et al. (1999) [47] formula. 

The second objective function f2 relates to the global resilience failure index GRF index 
proposed by Creaco et al. (2016) [48] to represent the instantaneous power surplus/deficit conditions 
of the WDN. In fact, GRF is dimensionless and is the sum of the resilience (Ir) and failure (If) indices 
evaluated at the generic instant of WDN operation: 𝐺𝑅𝐹 = 𝐼௥ + 𝐼௙ = 𝑚𝑎𝑥 (𝒒𝒖𝒔𝒆𝒓𝑻 𝑯 − 𝒅𝑻𝑯𝒅𝒆𝒔, 0)𝑸𝟎𝑻𝑯𝟎 − 𝒅𝑻𝑯𝒅𝒆𝒔 + 𝑚𝑖𝑛 (𝒒𝒖𝒔𝒆𝒓𝑻 𝑯 − 𝒅𝑻𝑯𝒅𝒆𝒔, 0)𝒅𝑻𝑯𝒅𝒆𝒔  (2)

where d and quser are the vectors of nodal demands d (m3/s) and water discharges quser (m3/s) 
delivered to users, respectively, at WDN demanding nodes. In this work, quser was evaluated as a 
function of d and pressure head h (m) at each node though the pressure-driven formula of 
Tanyimboh and Templeman (2010) [49], with calibration proposed by Ciaponi et al. (2014) [50]. H 
and H0 are the vectors of nodal heads (m) at demanding nodes and sources, respectively. Hdes is the 
vector of desired nodal heads, which are the sum of nodal elevations and desired pressure heads hdes 
(m). Finally, Q0 is the vector of the water discharges leaving the sources. The GRF index has the 
advantage of being within range [−1, 1]. Higher values of GRF indicate higher power delivered to 
WDN users and, therefore, higher service pressure. With reference to WDN daily operation, the 
second objective function f2 to maximize was calculated with the following relationship, as 
suggested by Creaco et al. (2016) [48]: 

f2 = median(GRF) (3)

The choice of the median value of GRF is because Creaco et al. (2016) [48] proved it to give a 
suitable and concise representation of a sequence of operation scenarios in the extended period 
simulation of the WDN. Both f1 and f2 can be calculated by applying a pressure-driven WDN solver 
(e.g., that of Creaco et al. 2016 [48]). They are mutually contrasting objectives: in fact, as the number 
of closed gates grows, f1, which has to be minimized, decreases. At the same time, f2, which has to be 
maximized, decreases as well due to the decreasing service pressure. This creates a trade-off 
between the two objectives, which takes the form of a Pareto front of optimal solutions, that is a 
group of solutions from which to select the final solution for the partitioning. To this end, additional 
criteria, such as the partitioning cost or demand satisfaction, can be adopted. In fact, the Pareto front 
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of optimal solutions can be re-evaluated in terms of other functions, such as number Nfm of flow 
meters and demand satisfaction rate Ids. In fact, Nfm is a surrogate for the partitioning cost [34], 
whereas Ids represents the effectiveness of the service to WDN users. The latter index can be 
calculated as: 𝐼ௗ௦ = 𝑤ௗ𝑤௧௢௧ (4)

where wd (m3) and wtot (m3) are the delivered water volume and the WDN demand, respectively. 
Variable wd can be calculated starting from the temporal integral of the water discharge quser delivered 
to the users at each node.  

2.2. Procedure 2—Optimal Sensor Placement 

Let a set S of potential contamination events considered in the analysis, each of which featuring 
a certain location, starting time, duration, and total mass, be defined. In this context, sensor 
placement was formulated as a bi-objective optimization problem [51], in which the first objective 
function is f3 = Nsens (number of installed sensors), as a surrogate for the installation cost for WDN 
monitoring, while the second objective function is: 𝑓ସ = 𝑝𝑜𝑝 = ∑ 𝑝𝑜𝑝௥ௌ௥ୀଵ𝑆  (5)

The objective function f4 is related to the contaminated population popr before the first detection 
of the generic r-th contamination event. This corresponds to the sum of the inhabitants served by the 
contaminated nodes and can be evaluated using the EPANET quality solver [52], using an 
unreactive contaminant. The EPANET quality solver can be applied to the flow field obtained 
following procedure 1. If the r-th event is not detected, popr includes all the nodes crossed by the 
contamination till the whole contaminant mass leaves the WDN. Though numerous objective 
functions can be used for the optimal installation of sensors, the population exposed to 
contamination was chosen as the objective function to minimize along with the number of sensors. 
This choice was made because, compared to other potential objective functions (such as detection 
likelihood and sensor redundancy), the population exposed to contamination represents more 
directly the impact of contamination, which is the most meaningful from the viewpoint of risk 
assessment and mitigation. The time interval ∆treact for the activation of emergency operations is set 
to 0 hr hereinafter for simplifying purposes. This means that contamination is assumed to stop 
instantaneously after its detection. However, ∆treact can be set to other values without loss of validity 
of the whole methodology. The function f4 is therefore the average value pop of popr. In the 
bi-objective optimization, functions f3 and f4 are minimized simultaneously through the NSGAII 
genetic algorithm [46]. In fact, the minimization of the former reduces the sensor cost while the 
minimization of the latter impacts positively on the system security. In the population individuals of 
NSGAII, the number of genes is equal to the number of network nodes where sensors can be 
installed. Each gene can take on the two possible values 0 and 1, which stand for absence and 
presence of the sensor in the node associated with the gene, respectively.  

In this paper, four options for sensor locations on the partitioned network were tested:  

1. Option 1, sensors can be installed at all nodes (typical greedy approach);  
2. Option 2, sensors can be installed only at the hydraulically upstream nodes of the boundary 

pipes; 
3. Option 3, sensors can be installed at the most central nodes of each district, identified through 

topological considerations; 
4. Option 4, sensors can be installed at the hydraulically upstream nodes of the boundary pipes 

and at the most central nodes of each district. 

In the last two cases, the idea is to take advantage from the study of WDN topology in order to 
define which nodes are potential candidates for sensor installation, according to their connectivity 
centrality. In this paper, the most central nodes were defined using the betweenness centrality [53], 
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defined starting from the shortest paths in a graph. The shortest path σ(s, t) between two nodes s and 
t is the connecting path with the lowest number of links (or the minimum sum of the weights 
associated with its links in the case of weighted graph). The betweenness centrality of a node i is 
defined as the sum of the ratios of the number of shortest paths between nodes s and t passing 
through i to the total number of shortest paths between nodes s and t. It is a measure of the influence 
of a node i over the flow of information between other nodes. In this paper, for each cluster, the 
nodes with the highest value of betweenness centrality were selected as possible sensor locations 
alone (Option 3) or in combination with boundary nodes (Option 4). Options 2, 3, and 4 aim to 
investigate the possibility of limiting the search for optimal sensor locations to the hydraulically 
upstream nodes of the flow meter-fitted boundary pipes and to the most central nodes of each 
district. This choice leads to significant computational simplifications, due to the reduction in the 
search space. This offers the possibility of better facing the problem of optimal sensor placement also 
for big-size WDNs (for which the number of all potential scenarios makes the problem 
computationally intractable). Furthermore, the strategy of locating all or some sensors in the same 
stations as boundary flowmeters offers easiness and cheapness of inspection and maintenance.  

2.3. Procedure 3—Comparison of Sensor Placement Solutions 

Sensor placement solutions were evaluated using the following four contamination impact 
indicators. The first is function f4 in Equation (5), followed by functions f5, f6 and f7 reported in the 
following Equations (6)–(8), respectively. 

The function f5 is the detection likelihood (i.e., the probability of detection): 𝑓ହ = 𝑃௦ = 1𝑆 ෍ 𝑑௥ௌ௥ୀଵ  (6)

where dr = 1 if contamination scenario r is detected, and zero otherwise; and S denotes the total 
number of the contamination scenarios considered. 

The function f6 is the detection time. For each detected contamination scenario, the sensor 
detection time corresponds to the elapsed time from the start of the contamination event, to the first 
identified presence of a nonzero contaminant concentration. If tj is the time of the first detection 
(referred to the j-th sensor location), the detection time (td) for the solution for each contamination 
event, is the minimum among all present sensors td = min(tj); the characteristic detection time of the 
solution is defined as the mean of all td for the contamination scenarios detected by at least one 
sensor: 𝑓଺ = 𝑚𝑒𝑎𝑛(𝑡ௗ) (7)

Finally, the function f7 is the sensor redundancy. In a generic scenario, the variable Red 
corresponds to the number of sensors (including the first) that detect the contamination within 30 
minutes from the first detection; the redundancy Red of the solution is defined as the mean of all the 
values of redundancy Red for all the considered contamination scenarios: 𝑓଻ = 𝑅𝑒𝑑 = 𝑚𝑒𝑎𝑛(𝑅𝑒𝑑) (8)

which contributes to the safety of the monitoring systems, especially in the case of sensor 
failures or false positive/negative detection, conferring a higher reliability. 

As for the choice of the objective functions, it must be remarked that theoretically more than 
two of them could be inserted in the same optimization framework. However, to prevent this 
framework from becoming overly complex, we preferred to keep only two objective functions 
(number of sensors and exposed population) in the optimization framework, while other assessment 
criteria (e.g., detection likelihood, detection time, and sensor redundancy) will be considered in the 
postprocessing of the optimal solutions. 

3. Case Study 
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The methodology described above was tested on the WDN of Parete [54], which is a small town 
located in a densely populated area to the south of Caserta (Italy), with population of 11,150 
inhabitants. This WDN has 182 demanding nodes (with ground elevations ranging from 53 m a.s.l. 
to 79 m a.s.l.), 282 pipes and 2 sources with fixed head of 110 m a.s.l. A uniform desired pressure 
head hdes = 19 m was assumed for the demanding nodes, coming from the sum of the maximum 
building height in the town, which is 9 m in Parete, and 10 m, as prescribed by the Italian guidelines. 
Reference was made to the day of maximum consumption in the year when the total nodal demand 
ranges from 7.6 L/s at nighttime to 77.2 L/s in the morning and midday peaks, with an average value 
of 36.3 L/s. The leakage volume of the networks in the day of maximum consumption adds up to 930 
m3 (about 23% of the total outflow from the sources). The number of users connected to each WDN 
node was derived based on its average nodal demand.  

4. Results and Discussions 

In this section, the results of the procedures described in sections 2.1, 2.2 and 2.3 are reported. 
The first step is the definition of an optimal water network partitioning. In this regard, the clustering 
phase was applied to produce 5 DMAs. The choice of 5 DMAs was made because the formula Copt = 
n0.28 proposed by Giudicianni et al. (2018) [45] to calculate the optimal number of clusters yields Copt = 
4.3 for this WDN. The number of nodes for each DMA are DMA1 = 20, DMA2 = 35, DMA3 = 39, DMA4 
= 41 and DMA5 = 49, with Nec = 21. For the dividing, the optimization through NSGAII yielded the 
Pareto front reported in Figure 1a, showing, as expected, growing values of median(GRF) with Vl 
growing. In fact, both variables are growing functions of the service pressure in the WDN. Figure 
1b,c report the number Nfm of flow meters and the demand satisfaction rate Ids, respectively, 
re-evaluated from the Pareto front and plotted against Vl. Globally, Figure 1b highlights that the 
higher values of Nfm tend to be associated with the high values of Vl. This is because Vl tends to grow 
when fewer gate valves are closed (and then more numerous flow meters are installed) at the 
boundary pipes. Finally, Figure 1c shows that Ids tend to grow with Vl increasing, since both variables 
are increasing functions of the service pressure.  

From the graphs in Figure 1, the solution with the lowest value of Nfm (= 8), highest number of 
closed valves Ngv (= 13), which ensures Ids = 100%, was finally chosen. An important remark to be 
made is that among the several advantages of the WNP, the adopted partitioning solution enables 
also reducing leakage, from 930 m3 (for the un-partitioned layout) to 895 m3 (partitioned solution 
with 13 gate valves closed and 8 flow meters installed). This corresponds to a 3.7% leakage reduction 
without negatively affecting Ids and GRF. In fact, for this solution median(GRF) is equal to 0.32, very 
close to the value of 0.36 for the un-partitioned network. The layout of the partitioned layout is 
reported in Figure 2. The optimal sensor placement is then carried out. The following assumptions 
were made for the construction of the set S of contamination events considered in the optimization: 

• all the 182 demanding nodes were considered to be potential locations for contaminant 
injection; 

• 24 possible contamination times in the day (hour 0, 1, 2, …, 22, 23); 
• single value of the mass injection rate equal to 350 g/min;  
• single value of the injection duration equal to 60 min.  
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Figure 1. Dividing phase considering the clustered graph of the Parete WDN (Variant 1). Pareto front 
of optimal solutions in the trade-off between daily median (GRF) index and leakage volume Vl (a), 
re-evaluated solutions in terms of number of flow meters Nfm (b), and of demand satisfaction rate Ids 

(c). In all graphs, the selected solution is highlighted with a grey vertical line. 

The values reported above for mass injection and duration were sampled from those proposed 
by Preis and Ostfeld (2008) [55], using the procedure of Tinelli et al. (2017) [51], with the objective to 
obtain a representative smaller set of significant contamination events. Due to the previous 
assumptions, the total number S of contamination events was 182 × 24 × 1 × 1= 4368.  

The water quality simulations were run for 2 days of WDN operation to make sure that even 
contaminants injected close to the sources at the last instant of the first day had enough time to leave 
the network. In the optimization for sensor placement, the partitioned WDN layout was indicated as 
Var1 to differentiate it from the original layout (Var0). Therefore, according to the three optimization 
options described in Section 2.2, optimizations were organized as follows:  

1. Var1Op1: Optimal sensor placement on the partitioned WDN allowing sensor installation on all 
nodes (182 potential locations); 

2. Var1Opt2: Optimal sensor placement on the partitioned WDN allowing sensor installation only 
on the nodes hydraulically upstream from the flowmeter fitted boundary pipes (8 potential 
locations); 

3. Var1Opt3: Optimal sensor placement on the partitioned WDN allowing sensor installation only 
on the most central nodes of each district (15 potential locations, i.e., three locations for each 
district, which feature a much higher betweenness centrality value than the other nodes); 
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4. Var1Opt4: Optimal sensor placement on the partitioned WDN allowing sensor installation on 
the nodes hydraulically upstream from the flowmeter fitted boundary pipes and on the most 
central nodes of each district (23 scenarios). 

 

Figure 2. WDN partitioning into 5 DMAs. 

Compared to Var1Opt1, Var1Opt2, Var1Opt3 and Var1Opt4 reduce the group of potential sensor 
locations respectively by 96%, 92% and 87%, resulting in a research space reduction which helps in 
diminishing the computational burden. The three optimizations were compared with the benchmark 
Var0Opt1, where all the 182 potential sensor locations are explored in the original layout. Table 1 
shows the optimization framework, made up of 5 runs. In all of them, NSGAII was applied with a 
population of 200 individuals and a total number of 200 generations.  

Table 1. Framework of optimizations for sensor placement in the Parete WDN. 

Option 
Variant 0 

(Un-Partitioned)  
Variant 1 

(Partitioned)  
1 (all nodes) Var0Opt1 Var1Opt1 

2 (only boundary nodes) - Var1Opt2 
3 (only central nodes) - Var1Opt3 

4 (boundary nodes + central nodes) - Var1Opt4 

For the optimizations that consider all nodes as potential sensor locations (Var0Opt1, Var1Opt1), 
the slow convergence of NSGAII was initially remarked towards interesting solutions for water 
utilities, which are solutions with a reasonably low number of sensors in comparison with the total 
number of demanding nodes. This problem was solved by implementing inside NSGAII a heuristic 
algorithm to correct solutions with numerous sensors, that is Nsens > 20. In this heuristic algorithm, for 
each NSGAII solution violating Nsens = 20, a random integer number within the range (1, 20) is 
generated, representing the target number of sensors for that solution. Then, starting from the initial 
value of Nsens, the least effective sensors in terms of pop are removed one by one to reach the target. 
Though increasing the computation time for each NSGAII generation by about 30 times, this 
algorithm proved to solve the issue of slow convergence. This heuristic algorithm was not applied to 
the optimizations Var1Opt2, Var1Opt3 and Var1Opt4. This made the NSGAII optimizations in the 
two latter applications much lighter from the computational viewpoint. 

Figure 3a reports the Pareto fronts obtained in optimization Var0Opt1, on the un-partitioned 
layout, and in optimizations Var1Opt1, Var1Opt2, Var1Opt3 and Var1Opt4, on the partitioned layout. 
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As expected, these fronts in Figure 3a show decreasing values of pop as Nsens increases up to 20. 
However, for high values of Nsens, the additional benefit of a further sensor installed in the network 
tends to decrease, as already pointed out by Tinelli et al. (2017) [56]. In the present work, Nsens = 6 
appears to be the threshold of benefit for the installation of an additional sensor, slightly to right of 
the knee of the Pareto fronts (which lies around Nsens = 3).  

 

Figure 3. For the original un-partitioned WDN (Var0Opt1), reported as benchmark, and for the 
partitioned WDN (Var1Opt1, Var1Opt2, Var1Opt3 and Var1Opt4), Pareto front of optimal sensor 
placement solutions in the trade-off between Nsens and contaminated population pop (a), re-evaluated 
solutions in terms of Nsens and detection likelihood Ps (b), Nsens and detection time Tmean (c), and Nsens 
and redundancy Red (d). 
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Another point to highlight is that for the partitioned network, the contaminated population 
corresponding to the case of zero installed sensors (pop = 2458) is lower than the corresponding 
contaminated population for the un-partitioned WDN (pop = 2806) as shown in Table 2. 

Table 2. Simulation results in terms of exposed population from the four optimizations for sensor 
placement in the Parete WDN, considering Nsens up to 6. 

Nsens Var0Opt1 Var1Opt1 Var1Opt2 Var1Opt3 Var1Opt4 
0 2806 2458 2458 2458 2458 
1 1438 1274 1274 1274 1274 
2 982 919 953 974 953 
3 789 648 741 679 653 
4 667 559 638 598 569 
5 589 500 572 561 515 
6 514 462 564 548 472 

This points out the first advantage of the partitioning: by reducing the average number of 
possible paths in the network (due to the closure of some pipes), it produces a reduction in the 
contaminated population by around 12.4%. This is due to the reduction in the spreading of 
contamination (direct action). Furthermore, the WNP also enhances the results of optimal sensor 
placement (indirect action). As is shown in Table 2 for Nsens ≤ 6, pop for the un-partitioned WDN 
(Var0Opt1) is always higher than pop for the Var1Opt1 for all the number Nsens of sensors installed in 
the network. The minimum value of pop = 462 is for Var1Opt1. Var1Opt2 (sensors allowed only 
upstream from boundary pipes), Var1Opt3 (sensors allowed only on topologically central nodes in 
DMAs) and Var1Opt4 (sensors allowed upstream from boundary pipes and on topologically central 
nodes in DMAs) give similar results to Var1Opt1 up to Nsens = 2. For Nsens > 2, Var1Opt2 and Var1Op3 
degenerate while the good performance of Var1Opt4 persists. This is evidence that constraining 
sensor installation only upstream from boundary pipes or on topologically central nodes may lead to 
remarkably sub-optimal solutions. However, the combination of locations upstream from the 
boundary pipes and of topologically central nodes offers a good set of potential locations in the 
problem of optimal sensor placements. Figure 3b–d report the results of the reprocessing of the 
optimal solutions in terms of detection likelihood, detection time, and redundancy as a function of 
Nsens. Along with Figure 3a, they give indications on the effectiveness of the solutions obtained in the 
NSGAII runs. Globally, the Var1 solutions obtained on the partitioned graph, especially Var1Opt1, 
Var1Op2, and Var1Opt4, tend to perform better in terms of pop, detection time, and sensor 
redundancy. Conversely, they feature slightly worse values in terms of detection likelihood. This 
may be because the optimization was carried out considering pop as objective function, which is 
slightly contrasted with detection likelihood [56]. In fact, the former variable mainly contributes to 
the system’s early warning capacity whereas the latter contributes to the system safety. As for Figure 
3, it must be remarked that the curves in Figure3a are Pareto fronts while those in the other Figure 
3b–d are obtained by reprocessing the optimal solutions in terms of other assessment criteria. Since 
these curves are not Pareto fronts, they are not strictly monotonous. Figure 4 shows the sensor 
placement solutions obtained for Nsens = 6 with three optimizations (Var0Opt1, Var1Opt1, and 
Var1Opt4). In this context, it must be noted that the Var1Opt4 solution has three of the six sensors 
placed close to flowmeters (the other three sensors are in the most central nodes according to the 
betweenness centrality). This solution yields managerial and economic benefits, due to the closeness 
of some sensors to installed flow meters and due to the possibility of sharing some electronical 
components for data acquisition, sharing, and transmission. Summing up, the Var1Opt4 solution 
represents a quasi-optimal solution in the explored trade-off between pop and Nsens, while offering 
significant potentials for improved management. Another advantage compared to the Var0Opt1 and 
Var1Opt1 solutions with Nsens = 6 is that it was obtained at a much lower computation cost (about 
1/30), due to the research space reduction mentioned above for Options 2–4. Overall, the advantages 
in terms of computational lightness during the optimization as well as the possibility of inspecting 
and maintaining sensors in proximity to flow meters make solutions obtained in Opt4 preferable 
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from the water utilities’ viewpoint. The results highlighted that nodes close to flow meters used for 
the monitoring of DMAs, which must always be easily accessible sites, represent good sensor 
locations for WDN monitoring from contaminations, when they are inserted into an optimization 
framework that also includes topologically central nodes inside DMAs. As for the optimal positions 
of the sensors in Var1Opt1 (partitioned network and all nodes as potential candidates) and Var1Opt4 
(partitioned network and sensor installations restricted to entry points and central nodes in DMAs), 
it must be remarked that many locations are similar in the two cases (see Figure 4). This corroborates 
the fact that entry points and central nodes in DMAs are good candidate locations in the present case 
study. 

 
Figure 4. Optimal location of 6 sensors in (a) original un-partitioned WDN (Var0Opt1), (b) 
partitioned WDN (Var1Opt1), and (c) partitioned WDN (Var1Opt4). 

5. Conclusions 

In this work, a methodology that combines WNP and optimal sensor installation was proposed, 
to investigate the benefits of the “divide and conquer” technique for the monitoring of WDNs from 
contamination events (direct action), and for the effectiveness of optimal sensor placement (indirect 
action). The applications concerned a real Italian WDN, which was first partitioned into 5 DMAs. 
Optimal sensor solutions were searched for on the original un-partitioned WDN and on the 
partitioned layout, in the trade-off between number of installed sensors and affected population for 
an assigned set of contamination events. Further optimizations were carried out by restricting sensor 
installation to some pre-selected nodes (nodes hydraulically upstream from the flow meter-fitted 
boundary pipes and central nodes). The results showed that, for a given number of installed sensors, 
the monitoring stations installed in the partitioned layouts offer better monitoring performance. On 
the other hand, the option of considering locations in proximity to flow meters and at most central 
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nodes as the only potential locations in the context of optimal sensor placement has the following 
advantages: 

1. almost identical performance in terms of WDN monitoring, compared to the option of 
considering all nodes as potential locations; 

2. money savings thanks to the possibility of sharing some electronical components for data 
acquisition, sharing, and transmission; 

3. easiness of access to the sensors for maintenance; 
4. reduction in the search space and, therefore, in the computational complexity in the 

optimizations for optimal sensor placement; 
5. easier identification of the area from which the contamination starts with the subsequent 

possibility of isolating the district, assuring a higher resilience of the system to the spreading of 
the contamination. 

With regards to the last issue, it must be noted that the calculations of the present work were 
carried out on a simple though real WDN. Therefore, the benefits are expected to be much larger in 
the case of big-size WDNs, for which the problem of optimal sensor placement may become 
computationally infeasible. Indeed, the topics analyzed in this paper fully match the future research 
directions identified by Ostfeld et al. (2008) [20] during the Battle of the Water Sensor Networks. In 
fact, specific reference was made to the problems of aggregation, i.e., the possibility of using a 
reduced but still significant sample of nodes for investigations into water quality, multi-criteria 
analysis of sensor performance, choice of optimal number of sensors and multiple use of boundary 
pipes (for both monitoring flow between DMAs and detecting potential contaminations).  

Though topologically central nodes have been considered in this analysis along with DMA 
entry points, another attractive option is made up of critical sink nodes with lowest head inside 
DMAs, in which water quality parameters are already monitored. Future works will be dedicated to 
exploring the solution of critical sink nodes. Future work will be dedicated to investigating how 
results change when other objective functions from those used in the present work are considered. 
The methodology presented in this paper will be refined in the future considering also other 
benchmark networks. Adopting different clustering algorithms and centrality metrics could affect 
the results; to better investigate the influence on the solutions, new algorithms will be applied. 
Another aspect that deserves to be further investigated concerns the assumptions made for the 
definition of the representative set of contamination scenarios. Other prospects could concern the 
issues of restoration after the generic contamination and of constructing mega-monitoring stations 
on which to locate all the management devices (chlorine stations, pressure valves, etc.). This will be 
done with reference to specific real contaminants, while abandoning the simplifying assumption of 
unreactive and conservative contaminant adopted so far.  
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