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Abstract: This paper proposes a combined management strategy for monitoring water distribution
networks (WDNs). This strategy is based on the application of water network partitioning (WNP)
for the creation of district metered areas (DMAs) and on the installation of sensors for water quality
monitoring. The proposed methodology was tested on a real WDN, showing that boundary pipes,
at which flowmeters are installed to monitor flow, are good candidate locations for sensor installation,
when considered along with few other nodes detected through topological criteria on the partitioned
WDN. The option of considering only these potential locations, instead of all WDN nodes, inside a
multi-objective optimization process, helps in reducing the search space of possible solutions and,
ultimately, the computational burden. The solutions obtained with the optimization are effective
in reducing affected population and detection time in contamination scenarios, and in increasing
detection likelihood and redundancy of the monitoring system. Last but most importantly, these
solutions offer benefits in terms of management and costs. In fact, installing a sensor alongside the
flowmeter present between two adjacent DMAs yields managerial advantages associated with the
closeness of the two devices. Furthermore, economic benefits due to the possibility of sharing some
electronical components for data acquisition, saving, and transmission are derived.

Keywords: water distribution monitoring; optimal sensor placement; water network partitioning;
topological centrality

1. Introduction

Installing an efficient monitoring and control sensor system gives the possibility to carry out main
tasks on Water Distribution Network (WDN) management and protection. Securing these critical
infrastructures is a crucial task for ensuring society’s welfare and prosperity. In fact, WDNs are
strongly vulnerable to malicious and intentional actions [1] since they are made up of thousands
of exposed elements. From a practical and economic point of view, securing all the apparatuses is
not feasible. Thus, the design of an effective and cost-effective quality monitoring system represents
a crucial management strategy for ensuring the delivery of good quality water to users. Optimal
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sensor placement becomes a necessary step for satisfactory water quality monitoring systems, also
allowing identification of the source contamination [2]. These systems should provide a fast and
accurate detection, distinguishing between normal variations and contamination events; furthermore,
they should be economical, easy to integrate into network, and reliable [3]. This problem has been
extensively studied for the past 20 years and several approaches have been proposed to identify optimal
locations of sensors (Byoung et al. (1992) [4] defined the concept of maximum coverage to locate
sensors formulating the problem as integer programming problem; using the same objective as the
maximum coverage, Kumar et al. (1997) [5] employed a mixed-integer programming method; Watson
et al.(2004) [6] used a mixed-integer linear programming model, showing that the problem of sensor
placement must simultaneously consider multiple design objectives; Berry et al. (2005) [7] pointed out
the difficulty of solving sensor placement by means of integer programming optimization; Ostfeld and
Salomons (2004) [8] studied the problem in unsteady conditions using a genetic algorithm framework
integrated with EPANET; Uber et al. (2004) [9] used a greedy heuristic solution methodology providing
a heuristic (non-optimal) solution procedure scalable to large networks, taking into account uncertainty
in threat scenario). The problem received lots of attention especially after the events of 11 September
2001. However, although many research works have been carried out in this field, the challenge of the
optimal sensor placement is still open in many aspects, such as identification of optimal sensor locations
and evaluation of performance and applicability to real-world scenarios. Models and algorithms for
solving this arduous problem include deterministic and stochastic optimization techniques, optimizing
one (Kessler et al. (1998) [10] defined the total volume of contaminated water consumed ahead of
detection; Ostfeld and Salomons (2005) [11] enhanced previous study by taking into account the
randomness of flow rate of the intruded pollutant, stochastic demands, and reaction time of the sensors;
Berry et al. (2009) [12] incorporated into a mixed-integer programming formulation the probability
of sensor failure) or more objectives (McKenna et al. (2007) [13] demonstrated the importance of
considering sensor failure rates showing the trade-off between the sensor detection limit and the
number of sensors; Dorini et al. (2008) [14] considered four objectives in the model and used a
noisy cross-entropy sensor locator algorithm to find the optimal solution; Huang et al.(2008) [15]
considered three objectives in their formulation solved by using a competent genetic algorithm while
the contamination events were simulated by a development of Monte Carlo method; Propato and
Piller (2006) [16] used a mixed-integer linear program methodology including notions of statistical
and uncertainty analysis in the design process; Wu and Walski (2008) [17] combined four objectives
into a single objective), such as detection likelihood, expected contaminated water volume, affected
population, detection time, and the contaminated population. The interested reader can refer to Hart
and Murray (2010) [18,19] for a review of this topic. The optimal sensor placement problem was
also dealt with at the Battle of the Water Sensor Networks (BWSN) [20]. The main difficulty is that,
given WDN complexity, efficient numerical techniques are needed to support optimal monitoring
system design and the huge number of all potential contamination events in a WDN makes the
problem computationally intractable (as each of these events is characterized by a different injection
location, duration, mass rate, and starting time). Indeed, the optimal sensor placement in a network
represents a combinatorial optimization problem that has been proven to be NP-hard [21]. For example,
Krause et al. (2008) [22] showed that, using 30 parallel processors, it took 8 days to simulate random
contamination events that could occur at 5 min intervals over a 24 h period from any of the 12,527 nodes
in a medium-sized distribution network. In recent years, new concepts in sensor network design have
been studied; Sankary and Ostfeld (2016) [23] investigated the possibility of adopting a mobile wireless
sensor network to wirelessly transmit data to fixed transceivers in real time; Rathi et al. 2016 [24]
proposed a novel strategy for the selection of contamination events with associated risk to be used in
design of sensor network; Zheng et al. 2018 [25] investigated the characteristics of the sensor placement
strategy effectiveness using several metrics, and providing guidance for selecting the most appropriate
strategy for the preparedness for contamination events.
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On the other hand, the “divide and conquer” concept has recently been gaining attention in
the field of WDNs, showing to be one of the most efficient management strategies. The option of
dividing large-scale networks into smaller and manageable subsystems, called district metered areas
(DMAs), offers undisputable advantages for the monitoring and control of consumption, pressure,
leakage, and water resource quality. In the scientific literature, numerous works were dedicated to the
design of DMAs. Most of them are based on the application of decomposition algorithms [26,27] based
on graph [28–32] and spectral theories [33,34], multi-agent method [35], social network theory [36],
modularity index [37–39]. Though being significant contributions to the field, the works mentioned
above are mostly focused on DMA design. Therefore, they fail to analyze the positive effects brought by
the creation of DMAs to WDN management, for reducing the impacts of potential contamination events.

The global aim of this paper is to provide a general management framework for WDN monitoring,
while exploring the benefits of water network partitioning (WNP) for:

• reduction in inauspicious consequences of contamination (both accidental and intentional) in
terms of limitation of contaminated areas (direct action);

• optimal placement of quality sensors (indirect action).

While the analysis of the former aspect is presented hereinafter as a follow-up of the work
of Ciaponi et al. (2018) [40], the analysis of the latter aspect is entirely novel. In this context, the
possibility of installing some or all sensors at boundary pipes will be considered, resulting in a two-fold
advantage: numerical, due to the reduction in the research space of possible candidate solutions for
sensor installation, and managerial, due to easiness of access and to cost savings for the possibility of
sharing some electronical components for data acquisition, saving, and transmission.

In the following sections, first the methodology is presented, followed by the applications to a
real case study, testing different scenarios and comparing different sensor locations with four water
quality-based parameters, in order to validate the results.

2. Materials and Methods

The methodology used in this work is the combination of two main procedures, used for WNP
and sensor placement, respectively. These procedures, both derived from the scientific literature,
are described in the following Sections 2.1 and 2.2, respectively. Section 2.3 deals with the postprocessing
of the sensor placement solutions obtained in Section 2.2.

2.1. Procedure 1—WNP

According to Perelmann et al. (2015) [41], WNP is carried out in two main phases: (a) clustering,
in which the optimal shape and size of the clusters are defined by minimizing the number of edge
cuts (boundary pipes) and by simultaneously balancing the number of nodes of each cluster, and (b)
dividing, in which clusters are separated from each other by closing isolation valves at some boundary
pipes and installing flow meters at the remaining boundary pipes.

In this work, the clustering layout is obtained exploiting the properties of the normalized Laplacian
matrix L = D − A, in which D is the diagonal matrix containing the node degree ki of each node, and A
is the adjacency matrix. In this matrix, the elements aij = aji = 1 if nodes ni and nj are connected by a
pipe; otherwise, aij = aji = 0. Shi and Malik (2000) [42] demonstrated that through the first C smallest
eigenvector of the normalized Laplacian matrix, the relaxed version of the min-cut problem can be
solved. In fact, it corresponds to the minimization of the Rayleigh quotient. If C is the number of
clusters in which the network must be divided, the first C smallest eigenvectors of the Laplacian matrix
are considered and used to create a new matrix UnxC. A k-means algorithm is applied to the rows of
UnxC for grouping the nodes of the network in C clusters. The main trick is to change the representation
of the nodes in the eigenspace of the first C eigenvectors, which enhances the cluster-properties of
the nodes in such a way that they can be trivially detected in the new representation. The spectral
clustering algorithm proved to show a superior performance to other clustering procedures, in that the



Water 2019, 11, 1315 4 of 16

provided clustering layout features both a well-balanced cluster size and a minimum number of edge
cuts [43]. The main spectral clustering steps in the case of a WDN are described by Di Nardo et al.
(2018b) [44]. The graph of the WDN can be considered un-weighted (every connection between the
nodes has the same importance, aij = aji = 1) or weighted (the value aij = aji can be related to pipe
features, such as diameter d and length l). In the applications of this work, aij and aji were set at
1. The optimal number of clusters C (from a topological point of view) in which to subdivide the
network is chosen as a function of the number n of nodes, according to the relationship Copt = n0.28 [45].
The clustering phase provides the optimal cluster layout and, as a result, the edge-cut set, consisting of
a group of Nec boundary pipes between clusters. In correspondence to each boundary pipe, the flow
transfer between the adjacent clusters must always be known, if it is larger than zero, in order to make
the dividing effective. Therefore, the choice must be made whether either a gate valve must be closed,
or a flow meter must be installed in the generic boundary pipe. Following this choice, the sum of
closed gate valves (as numerous as Ngv) and installed flow meters (as numerous as Nfm) must be equal
to Nec. Closing gate valves has the effect of reducing the service pressure and, therefore, leakage in the
WDN. However, if service pressure falls below the desired threshold value hdes, this negatively impacts
on WDN reliability. In this work, the trade-off between leakage and WDN reliability was explored
through the bi-objective optimization, performed through the NSGAII genetic algorithm [46]. In this
optimization, several decisional variables equal to Nec was considered, to encode, inside individual
genes, gate valve closure (gene value equal to 1) or flow meter installation (gene value equal to 0) at
boundary pipes. The first objective function f1 to minimize was the daily leakage volume Vl (m3):

f 1 = Vl (1)

where Vl is calculated as the sum of the temporal integral of the nodal leakage outflows, evaluated as a
function of nodal pressure heads through the Tucciarelli et al. (1999) [47] formula.

The second objective function f2 relates to the global resilience failure index GRF index proposed
by Creaco et al. (2016) [48] to represent the instantaneous power surplus/deficit conditions of the WDN.
In fact, GRF is dimensionless and is the sum of the resilience (Ir) and failure (If) indices evaluated at the
generic instant of WDN operation:

GRF = Ir + I f =
max

(
qT

userH− dTHdes, 0
)

QT
0 H0 − dTHdes

+
min

(
qT

userH− dTHdes, 0
)

dTHdes
(2)

where d and quser are the vectors of nodal demands d (m3/s) and water discharges quser (m3/s) delivered
to users, respectively, at WDN demanding nodes. In this work, quser was evaluated as a function
of d and pressure head h (m) at each node though the pressure-driven formula of Tanyimboh and
Templeman (2010) [49], with calibration proposed by Ciaponi et al. (2014) [50]. H and H0 are the vectors
of nodal heads (m) at demanding nodes and sources, respectively. Hdes is the vector of desired nodal
heads, which are the sum of nodal elevations and desired pressure heads hdes (m). Finally, Q0 is the
vector of the water discharges leaving the sources. The GRF index has the advantage of being within
range [−1, 1]. Higher values of GRF indicate higher power delivered to WDN users and, therefore,
higher service pressure. With reference to WDN daily operation, the second objective function f2 to
maximize was calculated with the following relationship, as suggested by Creaco et al. (2016) [48]:

f2 = median(GRF) (3)

The choice of the median value of GRF is because Creaco et al. (2016) [48] proved it to give
a suitable and concise representation of a sequence of operation scenarios in the extended period
simulation of the WDN. Both f1 and f2 can be calculated by applying a pressure-driven WDN solver
(e.g., that of Creaco et al. 2016 [48]). They are mutually contrasting objectives: in fact, as the number
of closed gates grows, f1, which has to be minimized, decreases. At the same time, f2, which has



Water 2019, 11, 1315 5 of 16

to be maximized, decreases as well due to the decreasing service pressure. This creates a trade-off

between the two objectives, which takes the form of a Pareto front of optimal solutions, that is a
group of solutions from which to select the final solution for the partitioning. To this end, additional
criteria, such as the partitioning cost or demand satisfaction, can be adopted. In fact, the Pareto front of
optimal solutions can be re-evaluated in terms of other functions, such as number Nfm of flow meters
and demand satisfaction rate Ids. In fact, Nfm is a surrogate for the partitioning cost [34], whereas Ids
represents the effectiveness of the service to WDN users. The latter index can be calculated as:

Ids =
wd
wtot

(4)

where wd (m3) and wtot (m3) are the delivered water volume and the WDN demand, respectively.
Variable wd can be calculated starting from the temporal integral of the water discharge quser delivered
to the users at each node.

2.2. Procedure 2—Optimal Sensor Placement

Let a set S of potential contamination events considered in the analysis, each of which featuring a
certain location, starting time, duration, and total mass, be defined. In this context, sensor placement
was formulated as a bi-objective optimization problem [51], in which the first objective function is
f3 = Nsens (number of installed sensors), as a surrogate for the installation cost for WDN monitoring,
while the second objective function is:

f4 = pop =

∑S
r=1 popr

S
(5)

The objective function f 4 is related to the contaminated population popr before the first detection
of the generic r-th contamination event. This corresponds to the sum of the inhabitants served by the
contaminated nodes and can be evaluated using the EPANET quality solver [52], using an unreactive
contaminant. The EPANET quality solver can be applied to the flow field obtained following procedure
1. If the r-th event is not detected, popr includes all the nodes crossed by the contamination till the whole
contaminant mass leaves the WDN. Though numerous objective functions can be used for the optimal
installation of sensors, the population exposed to contamination was chosen as the objective function
to minimize along with the number of sensors. This choice was made because, compared to other
potential objective functions (such as detection likelihood and sensor redundancy), the population
exposed to contamination represents more directly the impact of contamination, which is the most
meaningful from the viewpoint of risk assessment and mitigation. The time interval ∆treact for the
activation of emergency operations is set to 0 hr hereinafter for simplifying purposes. This means that
contamination is assumed to stop instantaneously after its detection. However, ∆treact can be set to
other values without loss of validity of the whole methodology. The function f4 is therefore the average
value pop of popr. In the bi-objective optimization, functions f3 and f4 are minimized simultaneously
through the NSGAII genetic algorithm [46]. In fact, the minimization of the former reduces the sensor
cost while the minimization of the latter impacts positively on the system security. In the population
individuals of NSGAII, the number of genes is equal to the number of network nodes where sensors
can be installed. Each gene can take on the two possible values 0 and 1, which stand for absence and
presence of the sensor in the node associated with the gene, respectively.

In this paper, four options for sensor locations on the partitioned network were tested:

1. Option 1, sensors can be installed at all nodes (typical greedy approach);
2. Option 2, sensors can be installed only at the hydraulically upstream nodes of the boundary pipes;
3. Option 3, sensors can be installed at the most central nodes of each district, identified through

topological considerations;
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4. Option 4, sensors can be installed at the hydraulically upstream nodes of the boundary pipes and
at the most central nodes of each district.

In the last two cases, the idea is to take advantage from the study of WDN topology in order to
define which nodes are potential candidates for sensor installation, according to their connectivity
centrality. In this paper, the most central nodes were defined using the betweenness centrality [53],
defined starting from the shortest paths in a graph. The shortest path σ(s, t) between two nodes s
and t is the connecting path with the lowest number of links (or the minimum sum of the weights
associated with its links in the case of weighted graph). The betweenness centrality of a node i is
defined as the sum of the ratios of the number of shortest paths between nodes s and t passing through
i to the total number of shortest paths between nodes s and t. It is a measure of the influence of a
node i over the flow of information between other nodes. In this paper, for each cluster, the nodes
with the highest value of betweenness centrality were selected as possible sensor locations alone
(Option 3) or in combination with boundary nodes (Option 4). Options 2, 3, and 4 aim to investigate the
possibility of limiting the search for optimal sensor locations to the hydraulically upstream nodes of
the flow meter-fitted boundary pipes and to the most central nodes of each district. This choice leads
to significant computational simplifications, due to the reduction in the search space. This offers the
possibility of better facing the problem of optimal sensor placement also for big-size WDNs (for which
the number of all potential scenarios makes the problem computationally intractable). Furthermore,
the strategy of locating all or some sensors in the same stations as boundary flowmeters offers easiness
and cheapness of inspection and maintenance.

2.3. Procedure 3—Comparison of Sensor Placement Solutions

Sensor placement solutions were evaluated using the following four contamination impact
indicators. The first is function f4 in Equation (5), followed by functions f5, f6 and f7 reported in the
following Equations (6)–(8), respectively.

The function f5 is the detection likelihood (i.e., the probability of detection):

f5 = Ps =
1
S

∑S

r=1
dr (6)

where dr = 1 if contamination scenario r is detected, and zero otherwise; and S denotes the total number
of the contamination scenarios considered.

The function f6 is the detection time. For each detected contamination scenario, the sensor
detection time corresponds to the elapsed time from the start of the contamination event, to the first
identified presence of a nonzero contaminant concentration. If tj is the time of the first detection
(referred to the j-th sensor location), the detection time (td) for the solution for each contamination
event, is the minimum among all present sensors td = min(tj); the characteristic detection time of the
solution is defined as the mean of all td for the contamination scenarios detected by at least one sensor:

f6 = mean(td) (7)

Finally, the function f7 is the sensor redundancy. In a generic scenario, the variable Red corresponds
to the number of sensors (including the first) that detect the contamination within 30 minutes from the
first detection; the redundancy Red of the solution is defined as the mean of all the values of redundancy
Red for all the considered contamination scenarios:

f7 = Red = mean(Red) (8)

which contributes to the safety of the monitoring systems, especially in the case of sensor failures or
false positive/negative detection, conferring a higher reliability.
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As for the choice of the objective functions, it must be remarked that theoretically more than two of
them could be inserted in the same optimization framework. However, to prevent this framework from
becoming overly complex, we preferred to keep only two objective functions (number of sensors and
exposed population) in the optimization framework, while other assessment criteria (e.g., detection
likelihood, detection time, and sensor redundancy) will be considered in the postprocessing of the
optimal solutions.

3. Case Study

The methodology described above was tested on the WDN of Parete [54], which is a small town
located in a densely populated area to the south of Caserta (Italy), with population of 11,150 inhabitants.
This WDN has 182 demanding nodes (with ground elevations ranging from 53 m a.s.l. to 79 m a.s.l.),
282 pipes and 2 sources with fixed head of 110 m a.s.l. A uniform desired pressure head hdes = 19 m
was assumed for the demanding nodes, coming from the sum of the maximum building height in the
town, which is 9 m in Parete, and 10 m, as prescribed by the Italian guidelines. Reference was made to
the day of maximum consumption in the year when the total nodal demand ranges from 7.6 L/s at
nighttime to 77.2 L/s in the morning and midday peaks, with an average value of 36.3 L/s. The leakage
volume of the networks in the day of maximum consumption adds up to 930 m3 (about 23% of the
total outflow from the sources). The number of users connected to each WDN node was derived based
on its average nodal demand.

4. Results and Discussions

In this section, the results of the procedures described in Sections 2.1–2.3 are reported. The first
step is the definition of an optimal water network partitioning. In this regard, the clustering phase
was applied to produce 5 DMAs. The choice of 5 DMAs was made because the formula Copt = n0.28

proposed by Giudicianni et al. (2018) [45] to calculate the optimal number of clusters yields Copt = 4.3
for this WDN. The number of nodes for each DMA are DMA1 = 20, DMA2 = 35, DMA3 = 39, DMA4 = 41
and DMA5 = 49, with Nec = 21. For the dividing, the optimization through NSGAII yielded the Pareto
front reported in Figure 1a, showing, as expected, growing values of median(GRF) with Vl growing.
In fact, both variables are growing functions of the service pressure in the WDN. Figure 1b,c report the
number Nfm of flow meters and the demand satisfaction rate Ids, respectively, re-evaluated from the
Pareto front and plotted against Vl. Globally, Figure 1b highlights that the higher values of Nfm tend to
be associated with the high values of Vl. This is because Vl tends to grow when fewer gate valves are
closed (and then more numerous flow meters are installed) at the boundary pipes. Finally, Figure 1c
shows that Ids tend to grow with Vl increasing, since both variables are increasing functions of the
service pressure.

From the graphs in Figure 1, the solution with the lowest value of Nfm (= 8), highest number of
closed valves Ngv (= 13), which ensures Ids = 100%, was finally chosen. An important remark to be
made is that among the several advantages of the WNP, the adopted partitioning solution enables
also reducing leakage, from 930 m3 (for the un-partitioned layout) to 895 m3 (partitioned solution
with 13 gate valves closed and 8 flow meters installed). This corresponds to a 3.7% leakage reduction
without negatively affecting Ids and GRF. In fact, for this solution median(GRF) is equal to 0.32, very
close to the value of 0.36 for the un-partitioned network. The layout of the partitioned layout is
reported in Figure 2. The optimal sensor placement is then carried out. The following assumptions
were made for the construction of the set S of contamination events considered in the optimization:

• all the 182 demanding nodes were considered to be potential locations for contaminant injection;
• 24 possible contamination times in the day (hour 0, 1, 2, . . . , 22, 23);
• single value of the mass injection rate equal to 350 g/min;
• single value of the injection duration equal to 60 min.
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Figure 1. Dividing phase considering the clustered graph of the Parete WDN (Variant 1). Pareto front
of optimal solutions in the trade-off between daily median (GRF) index and leakage volume Vl (a),
re-evaluated solutions in terms of number of flow meters Nfm (b), and of demand satisfaction rate Ids

(c). In all graphs, the selected solution is highlighted with a grey vertical line.

The values reported above for mass injection and duration were sampled from those proposed by
Preis and Ostfeld (2008) [55], using the procedure of Tinelli et al. (2017) [51], with the objective to obtain
a representative smaller set of significant contamination events. Due to the previous assumptions, the
total number S of contamination events was 182 × 24 × 1 × 1 = 4368.

The water quality simulations were run for 2 days of WDN operation to make sure that even
contaminants injected close to the sources at the last instant of the first day had enough time to leave
the network. In the optimization for sensor placement, the partitioned WDN layout was indicated as
Var1 to differentiate it from the original layout (Var0). Therefore, according to the three optimization
options described in Section 2.2, optimizations were organized as follows:

1. Var1Op1: Optimal sensor placement on the partitioned WDN allowing sensor installation on all
nodes (182 potential locations);

2. Var1Opt2: Optimal sensor placement on the partitioned WDN allowing sensor installation only
on the nodes hydraulically upstream from the flowmeter fitted boundary pipes (8 potential
locations);

3. Var1Opt3: Optimal sensor placement on the partitioned WDN allowing sensor installation only
on the most central nodes of each district (15 potential locations, i.e., three locations for each
district, which feature a much higher betweenness centrality value than the other nodes);
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4. Var1Opt4: Optimal sensor placement on the partitioned WDN allowing sensor installation on the
nodes hydraulically upstream from the flowmeter fitted boundary pipes and on the most central
nodes of each district (23 scenarios).

Figure 2. WDN partitioning into 5 DMAs.

Compared to Var1Opt1, Var1Opt2, Var1Opt3 and Var1Opt4 reduce the group of potential sensor
locations respectively by 96%, 92% and 87%, resulting in a research space reduction which helps in
diminishing the computational burden. The three optimizations were compared with the benchmark
Var0Opt1, where all the 182 potential sensor locations are explored in the original layout. Table 1 shows
the optimization framework, made up of 5 runs. In all of them, NSGAII was applied with a population
of 200 individuals and a total number of 200 generations.

Table 1. Framework of optimizations for sensor placement in the Parete WDN.

Option Variant 0
(Un-Partitioned)

Variant 1
(Partitioned)

1 (all nodes) Var0Opt1 Var1Opt1
2 (only boundary nodes) - Var1Opt2

3 (only central nodes) - Var1Opt3
4 (boundary nodes + central nodes) - Var1Opt4

For the optimizations that consider all nodes as potential sensor locations (Var0Opt1, Var1Opt1),
the slow convergence of NSGAII was initially remarked towards interesting solutions for water utilities,
which are solutions with a reasonably low number of sensors in comparison with the total number of
demanding nodes. This problem was solved by implementing inside NSGAII a heuristic algorithm
to correct solutions with numerous sensors, that is Nsens > 20. In this heuristic algorithm, for each
NSGAII solution violating Nsens = 20, a random integer number within the range (1, 20) is generated,
representing the target number of sensors for that solution. Then, starting from the initial value of
Nsens, the least effective sensors in terms of pop are removed one by one to reach the target. Though
increasing the computation time for each NSGAII generation by about 30 times, this algorithm proved
to solve the issue of slow convergence. This heuristic algorithm was not applied to the optimizations
Var1Opt2, Var1Opt3 and Var1Opt4. This made the NSGAII optimizations in the two latter applications
much lighter from the computational viewpoint.
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Figure 3a reports the Pareto fronts obtained in optimization Var0Opt1, on the un-partitioned
layout, and in optimizations Var1Opt1, Var1Opt2, Var1Opt3 and Var1Opt4, on the partitioned layout.
As expected, these fronts in Figure 3a show decreasing values of pop as Nsens increases up to 20.
However, for high values of Nsens, the additional benefit of a further sensor installed in the network
tends to decrease, as already pointed out by Tinelli et al. (2017) [56]. In the present work, Nsens = 6
appears to be the threshold of benefit for the installation of an additional sensor, slightly to right of the
knee of the Pareto fronts (which lies around Nsens = 3).

Figure 3. For the original un-partitioned WDN (Var0Opt1), reported as benchmark, and for the
partitioned WDN (Var1Opt1, Var1Opt2, Var1Opt3 and Var1Opt4), Pareto front of optimal sensor
placement solutions in the trade-off between Nsens and contaminated population pop (a), re-evaluated
solutions in terms of Nsens and detection likelihood Ps (b), Nsens and detection time Tmean (c), and Nsens

and redundancy Red (d).
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Another point to highlight is that for the partitioned network, the contaminated population
corresponding to the case of zero installed sensors (pop = 2458) is lower than the corresponding
contaminated population for the un-partitioned WDN (pop = 2806) as shown in Table 2.

Table 2. Simulation results in terms of exposed population from the four optimizations for sensor
placement in the Parete WDN, considering Nsens up to 6.

Nsens Var0Opt1 Var1Opt1 Var1Opt2 Var1Opt3 Var1Opt4

0 2806 2458 2458 2458 2458
1 1438 1274 1274 1274 1274
2 982 919 953 974 953
3 789 648 741 679 653
4 667 559 638 598 569
5 589 500 572 561 515
6 514 462 564 548 472

This points out the first advantage of the partitioning: by reducing the average number of possible
paths in the network (due to the closure of some pipes), it produces a reduction in the contaminated
population by around 12.4%. This is due to the reduction in the spreading of contamination (direct
action). Furthermore, the WNP also enhances the results of optimal sensor placement (indirect action).
As is shown in Table 2 for Nsens ≤ 6, pop for the un-partitioned WDN (Var0Opt1) is always higher
than pop for the Var1Opt1 for all the number Nsens of sensors installed in the network. The minimum
value of pop = 462 is for Var1Opt1. Var1Opt2 (sensors allowed only upstream from boundary pipes),
Var1Opt3 (sensors allowed only on topologically central nodes in DMAs) and Var1Opt4 (sensors
allowed upstream from boundary pipes and on topologically central nodes in DMAs) give similar
results to Var1Opt1 up to Nsens = 2. For Nsens > 2, Var1Opt2 and Var1Op3 degenerate while the good
performance of Var1Opt4 persists. This is evidence that constraining sensor installation only upstream
from boundary pipes or on topologically central nodes may lead to remarkably sub-optimal solutions.
However, the combination of locations upstream from the boundary pipes and of topologically central
nodes offers a good set of potential locations in the problem of optimal sensor placements. Figure 3b–d
report the results of the reprocessing of the optimal solutions in terms of detection likelihood, detection
time, and redundancy as a function of Nsens. Along with Figure 3a, they give indications on the
effectiveness of the solutions obtained in the NSGAII runs. Globally, the Var1 solutions obtained on the
partitioned graph, especially Var1Opt1, Var1Op2, and Var1Opt4, tend to perform better in terms of
pop, detection time, and sensor redundancy. Conversely, they feature slightly worse values in terms
of detection likelihood. This may be because the optimization was carried out considering pop as
objective function, which is slightly contrasted with detection likelihood [56]. In fact, the former
variable mainly contributes to the system’s early warning capacity whereas the latter contributes to the
system safety. As for Figure 3, it must be remarked that the curves in Figure 3a are Pareto fronts while
those in the other Figure 3b–d are obtained by reprocessing the optimal solutions in terms of other
assessment criteria. Since these curves are not Pareto fronts, they are not strictly monotonous. Figure 4
shows the sensor placement solutions obtained for Nsens = 6 with three optimizations (Var0Opt1,
Var1Opt1, and Var1Opt4). In this context, it must be noted that the Var1Opt4 solution has three of the
six sensors placed close to flowmeters (the other three sensors are in the most central nodes according
to the betweenness centrality). This solution yields managerial and economic benefits, due to the
closeness of some sensors to installed flow meters and due to the possibility of sharing some electronical
components for data acquisition, sharing, and transmission. Summing up, the Var1Opt4 solution
represents a quasi-optimal solution in the explored trade-off between pop and Nsens, while offering
significant potentials for improved management. Another advantage compared to the Var0Opt1 and
Var1Opt1 solutions with Nsens = 6 is that it was obtained at a much lower computation cost (about
1/30), due to the research space reduction mentioned above for Options 2–4. Overall, the advantages
in terms of computational lightness during the optimization as well as the possibility of inspecting
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and maintaining sensors in proximity to flow meters make solutions obtained in Opt4 preferable from
the water utilities’ viewpoint. The results highlighted that nodes close to flow meters used for the
monitoring of DMAs, which must always be easily accessible sites, represent good sensor locations for
WDN monitoring from contaminations, when they are inserted into an optimization framework that
also includes topologically central nodes inside DMAs. As for the optimal positions of the sensors
in Var1Opt1 (partitioned network and all nodes as potential candidates) and Var1Opt4 (partitioned
network and sensor installations restricted to entry points and central nodes in DMAs), it must be
remarked that many locations are similar in the two cases (see Figure 4). This corroborates the fact that
entry points and central nodes in DMAs are good candidate locations in the present case study.

Figure 4. Optimal location of 6 sensors in (a) original un-partitioned WDN (Var0Opt1), (b) partitioned
WDN (Var1Opt1), and (c) partitioned WDN (Var1Opt4).

5. Conclusions

In this work, a methodology that combines WNP and optimal sensor installation was proposed,
to investigate the benefits of the “divide and conquer” technique for the monitoring of WDNs from
contamination events (direct action), and for the effectiveness of optimal sensor placement (indirect
action). The applications concerned a real Italian WDN, which was first partitioned into 5 DMAs.
Optimal sensor solutions were searched for on the original un-partitioned WDN and on the partitioned
layout, in the trade-off between number of installed sensors and affected population for an assigned
set of contamination events. Further optimizations were carried out by restricting sensor installation to
some pre-selected nodes (nodes hydraulically upstream from the flow meter-fitted boundary pipes
and central nodes). The results showed that, for a given number of installed sensors, the monitoring
stations installed in the partitioned layouts offer better monitoring performance. On the other hand,
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the option of considering locations in proximity to flow meters and at most central nodes as the only
potential locations in the context of optimal sensor placement has the following advantages:

1. almost identical performance in terms of WDN monitoring, compared to the option of considering
all nodes as potential locations;

2. money savings thanks to the possibility of sharing some electronical components for data
acquisition, sharing, and transmission;

3. easiness of access to the sensors for maintenance;
4. reduction in the search space and, therefore, in the computational complexity in the optimizations

for optimal sensor placement;
5. easier identification of the area from which the contamination starts with the subsequent

possibility of isolating the district, assuring a higher resilience of the system to the spreading of
the contamination.

With regards to the last issue, it must be noted that the calculations of the present work were carried
out on a simple though real WDN. Therefore, the benefits are expected to be much larger in the case
of big-size WDNs, for which the problem of optimal sensor placement may become computationally
infeasible. Indeed, the topics analyzed in this paper fully match the future research directions identified
by Ostfeld et al. (2008) [20] during the Battle of the Water Sensor Networks. In fact, specific reference
was made to the problems of aggregation, i.e., the possibility of using a reduced but still significant
sample of nodes for investigations into water quality, multi-criteria analysis of sensor performance,
choice of optimal number of sensors and multiple use of boundary pipes (for both monitoring flow
between DMAs and detecting potential contaminations).

Though topologically central nodes have been considered in this analysis along with DMA
entry points, another attractive option is made up of critical sink nodes with lowest head inside
DMAs, in which water quality parameters are already monitored. Future works will be dedicated
to exploring the solution of critical sink nodes. Future work will be dedicated to investigating how
results change when other objective functions from those used in the present work are considered.
The methodology presented in this paper will be refined in the future considering also other benchmark
networks. Adopting different clustering algorithms and centrality metrics could affect the results;
to better investigate the influence on the solutions, new algorithms will be applied. Another aspect
that deserves to be further investigated concerns the assumptions made for the definition of the
representative set of contamination scenarios. Other prospects could concern the issues of restoration
after the generic contamination and of constructing mega-monitoring stations on which to locate all the
management devices (chlorine stations, pressure valves, etc.). This will be done with reference to specific
real contaminants, while abandoning the simplifying assumption of unreactive and conservative
contaminant adopted so far.
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