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Abstract: Various uncertainty analysis methods have been used in various studies to analyze the
uncertainty of rainfall-runoff models; however, these methods are difficult to apply immediately
as they require a long learning time. In this study, we propose a simple uncertainty-screening
method that allows modelers to investigate relatively easily the uncertainty of rainfall-runoff models.
The 100 best parameter values of three rainfall-runoff models were extracted using the efficient
sampler DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm, and the distribution of the
parameter values was investigated. Additionally, the ranges of the values of a model performance
evaluation statistic and indicators of hydrologic alteration corresponding to the 100 parameter values
for the calibration and validation periods was analyzed. The results showed that the Sacramento
model, which has the largest number of parameters, had uncertainties in parameters, and the
uncertainty of one parameter influenced all other parameters. Furthermore, the uncertainty in the
prediction results of the Sacramento model was larger than those of other models. The IHACRES
model had uncertainty in one parameter related to the slow flow simulation. On the other hand, the
GR4J model had the lowest uncertainty compared to the other two models. The uncertainty-screening
method presented in this study can be easily used when the modelers select rainfall-runoff models
with lower uncertainty.

Keywords: uncertainty analysis; rainfall-runoff model; DREAM algorithm; indicators of hydrologic
alterations; equifinality

1. Introduction

Conceptual rainfall-runoff models are widely used to understand hydrologic systems and to
predict runoff. However, there are uncertainties in the parameters (e.g., [1]) and structure (e.g., [2]) of
rainfall-runoff models, and these uncertainties can lead to uncertain results. Of course, uncertainty
in the input data (e.g., [3]) can also cause uncertainty in the simulation results. Even high-quality
input data have measurement errors or discretization errors (e.g., an error that occurs when daily
data time-series are generated using hourly data time-series). Additionally, there is uncertainty in
the simulation results even when using error-free input data (e.g., [4]). If one uses high-quality input
data that cannot be further improved, the way to reduce the uncertainty of the simulation results is to
reduce the uncertainty in the parameters or structure of the rainfall-runoff model.

Various studies have been conducted on the uncertainty of rainfall-runoff models. For example,
Shin et al. [1] analyzed the uncertainty in the parameters of four structurally different models using the
Sobol and Morris sensitivity analysis methods for five Australian catchments with spatiotemporally
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different characteristics. Van Hoey et al. [5] performed a qualitative sensitivity analysis on the model
structure by analyzing the sensitivity of the simulation results by changing the model components one
at a time to select the appropriate rainfall-runoff model. Furthermore, Massmann and Holzmann [6]
conducted a time-varying sensitivity analysis using the Sobol method to understand the structure of
rainfall-runoff models. These three studies for sensitivity analysis [1,5,6] were carried out in order to
investigate the uncertainty of parameters and model structure. Beven and Freer [7] and Cho et al. [8]
investigated the uncertainty of rainfall-runoff models using the Generalized Likelihood Uncertainty
Estimation (GLUE) method, and Wagener et al. [9] evaluated the structure of rainfall-runoff models
by identifying the model parameters using the Dynamic Identifiability Analysis (DYNIA) method.
Vrugt et al. [10] investigated the improvement of the structure of rainfall-runoff models by calculating
the boundary of the uncertainty of simulation results using the Shuffled Complex Evolution Metropolis
Algorithm (SCEM-UA). Clark et al. [2] developed and applied the Framework for Understanding
Structural Errors (FUSE) method to diagnose the differences in the structures of rainfall-runoff models
and quantify the uncertainty in the structure. Shin et al. [4] used various screening methods and
error-free data to investigate the uncertainty in structurally different rainfall-runoff models. However,
the methods used by most of these studies on uncertainty analysis require a long learning time and
are therefore difficult to apply immediately to solve the problem of model uncertainty. Therefore, it
is necessary to identify an uncertainty method that modelers can immediately use to decide which
rainfall-runoff model to choose and what factors to consider when choosing a model.

The aim of this study is to present a relatively easy-to-use uncertainty-screening method for
modelers to select a rainfall-runoff model with less uncertainty. This study is only focused on parameter
uncertainty. We show the uncertainties that may occur in rainfall-runoff models using real data and
investigate the distribution of the 100 best parameter samples in order to show the uncertainty of the
rainfall-runoff models. Additionally, we analyze the range of model performance evaluation statistic
values and the range of hydrologic indicator values for calibration and validation periods to show how
such uncertainties affect simulation results. Through the analysis of range variation, modelers can
immediately determine the uncertainty of a rainfall-runoff model.

2. Materials

2.1. Catchments

Five mountainous catchments in the Australian Capital Territory (ACT) region of Australia
were selected for the uncertainty analysis (Figure 1). The chosen catchments were the following:
Goodradigbee River at Brindabella (427 km2), Cotter River at Gingera (148 km2), Orroral River at
Crossing (90 km2), Queanbeyan River at Tinderry (490 km2), and Molonglo River at Burbong (505 km2).
The catchments have different elevation ranges and different hydroclimatological conditions ranging
from wet to dry. The Brindabella and Gingera catchments are relatively wet catchments (mean annual
rainfall of 1127 and 985 mm/year during 1970–2009, respectively), while the Tinderry and Burbong
catchments are relatively dry catchments (mean annual rainfall of 716 and 664 mm/year during
1970–2009, respectively). The hydroclimatological characteristic of the Orroral Crossing catchment is
intermediate between wet and dry (mean annual rainfall of 885 mm/year during 1970–2009). The river
flows of these catchments typically have higher peaks, lower base flow, smaller runoff coefficients, and
longer and more variable drier periods than those in European and North American catchments [11].
These catchment characteristics can be useful to investigate the uncertainty of rainfall-runoff models.
Further information about the five catchments investigated in the present study can be found in the
study of Shin et al. [1].
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Figure 1. Locations of the five studied catchments in the Upper Murrumbidgee Catchment, Australia, 
which includes the Australian Capital Territory (ACT) region (red dots represent the stream-flow 
gauging stations). 

2.2. Data 

Over 40 years of data are available for these five catchments (1970–2009). These years include 
wet periods and very dry “Millennium drought” [12] periods. Therefore, the catchments have 
spatiotemporally-variable characteristics. More detail on the temporal variation in runoff response 
characteristics of the catchments is illustrated in Figure 2. This figure shows the changes in the annual 
runoff ratio for a five-year moving average for all five catchments. The annual runoff ratios of all 
catchments showed a similar pattern; for example, the 1970s had the largest annual runoff ratio, and 
the 2000s had the smallest. 

Figure 1. Locations of the five studied catchments in the Upper Murrumbidgee Catchment, Australia,
which includes the Australian Capital Territory (ACT) region (red dots represent the stream-flow
gauging stations).

2.2. Data

Over 40 years of data are available for these five catchments (1970–2009). These years include
wet periods and very dry “Millennium drought” [12] periods. Therefore, the catchments have
spatiotemporally-variable characteristics. More detail on the temporal variation in runoff response
characteristics of the catchments is illustrated in Figure 2. This figure shows the changes in the annual
runoff ratio for a five-year moving average for all five catchments. The annual runoff ratios of all
catchments showed a similar pattern; for example, the 1970s had the largest annual runoff ratio, and
the 2000s had the smallest.
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Figure 2. Five-year moving average of the annual runoff ratio for the five studied catchments. 

In this study, real daily rainfall data and potential evapotranspiration data for 40 years  
(1970–2009) were chosen as inputs for model simulation, while model parameters were calibrated 
and validated using daily observed flow data. The calibration was performed for each of four 10-year 
periods (the 1970s, 1980s, 1990s, and 2000s), and validation was performed for the other three 10-year 
periods (e.g., when the 1970s was the calibration period, the 1980s, 1990s, and 2000s were the 
validation periods). The year preceding each decade was used as a warm-up period. The appropriate 
calibration and validation periods were selected based on the studies of Anctil et al. [13],  
Kim et al. [14], and Yapo et al. [15]. The climate data and observed flow data were obtained from local 
governments (the Australian Capital Territory and New South Wales governments) and industry 
(ACTEW Corporation) in Australia. 

2.3. Rainfall-Runoff Models 

Three well-known and widely-used conceptual rainfall-runoff models were selected  
(e.g., [16–18]). These three models have different model structures. The GR4J model [19], which has 
four parameters, is a daily lumped rainfall-runoff model with two stores (production and routing 
stores) and two unit hydrographs. The process of storing rainfall, evapotranspiration, and percolation 
in the surface soil is controlled by the production store. In the routing store, effective rainfall is 
separated into 90% and 10%; the 90% of effective rainfall is routed by one unit hydrograph for slow 
flow generation, and the 10% of effective rainfall is routed by another unit hydrograph for quick flow 
generation [20]. The ranges of the parameters of the GR4J model were obtained from the work of  
Shin et al. [1]. 

The IHACRES model has various versions; this study used the Catchment Moisture Deficit 
(CMD) version [21], which accounts for the changes of catchment moisture at each time step. The 
CMD output, which is calculated by the accounting equation, and the water output, which is 
calculated by a nonlinear function with the raw rainfall, were combined to generate effective rainfall. 
Linear store uses unit hydrographs with parallel storages to convert the effective rainfall into quick 
and slow flows, and the quick and slow flows were summed at each time step to generate the total 
flows. Four parameters were calibrated by fixing two of the six parameters to a specific value. The 
parameter e was fixed as unity (Table 1) due to the fact that the potential evapotranspiration data 

Figure 2. Five-year moving average of the annual runoff ratio for the five studied catchments.

In this study, real daily rainfall data and potential evapotranspiration data for 40 years (1970–2009)
were chosen as inputs for model simulation, while model parameters were calibrated and validated
using daily observed flow data. The calibration was performed for each of four 10-year periods
(the 1970s, 1980s, 1990s, and 2000s), and validation was performed for the other three 10-year
periods (e.g., when the 1970s was the calibration period, the 1980s, 1990s, and 2000s were the
validation periods). The year preceding each decade was used as a warm-up period. The appropriate
calibration and validation periods were selected based on the studies of Anctil et al. [13], Kim et
al. [14], and Yapo et al. [15]. The climate data and observed flow data were obtained from local
governments (the Australian Capital Territory and New South Wales governments) and industry
(ACTEW Corporation) in Australia.

2.3. Rainfall-RunoffModels

Three well-known and widely-used conceptual rainfall-runoff models were selected (e.g., [16–18]).
These three models have different model structures. The GR4J model [19], which has four parameters,
is a daily lumped rainfall-runoff model with two stores (production and routing stores) and two unit
hydrographs. The process of storing rainfall, evapotranspiration, and percolation in the surface soil is
controlled by the production store. In the routing store, effective rainfall is separated into 90% and 10%;
the 90% of effective rainfall is routed by one unit hydrograph for slow flow generation, and the 10% of
effective rainfall is routed by another unit hydrograph for quick flow generation [20]. The ranges of
the parameters of the GR4J model were obtained from the work of Shin et al. [1].

The IHACRES model has various versions; this study used the Catchment Moisture Deficit (CMD)
version [21], which accounts for the changes of catchment moisture at each time step. The CMD
output, which is calculated by the accounting equation, and the water output, which is calculated
by a nonlinear function with the raw rainfall, were combined to generate effective rainfall. Linear
store uses unit hydrographs with parallel storages to convert the effective rainfall into quick and slow
flows, and the quick and slow flows were summed at each time step to generate the total flows. Four
parameters were calibrated by fixing two of the six parameters to a specific value. The parameter e was
fixed as unity (Table 1) due to the fact that the potential evapotranspiration data were used instead of
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temperature data, and the parameter d was fixed as 200 based on the study of Croke and Jakeman [21].
The definitions of the parameters e and d are described in Table 1.

The Sacramento model [22] accounts for soil moisture at various depths of interconnected soil tanks
and consists of five runoff components: direct runoff from impervious area, surface runoff, interflow,
supplementary base flow, and primary base flow. Excessive rainfall becomes runoff routed by a unit
hydrograph, and the rest of the rainfall fills the soil moisture store. Water loss by evapotranspiration
is processed in the soil moisture store, and the remaining water is separated into lateral flow and
ground water. The total flow is the sum of the direct, surface, and lateral flow [23]. As in the work of
Shin et al. [1], 13 of the 16 parameters of the Sacramento model were used in the present study.

Table 1 gives a description of the parameters of the three rainfall-runoff models. These models
are included in the Hydrological Model Assessment and Development (Hydromad) [24], which is an
R-based open-source software package (available from http://hydromad.catchment.org).

Table 1. Description of the parameters of the three rainfall-runoff models.

Parameter Name Unit Range Description

GR4J
x1 (mm) 50–5000 Maximum capacity of the production store
x2 (mm) (−15)–4 Groundwater exchange coefficient
x3 (mm) 10–1300 One day ahead maximum capacity of the routing store
x4 (day) 0.5–5 Time base of Unit Hydrograph UH1

IHACRES-CMD a

f (-) 0.5–1.3 CMD stress threshold as a proportion of d

e (-) 1 (fixed) Temperature to Potential Evapotranspiration (PET)
conversion factor

d (mm) 200 (fixed) CMD threshold for producing flow
τs (tau_s) (day) 10–1000 Time constant for slow flow store
τq (tau_q) (day) 0–10 Time constant for quick flow store

vs (v_s) (-) 0–1 Fractional volume for slow flow

Sacramento
uztwm (mm) 1–150 Upper zone tension water maximum capacity
uzfwm (mm) 1–150 Upper zone free-water maximum capacity

uzk (1/day) 0.1–0.5 Upper zone free-water lateral depletion rate
pctim (-) 0.000001–0.1 Fraction of the impervious area
adimp (-) 0–0.4 Fraction of the additional impervious area
zperc (-) 1–250 Maximum percolation rate coefficient
rexp (-) 0–5 Exponent of the percolation equation

lztwm (mm) 1–500 Lower zone tension water maximum capacity
lzfsm (mm) 1–1000 Lower zone supplementary free-water maximum capacity
lzfpm (mm) 1–1000 Lower zone primary free-water maximum capacity
lzsk (1/day) 0.01–0.25 Lower zone supplementary free-water depletion rate
lzpk (1/day) 0.0001–0.25 Lower zone primary free-water depletion rate

pfree (-) 0–0.6 Direct percolation fraction from upper to lower zone
free-water storage

side (-) 0.0 (fixed) Fraction of base flow that is draining to areas other than
the observed channel

rserv (-) 0.3 (fixed) Fraction of the lower zone free-water that is unavailable
for transpiration purposes

riva (-) 0.0 (fixed) Fraction of the riparian vegetation area
a IHACRES-CMD is the Catchment Moisture Deficit (CMD) version of the IHACRES model.

3. Method

3.1. Sampling of Parameters Using the Differential Evolution Adaptive Metropolis Algorithm

For the parameter calibration period of the 1980s, the parameter values of the three models were
obtained using the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm [25]. The DREAM
algorithm, which is an effective Monte Carlo Markov chain sampler, was chosen to generate more
samples near the optimal value. The samples generated by this algorithm approximate the posterior
density function; therefore, this algorithm produces denser samples near the optimal likelihood value

http://hydromad.catchment.org
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and provides better resolution of the peak of dotty plots compared to random or Latin hypercube
sampling [4]. This algorithm simultaneously runs multiple different chains during the parameter
calibration process to find the global optimum of the parameters and automatically adjusts the scale
and orientation of the proposal distribution during this process. The DREAM algorithm uses a
log-likelihood function as the objective function, and we used the same log-likelihood function that
was applied in the work of Shin et al. [4] as follows:

Log− likelihood = −0.5×
∑n

i=1

(
Qobs,i −Qsim,i

)2
(1)

where n is the number of time steps, Qobs,i is the observed flow at time step i (daily here), Qsim,i is the
simulated flow, and the sum is taken over all time steps (a 10-year period for this study).

An intensive sampling is required to produce a clear picture of the response surface. Therefore,
the GR4J and IHACRES models have 100,000 function evaluations for objective function values, and
the more complex Sacramento model has 1,000,000 function evaluations. Note that Cho et al. (2019)
used the Isolated-Speciation-based Particle Swarm Optimization (ISPSO)-GLUE method to generate
more samples in regions with high likelihood in the parameter space and investigate the variability
of the model output (i.e., hydrograph) as uncertainty bounds. The purpose of this study is not to
examine the uncertainty of the model structure by investigating the variability of hydrographs, but
rather to evaluate the uncertainty of the parameters using equifinal samples near the optimal objective
function value.

3.2. Investigation of Sampled Parameters Using Dotty Plots

The parameter identifiability can be investigated using dotty plots. A poorly-defined parameter
has similar objective function values over the parameter range explored, and hence, the distribution of
parameter values does not have a clear global maximum value. To investigate the identifiability of
the parameters, the objective function values for the extracted parameter values were converted into
Nash–Sutcliffe Efficiency (NSE) [26] values, which are widely used in rainfall-runoff modelling. These
NSE values were then plotted in dotty plots to examine the distribution of the parameter values. The
NSE is defined as follows:

NSE = 1−

∑n
i=1

(
Qobs,i −Qsim,i

)2

∑n
i=1

(
Qobs,i −Qobs

)2 (2)

where Qobs is the mean of the observed flow. The range of NSE is from –∞ to 1, and a value of 1
indicates that the rainfall-runoff model perfectly simulates the time series of the observed flow.

Additionally, we investigated the distribution of parameter values by adjusting the range of
parameters to investigate whether the uncertainty of the model can be improved.

3.3. Applying the 100 Best Equifinal Calibrated Parameter Values to Validation Periods to Investigate
Uncertainty in Model Structures

A total of 100 parameter sample sets with equally good NSE values for the parameter calibration
periods was selected from dotty plots, and the distribution of the 100 parameter samples was
subsequently investigated. The number of parameter sample sets (100) was chosen arbitrarily, and
the number was sufficient for this study. The values of the 100 parameter samples can be regarded as
calibrated parameter values since they have the best and equally good NSE values. Therefore, if the
NSE values during the calibration period are plotted by boxplot, the range of values will be narrow.

We then simulated the rainfall-runoff models for the validation periods using the 100 parameter
sample values, calculated the NSE values using the simulated flow, and examined the distribution
of the NSE values for the validation periods. If the range of NSE values of the boxplot for the
validation periods was significantly wider than the range for the calibration period, it means that the
prediction by the rainfall-runoff model was unstable. It also means that the parameter sample sets
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with equifinal [27,28] results during the calibration period do not guarantee equifinal results during
the validation period; this uncertainty is due to the structural uncertainty of the rainfall-runoff model.
Note that the different nature of the observed data in different periods (e.g., wet and dry) can have
different NSE values (e.g., an NSE value of 0.8 in the calibration period and an NSE value of 0.7 in the
validation period). However, due to the use of 100 parameter sample sets of equally high quality in the
same model structure, the size of the range of NSE values in the calibration and validation periods
should be similar if the parameters and model structure are well identified.

3.4. Investigation of Hydrologic Indicators to Provide Specific Hydrologic Information and Investigate
Uncertainty in the Rainfall-RunoffModel Structure

Indicators of Hydrologic Alterations (IHAs) [29] were calculated using simulated hydrographs to
provide modelers with specific and quantitative results. Six IHAs of Minimum (Min) and Maximum
(Max) flow for one, seven, and 90 days were calculated. Here, the 1-day Max (Min), 7-day Max (Min),
and 90-day Max (Min) were the annual maxima (minima) of 1-, 7-, and 90-day means, respectively. The
1-day Max represents the peak flow, and the 7-day Max represents the maximum volume of the most
severe event with a seven-day duration. The value of the 90-day Max (three month flow volume) can be
used for the reservoir operation. The 1-day Min, 7-day Min, and 90-day Min show the flow in drought
conditions. For faster calculations and more efficient analysis of large amounts of results, the IHA
package in R (http://rpackages.ianhowson.com/rforge/IHA/) was used, instead of the IHA software
from the Nature Conservancy (http://www.nature.org/). IHAs have been used in many studies to
investigate temporal variations in streamflow (e.g., [30–33]).

We first calculated the hydrograph for 40 years from 1970–2009 using one of the 100 best parameter
sample sets. The hydrograph was then used to calculate annual IHAs, and the annual IHAs were
averaged over a decade. Therefore, calibration and validation periods of 10 years had one IHA, and
four IHAs from 1970–2009 were generated using one parameter set. We repeated this procedure for the
100 best parameter sample sets to calculate 100 IHAs per decade. Then, the 100 IHAs were plotted in a
boxplot, and the distribution of IHAs over the calibration and validation periods of the three models
was examined. Similar to the description of the distribution of NSE values in Section 3.3, a wider
distribution of IHAs for the validation period implies that the model has greater predictive uncertainty.
Additionally, the pros and cons of each rainfall-runoff model can be determined by examining the
distribution of IHAs, and a suitable rainfall-runoff model can be selected through comparative analysis
of the models. A flowchart showing the method used in this study is shown in Figure 3.

http://rpackages.ianhowson.com/rforge/IHA/
http://www.nature.org/
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Figure 3. Flow diagram for the method.

4. Results and Discussion

4.1. Investigation of Uncertainty by Investigating the Distribution of Extracted Parameter Values

Figure 4 is a dotty plot that shows the parameter values of the Sacramento model calibrated using
the DREAM algorithm for the actual 1980s data of the Tinderry catchment. In Figure 4, the parameter
values of the Sacramento model are composed of two layers. The 100 best NSE values (red dots) in
the upper layer are close to one and are not achievable when using actual data since actual data have
errors, including measurement error. An investigation of 100 simulated hydrographs corresponding to
these 100 NSE values showed that the Sacramento model simulated the runoff almost perfectly for a
certain period (1 January 1980–27 January 1984); however, it did not simulate runoff for the rest of
the period by returning N/A (Not Available). The NSE value was close to one as it was calculated
only for the simulated runoff not including N/A. For the rest of the period, the Sacramento model had
structural problems since it could not simulate runoff.

In Figure 4, the values of the lztwm parameter consisted of two distinct distributions, namely left
and right. The range of the left distribution was very narrow (0–20); however, the 100 best values,
whose values were close to perfect, fell within this range. Since the left distribution was abnormal
with nearly perfect NSE values, there could be uncertainty in this parameter or model structure, and
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therefore, the range of the parameter needs to be investigated. We removed the range of the parameter
corresponding to the left distribution and re-calibrated the values of the parameter using the modified
lztwm parameter range and the DREAM algorithm (Figure 5). In Figure 5, the upper layer shown in
Figure 4 disappears, and the distribution of the lower layer in Figure 4 becomes clearer. This means
that there was uncertainty in the parameter range of the particular parameter of the Sacramento model
(the lztwm parameter in this study). This phenomenon did not occur for the other three calibration
periods for this catchment when the Sacramento model was used. Furthermore, this phenomenon did
not occur for the four calibration periods for the other four catchments when the Sacramento model
was applied. This method was additionally applied to the GR4J and IHACRES models; however, no
such uncertainty was found. Therefore, a structural error in the Sacramento model may have caused
this problem.

As shown in Figure 4, the uncertainty of the lztwm parameter influenced other parameters. For
example, the narrow range (0–20) of the lztwm parameter affected the narrow range of the lzfsm and lzpk
parameters. The narrow range of the lztwm parameter affected a slightly wider parameter range for the
uztwm parameter (the whole range of 1–150; see Table 1) and the uzfwm parameter, an intermediate
parameter range for the adimp and zperc parameters, and a full range for the remaining parameters.
This means that each parameter of the Sacramento model interacts with the lztwm parameter, and the
size of the interaction is different for each parameter. Through this interaction, the uncertainty of one
parameter influenced all other parameters, resulting in uncertainty in the simulation results. Note
that, in this study, the qualitative correlation between the parameters was analyzed. The quantitative
correlation between the parameters will be analyzed in the future.Water 2019, 11, 1361 10 of 27 
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Figure 4. Distribution of the uncertain parameter values of the Sacramento model for the Tinderry
catchment. The NSE on the vertical axis means Nash–Sutcliffe Efficiency.
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As described above, the Sacramento model has problems regarding the range of parameters and
the structure of the model. Therefore, as suggested by Shin et al. [4], in the Sacramento model, it is
necessary to eliminate unclear parameters or merge duplicate parameters to reduce the uncertainty of
the model. Note that, for the analysis in the following sections, we used the 100 best models in Figure 5
instead of the 100 best models in Figure 4.Water 2019, 11, 1361 11 of 27 
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after adjusting the range of the lztwm parameter.

4.2. Investigation of the Distribution of Model Performance Values for Calibration and Validation Periods

Figure 6 shows the parameter values (black dots) of the three models calibrated by the DREAM
algorithm using the 1980s data of the Gingera catchment. The 100 parameter values (red dots) had
the best NSE values among the calibrated parameter values. In Figure 6, the 100 best parameter
values of the GR4J and IHACRES models were distributed near the global maximum, while those of
the Sacramento model were distributed over a wide range of parameters. The 13-parameter model
(Sacramento) had a lower parameter identifiability when compared to the four-parameter models
(IHACRES and GR4J), which may be due to the greater structural complexity of the Sacramento model.
Note that we used the same method to investigate the distribution of the 100 best parameter values for
the remaining three calibration periods, and obtained similar results (not shown here). The result of
the distribution of parameter values was similar to that obtained in a previous study using error-free
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data [4]. This means that the parameters of the GR4J and IHACRES models were well identified, while
the parameters of the Sacramento model were not.Water 2019, 11, 1361 12 of 27 
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Figure 7 shows boxplots of the 100 best NSE values for the calibration period (1980s) and validation
periods (1970s, 1990s, 2000s) for the five catchments. From this figure, it can be seen that the range
of NSE values for the GR4J and IHACRES models for the calibration and validation periods of wet
catchments (Brindabella and Gingera) was very narrow. The very narrow range of the boxplots for the
validation period means that these two models can predict the runoff for different periods with low
uncertainty. However, the Sacramento model had a very broad range of NSE values for the 1970s, and
therefore, there was great uncertainty in the predictions for the 1970s. Additionally, for the Gingera
catchment, the Sacramento model had a relatively wide range of NSE values for the 2000s. This means
that, for the calibration period, the 100 different parameter sets had equally good NSE values, i.e.,
equifinality [27,28]; however, this equifinality is not guaranteed for the validation period.

In the case of the intermediate (i.e., between wet and dry) catchment (Orroral Crossing), the GR4J
model had a relatively narrow range of NSE values for all periods. However, the IHACRES model
had a relatively wide range of NSE values in the 2000s. The reason for this is that the parameter of
the IHACRES model for low-flow simulations (tau_s in Figure 8) was relatively insensitive [1], and
therefore, the distribution of the 100 best parameter values for the tau_s parameter for the calibration
period (1980s) in Figure 8 was somewhat broad in the range of about 600–800. As a result, the 100 tau_s
parameter values with that wide distribution produced different amounts of runoff over the 2000s
period, including the Millennium drought. The Sacramento model had the widest range of NSE values
during the validation periods (especially for the 1970s).

For the 2000s period in the Tinderry catchment, the IHACRES and Sacramento models had a
relatively wide range of NSE values, which were negative. For the 2000s period in the Burbong
catchment, all three models had negative NSE values. This means that it was very difficult to predict the
runoff in the dry period with the Millennium drought period using the value of the calibrated parameter
for the wet period for the dry catchments. The Sacramento model, which has more parameters than
the other two models, had the widest range of NSE values, and therefore had the greatest uncertainty
in predicted runoff.

A comprehensive comparison of the results of the three hydrological models for the five catchments
with wet and dry characteristics showed that the GR4J model (four parameters) had the lowest
uncertainty in predicted runoff, and the Sacramento model (13 parameters) had the greatest uncertainty
in predicted runoff. The lower parameter identifiability and greater structural uncertainty of the
Sacramento model (described above) can cause greater uncertainty in runoff predictions (i.e., a broader
range of NSE values).
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The above analysis was repeatedly conducted by changing the parameter calibration period
(Tables 2 and 3). Table 2 shows the difference between the maximum and minimum values of the NSE
values for each period. Table 3 shows the maximum NSE value for each period. In Tables 2 and 3, the
“Calibration” column represents the calibration period, and the “Period” column underneath the three
models represents the simulation period. As a further explanation of the calibration and validation
period, the value of 0.75 in the upper left corner of Table 3 is the maximum NSE value of the GR4J
model using the 1970s period as the calibration period for the Brindabella catchment, since both the
simulation period and the calibration period were the 1970s. In the same way, the value of 0.66 below
the value of 0.75 is the maximum NSE value of the 1970s, which was the validation period for the 1980s
calibration period, since the calibration period was the 1980s and the simulation period was the 1970s.
The underlined values in Table 2 represent values that are equal to or greater than 0.06, which is an
arbitrarily-selected threshold value to define a large value of the difference in NSE. The underlined
values in Table 3 represent values less than zero.
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Table 2. The differences between the maximum and minimum values of Nash–Sutcliffe Efficiency (NSE) for each period a.

Catchment Calibration
GR4J IHACRES Sacramento

Diff_70s Diff_80s Diff_90s Diff_00s Diff_70s Diff_80s Diff_90s Diff_00s Diff_70s Diff_80s Diff_90s Diff_00s

Brindabella 1970s 0.00003 0.00420 0.00627 0.00386 0.00002 0.00356 0.00707 0.00518 0.00023 0.01095 0.01716 0.01196
Brindabella 1980s 0.00286 0.00002 0.00134 0.00434 0.00299 0.00004 0.00352 0.00211 0.09150 0.00057 0.01414 0.01708
Brindabella 1990s 0.01189 0.00933 0.00033 0.01793 0.00481 0.00327 0.00005 0.00776 0.06583 0.05568 0.00272 0.03399
Brindabella 2000s 0.00723 0.00987 0.00954 0.00007 0.00660 0.00299 0.00392 0.00012 0.26415 0.29611 0.09610 0.01273

Gingera 1970s 0.00004 0.00560 0.00716 0.00731 0.00004 0.00493 0.01076 0.01675 0.00037 0.01295 0.02213 0.02654
Gingera 1980s 0.00885 0.00009 0.00394 0.01104 0.00449 0.00008 0.00443 0.00725 0.16607 0.00153 0.01199 0.04793
Gingera 1990s 0.00651 0.00257 0.00007 0.00918 0.00674 0.00373 0.00010 0.00334 0.22802 0.07705 0.00137 0.06841
Gingera 2000s 0.02071 0.01922 0.02102 0.00014 0.01231 0.00624 0.00287 0.00031 0.84590 0.92870 0.54380 0.02767
Orroral

Crossing 1970s 0.00026 0.01215 0.01668 0.02329 0.00013 0.00714 0.01960 0.06613 0.00254 0.03060 0.33796 0.18626

Orroral
Crossing 1980s 0.02002 0.00015 0.00470 0.01395 0.00529 0.00667 0.02197 0.09985 0.23913 0.00191 0.03166 0.10289

Orroral
Crossing 1990s 0.00762 0.02289 0.00131 0.01618 0.00893 0.00672 0.00235 0.00616 0.57379 0.08821 0.00287 0.11608

Orroral
Crossing 2000s 0.11603 0.05491 0.04902 0.00436 0.02505 0.01708 0.01592 0.02056 2.09809 1.01582 1.64101 0.05611

Tinderry 1970s 0.00001 0.00510 0.00853 0.11853 0.00001 0.00402 0.00564 0.10515 0.00012 0.01834 0.02443 0.43262
Tinderry 1980s 0.00222 0.00003 0.00375 0.03209 0.00523 0.00007 0.00453 0.14629 0.01693 0.00040 0.01646 0.22845
Tinderry 1990s 0.00364 0.00173 0.00008 0.03810 0.00510 0.00426 0.00008 0.08202 0.02236 0.01936 0.00055 0.16164
Tinderry 2000s 0.04085 0.05561 0.05799 0.00176 0.03814 0.03267 0.03757 0.00397 0.21649 0.21524 0.17292 0.09934
Burbong 1970s 0.00001 0.01606 0.01840 0.51824 0.00001 0.00866 0.01094 0.42153 0.00027 0.05746 0.04227 1.08569
Burbong 1980s 0.00810 0.00010 0.00495 0.24704 0.00557 0.00024 0.00498 0.30410 0.04045 0.00080 0.02779 0.60965
Burbong 1990s 0.00498 0.00279 0.00005 0.17522 0.00371 0.00124 0.00004 0.16237 0.03609 0.15757 0.02220 0.60478
Burbong 2000s 0.03040 0.05012 0.04277 0.00493 0.03134 0.04194 0.03552 0.03896 0.32917 0.24963 0.05623 0.01174

a Underlined values are equal to or greater than 0.06, which is an arbitrarily-selected threshold value.
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Table 3. Maximum NSE values for each period a.

Catchment Calibration
GR4J IHACRES Sacramento

Max_70s Max_80s Max_90s Max_00s Max_70s Max_80s Max_90s Max_00s Max_70s Max_80s Max_90s Max_00s

Brindabella 1970s 0.75 0.70 0.69 0.58 0.78 0.75 0.67 0.75 0.81 0.77 0.72 0.75
Brindabella 1980s 0.66 0.80 0.81 0.66 0.75 0.79 0.75 0.80 0.78 0.82 0.76 0.77
Brindabella 1990s 0.68 0.80 0.82 0.64 0.72 0.77 0.77 0.77 0.26 0.68 0.82 0.68
Brindabella 2000s 0.57 0.67 0.67 0.78 0.74 0.78 0.75 0.80 0.29 0.53 0.70 0.79

Gingera 1970s 0.78 0.74 0.69 0.54 0.84 0.79 0.69 0.70 0.86 0.80 0.73 0.71
Gingera 1980s 0.67 0.86 0.80 0.67 0.81 0.82 0.77 0.79 0.80 0.86 0.78 0.67
Gingera 1990s 0.68 0.85 0.81 0.62 0.78 0.81 0.78 0.81 0.79 0.83 0.79 0.69
Gingera 2000s 0.40 0.69 0.57 0.79 0.79 0.81 0.78 0.82 0.43 0.81 0.78 0.81
Orroral

Crossing 1970s 0.87 0.78 0.72 0.70 0.85 0.74 0.60 0.47 0.93 0.84 0.76 0.50

Orroral
Crossing 1980s 0.72 0.84 0.70 0.65 0.83 0.76 0.63 0.51 0.56 0.89 0.80 0.68

Orroral
Crossing 1990s 0.85 0.76 0.76 0.69 0.82 0.75 0.68 0.70 0.37 0.88 0.83 0.69

Orroral
Crossing 2000s 0.66 0.75 0.64 0.81 0.78 0.73 0.67 0.71 0.70 0.77 0.75 0.79

Tinderry 1970s 0.86 0.73 0.77 −1.01 0.81 0.68 0.79 −1.80 0.86 0.68 0.73 −1.39
Tinderry 1980s 0.83 0.80 0.90 0.47 0.75 0.78 0.87 −0.58 0.82 0.87 0.79 0.02
Tinderry 1990s 0.81 0.80 0.93 0.61 0.77 0.76 0.89 0.03 0.79 0.80 0.94 0.58
Tinderry 2000s 0.73 0.72 0.87 0.78 0.52 0.60 0.67 0.76 0.83 0.77 0.84 0.74
Burbong 1970s 0.85 0.42 0.28 −21.3 0.75 0.54 0.50 −17.3 0.90 0.05 0.65 −0.72
Burbong 1980s 0.71 0.87 0.86 −2.36 0.64 0.79 0.76 −3.90 0.71 0.92 0.81 −0.36
Burbong 1990s 0.71 0.86 0.88 −2.17 0.68 0.77 0.79 −3.51 0.82 0.85 0.88 −0.33
Burbong 2000s 0.44 0.61 0.53 0.86 0.28 0.45 0.40 0.78 0.70 0.59 0.56 0.76

a Underlined values are less than zero.
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As shown in Table 2, the GR4J model had relatively large differences in NSE values (underlined
values) for five periods. Among these values, the value for the 1970s, which was the validation period
for the 2000s calibration period of the Orroral Crossing catchment, was about 0.12, which is a large
value. This means that there was great uncertainty in the simulation results when simulating the
wet period using the parameters of the GR4J model calibrated for the Millennium drought period.
All of the other relatively large differences in NSE were found when the 2000s period was used as
the validation period, and the maximum values of NSE for these periods were all negative (see the
underlined values in Table 3). Therefore, when using the simulation period including the Millennium
drought period, uncertainties could be included in the results, and the result of the flow simulation
should be analyzed carefully. Relatively large differences in NSE for the 2000s period also appeared in
the IHACRES model. In the IHACRES model, relatively large differences were observed eight times,
all of which were when the 2000s period was used as the validation period. Therefore, the simulation
of the Millennium drought period was less accurate in the IHACRES model than the GR4J model.
Additionally, the uncertainty of the IHACRES model for the validation period increased as the length of
time between the validation period and the calibration period increased. As expected, the Sacramento
model showed large differences in the NSE value (Table 2) in 35 out of a total of 80 periods (about 44%),
and this model therefore had uncertainties in the simulation results regardless of calibration period
and catchment characteristics. For the Sacramento model, the Millennium drought period affected
25 simulated periods, which is much higher than the five periods of the GR4J model and the eight
periods of the IHACRES model. Therefore, the Sacramento model had a larger uncertainty regarding
the Millennium drought period than the other two models.

4.3. Investigation of the Distribution of Hydrologic Indicators for Calibration and Validation Periods

It is not easy to determine intuitively the extent to which the difference in NSE values shown in
Section 4.2 actually represents the differences in the hydrographs. Figures 9–13 are boxplots showing
the difference between actual hydrographs using six IHAs. In these boxplots, the calibration period
was the 1980s, and the remaining periods were the validation period.

For the wet catchments (Brindabella and Gingera), the Sacramento model (“SA” on the horizontal
axis in Figures 9 and 10) had a wider range of 1-day Max, 7-day Max, and 90-day Max than the other
models (Figures 9 and 10). This means that the Sacramento model had a greater uncertainty in the
simulated high flow than the IHACRES (“IH” on the horizontal axis) and GR4J (“GR” on the horizontal
axis) models, which have fewer parameters. For the 1-day Max, the range of values for the Sacramento
model was similar for the 1990s and 2000s periods; however, the range was much wider for the 1970s
period. This means that the 100 best parameter sets extracted for the 1980s period could predict the
hydrographs of the 1990s and 2000s with a range of errors similar to that of the 1980s; however, the
uncertainty of the peak flow prediction for the 1970s period was greater. Similar behavior was also
observed for the 1-day Min and 7-day Min of the Gingera catchment. Since this behavior occurred
only for the Sacramento model for wet catchments, it may be explained by the structural complexity of
this model, increasing the variability of the peak flow during floods and the variability of the low flow
during drought periods. For the 1-day Min, 7-day Min, and 90-day Min, the Sacramento model had a
greater uncertainty than the other models.

As shown in Figures 9–13, none of the models were able to simulate accurately the observed
flow values (“Q” on the horizontal axis) at all times. This means that a good performance in the
calibration period does not guarantee good performance during the validation/prediction period.
Usually, calibrated parameters compensate for model errors during calibration, which means that in
validation/prediction periods, these model errors are no longer constrained through biased parameters.
Additionally, the models that can simulate flow similar to the observed flow values were different
according to the simulation period and IHA. Thus, as shown in Figure 7, even though a model has a
higher NSE than the rest of the models, the model may have worse simulation results than the other
models over a certain period of time.
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The Sacramento model had a relatively wide range of IHAs compared to other models in
intermediate (Figure 11) and dry catchments (Figures 12 and 13). The simulation results of the GR4J
model had the lowest uncertainty, and the IHACRES model had a slightly broader range of 1-day Min,
7-day Min, and 90-day Min values for the Orroral Crossing and Burbong catchments. The reason why
the IHACRES model had a slightly wider range is that the tau_s parameter in Figure 8 has a wide range
of hundreds of values, as described in Section 4.2. For the Tinderry catchment (Figure 12), the 1-day
Min and 7-day Min values of the IHACRES model were close to zero. This implies that it is difficult to
simulate very low flow rates of dry catchments using the IHACRES model, which supports the results
of Shin et al. [4]. Note that we used the same method for the remaining three calibration periods to
investigate the range of six IHAs and obtained similar results (not shown here). Therefore, this result
was not sensitive to the selection of the calibration period.Water 2019, 11, 1361 20 of 27 
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5. Conclusions

In this study, the effects of the uncertainty of three rainfall-runoff models on simulation results were
analyzed using a simple and efficient uncertainty-screening method. For the analysis of uncertainty, the
distribution of the 100 best parameter values, which had equally good NSE values, was investigated,
and the range of NSE and IHA values corresponding to the 100 parameter values for the calibration
and validation periods was analyzed. The 100 best parameter values were extracted using the DREAM
algorithm. An examination of the distribution of parameter values revealed that there was uncertainty
in one parameter of the Sacramento model and that this uncertainty influenced all other parameters.
Additionally, an examination of the range of NSE and IHA values showed that the simulation results
of the Sacramento model, which had the largest number of parameters among the three models, had
much larger uncertainty than those of the other models. The lower parameter identifiability and greater
structural uncertainty of the Sacramento model can cause greater uncertainty in runoff predictions.
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The IHACRES model was found to have uncertainty in the tau_s parameter, which is related to the
slow flow simulation. The simulation results of the GR4J model, which uses four parameters, were
found to have the lowest uncertainty among the three rainfall-runoff models for the calibration and
validation periods of the parameters. Additionally, the uncertainties in the simulation results were
greatly increased when the three rainfall-runoff models used the period of the Millennium drought
for the calibration or validation of the parameters. Therefore, careful attention should be paid to the
analysis of the results when very different data, such as those for the Millennium drought period, are
used. Furthermore, a good performance in the calibration period did not guarantee good performance
in the validation period, due to the compensation of model error by potentially biased calibrated
parameters. The method used in this study can be used as an uncertainty-screening method by
modelers to select rainfall-runoff models with less uncertainty.
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