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Abstract: Trees play important roles in urban stormwater management; through the loosening of
soils by root growth, they increase infiltration and reduce runoff, helping to mitigate flooding and
recharge groundwater. Malus baccata with fibrous roots and Sophora japonica with tap roots were
studied experimentally to assess their enhancement of soil infiltration. A blank test without a tree
was conducted for comparison. Steady-state soil infiltration rates at the bottom of test tanks were
measured as 0.28 m/d, 0.33 m/d, and 0.61 m/d for the blank test, M. baccata, and S. japonica, respectively.
This represents a 19% increase in the infiltration rate by planting M. baccata and a 118% increase by
planting S. japonica. A larger increase in the infiltration rate by S. japonica is consistent with the effects
of deeper and more vertical roots that help loosen deeper soils. Spatial variations in soil infiltration
rates were also measured. Infiltration rates for M. baccata (1.06 m/d and 0.62 m/d) were larger than
those for S. japonica (0.91 m/d and 0.51 m/d) at the same depths (0.35 m and 0.70 m); this is consistent
with the expected effects of the shallower and more lateral roots of M. baccata. This study furthers our
understanding of the roles of trees in watersheds and urban environments.
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1. Introduction

With urbanization, the area of impervious surfaces is increased, which can lead to increased
flooding and groundwater shortages [1–4]. Plants, especially tree roots, can enhance soil permeability,
which plays a significant role in stormwater management [5,6]. Plant roots also increase infiltration
and reduce runoff, which help mitigate flooding and recharge groundwater [7]. As the greening
effort has increased globally [8], much research has focused on the influence of plant roots on soil
permeability [9–11].

Trees and grasses can increase the number of pores in soils and promote soil permeability by root
growth [12]. The growth of roots can improve soil porosity and decrease soil density [13–15]; likewise,
pores can accelerate the growth of roots by increasing the volume of air in the soil [16–18]. Mishra
and Sharma [19] observed that the bulk density of surface soils decreased from 1.66 t/m3 to 1.37 t/m3

in three years with the growth of Prosopis juliflora, and the porosity of the soil also increased from
41.2% to 46.3% over the same period. Moreover, trees and grasses can produce secretions in soils and
increase the organic matter and biomass content, thereby changing the formation and stability of the
soil structure and indirectly influencing soil permeability [20–23]. Hiraoka and Onda [22] reported that
the soil permeability of bamboo groves had a significant correlation with the bulk density of surface
soil and soil organic matter content.
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Although both trees and grasses greatly influence soil permeability, there are some differences.
Grasses have a limited influence on deep soil permeability and groundwater recharge due to their
very shallow roots (<0.10 m) [24], while trees can have a significant effect on deep soil permeability
and groundwater recharge due to their deep roots (>0.60 m) [25]. For this reason, studies on runoff

reduction through increases in infiltration and groundwater recharge into deep soils have focused
on how trees enhance soil permeability. Previous studies have shown that different tree species have
different influences on soil permeability [26–29]. Bartens et al. [26] reported that black oak trees and
red maple trees, which both have tap root systems, increased the soil infiltration rate by 131% and
200%, respectively, when compared to soils lacking tree roots. Rahman et al. [28] found that soils with
Robinia pseudoacacia (black locust tree; tap roots) had a higher hydraulic conductivity (0.42 cm/min)
compared to soils with Tilia cordata (small-leaved lime, also tap roots; 0.29 cm/min). Tree species differ
in their influences on soil permeability since they have different root distributions (e.g., root depth
and horizontal root spreading) [30], which affects the distribution of soil porosity, organic matter,
and biomass content in different ways [31,32].

Fibrous and tap root systems have distinctive characteristics [33,34]. Fibrous root systems have
more lateral roots and therefore have a more significant effect on the permeability of shallow soils.
Meanwhile, tap root systems have deeper and more vertical roots, and thus have a more significant
effect on the permeability of deep soils [24,35,36]. However, to date, few researchers have studied the
influence of both fibrous and tap tree root systems on soil permeability at the same time, especially in
terms of quantifying permeability using the same measurement methods.

The influence of fibrous and tap root systems varies spatially. Therefore, it is necessary to
measure soil permeability in horizontal and vertical directions separately to fully understand their
effects. Using a double-ring permeameter, Chandler and Chappell [37] reported that the soil saturated
hydraulic conductivity of individual oak trees declined with increasing distance from the trunk
stem due to the distribution of roots, and the same conclusion was found for dryland shrubs by
Dunkerley [38]. The majority of soil permeability measurements found in the literature have been made
using borehole permeameters [37–39] and double-ring permeameters [40–43]. However, borehole
permeameters can only measure the permeability of surface soils, and the measurement accuracy
of double-ring permeameters is limited by the ring depth and diameter [41–43]. Therefore, past
studies on the influences of different tree root systems on soil permeability at different vertical and
horizontal locations in soils have been limited by the measurement methods or by the scope of the
research. In contrast, our study was conducted to investigate not only the influences of fibrous root
systems (Malus baccata) and tap root systems (Sophora japonica) on soil permeability, but also the spatial
distribution of soil permeability through measurements made using the constant-head method at
different soil depths, and using the variable-head method at different distances from the tree stem.

2. Materials and Methods

2.1. Experimental Setup

In this study, the Malus baccata and Sophora japonica (three years old) trees were planted in two
tanks, and a blank test tank without a tree was also used. There was a total of five tanks used in the test.
The tanks each had a length of 2.0 m, width of 2.0 m, and height of 1.5 m (Figure 1) to ensure room
for natural tree root growth. Data were gathered one year after the trees were planted. Soil used in
the tank was taken from a farmland in Tianjin, China. The organic content of the soil was 8.18 mg/kg,
which is the mean value of three soil layers at depths of 0.35 m, 0.70 m and 1.05 m from the soil surface,
as measured by the Sinomine Rock and Mineral Analysis Co., Ltd. using method NYT1121.6-2006.
The soil is a loam, with a bulk density of 1.412 g/cm3 and total soil porosity of 0.46. The trunk diameters
for M. baccata and S. japonica at 30 cm from soil surface were 5.15 cm and 6.46 cm, respectively. The root
lengths were 23 cm for both M. baccata and S. japonica.
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Research Institute, Nanjing, China). Soil moisture and temperature in the tank were also measured 
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Figure 1. Schematic of the test setup.

In order to achieve homogeneous soil compaction in the tanks, each tank was filled with the same
total depth of materials: 0.05 m depth of gravel as a base layer, 1.05 m depth of soil as a middle layer
(5930 kg), and 0.05 m depth of gravel at the surface. The presence of the upper and lower gravel layers
was designed to ensure that water entered uniformly and drained freely during measurements. Three
layers of nonwoven cloth were placed inside each tank between the soil and the bottom gravel layer
to prevent soil loss during water infiltration. An overflow weir was provided at a distance of 0.07 m
above the surface of the top gravel layer to maintain a constant head (i.e., the depth of water was not
allowed to exceed 0.07 m).

During the test, a constant-flow pump (MM1D124B**B20800; SEKO, Rome, Italy) was used to
hold the water inflow rate constant. Water levels in the inflow container, overflow container, outlet
container, and at the soil surface were measured using a Limn meter (NKY08-2; Nanjing Hydraulic
Research Institute, Nanjing, China). Soil moisture and temperature in the tank were also measured
using a Famems500 system (Famems500; Beijing Fandasky Science and Technology, Beijing, China) at
depths of 0.35 m, 0.70 m, and 1.05 m from the soil surface. During the experiment, the influence of
evaporation was ignored as the experiment time was short.

2.2. Infiltration Rate Measurements

2.2.1. Variation of Soil Infiltration

Under the condition of constant inflow for 7 h, outflow was monitored for 48 h. The rate of inflow
into the soil at the top of the tank was calculated based on the mass balance, and the rate of outflow
from the bottom of the tank was measured via the volumetric method and used to calculate the overall
infiltration rate of the tree–soil system inside the tanks. The soil infiltration rates at the tank soil surface
(Iin, m/d) and at the base of the tank soil (Iout, m/d) were calculated using the equations below:

Qin = Q − dVsurf/dt − Qoverflow (1)

Iin = Qin/A (2)

Iout = Qout/A (3)

where Q (Figure 2) is the rate of inflow to the test tank (Q = 0.286 m3/h), dVsurf/dt is the change over
time in the water volume above the soil surface (m3/h), Qoverflow is the rate of overflow (m3/h), Qin is the
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rate of flow into the soil (m3/h), A is the horizontal planar area of soil inside of the tank (A = 4.0 m2),
and Qout is the rate of outlet flow (m3/h). Under steady state conditions, dVsurf/dt is equal to zero.
Data were recorded every five minutes. The soil temperature varied from 29.9 ◦C to 37.8 ◦C due to the
changing of atmospheric temperatures during the tests over 48 h. A test with steady-state permeability
conditions was duplicated once.
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Figure 2. Schematic of the flow direction of water during the test.( Q is the rate of inflow to the test
tank, dVsurf/dt is the change over time in the water volume above the soil surface, Qoverflow is the rate of
overflow, Qin is the rate of flow into the soil, and Qout is the rate of outlet flow).

2.2.2. Vertical Variation of Soil Infiltration Rate

After the tank soil had been saturated with water for 3 h, the vertical variation in the infiltration
rate inside of the soil was measured by the constant-head method [44] at different elevations, and water
with a depth at 5 cm on the soil surface was kept to ensure the soil was under saturation conditions.
Sub-horizontal monitoring tubes were set at depths of 0.35 m (four tubes) and 0.70 m (four tubes) from
the soil surface (Figure 3). The monitoring tubes were made by half-round Poly Vinyl Chloride tubes
(diameter = 0.05 m, length = 2.0 m), and had a slope of 0.025 to allow water drainage. A measuring
vessel was attached to the end of each monitoring tube to record outflow from the tubes. Infiltration
rates (I, m/d) of the soil of at depths of 0.35 m and 0.70 m were calculated using the equation below:

I = V/(0.25A × t) (4)

where V is the volume of the measuring vessel/container (V = 5 × 10−4 m3) and t is the time (in days,
converted from recorded minutes) taken for the vessel to be filled with water running from each
horizontal monitoring tube. Mean infiltration rates (I, m/d) of the soil at depths of 0.35 m and 0.70 m
were calculated by the four infiltration rates at the “01”, “02”, “03”, and “04” monitoring tubes and by
the four infiltration rates at the “05”, “06”, “07”, and “08” monitoring tubes (Figure 3). For each test,
monitoring tubes at only one depth were used, and other monitoring tubes at other depths were closed.

2.2.3. Horizontal Variation of Soil Infiltration Rate

After the tank soil had been saturated with water for 3 h, the horizontal variation in the infiltration
rate of the soil was measured by the variable-head method, and water with a depth at 1 cm on the
soil surface was kept to ensure the soil was under saturation conditions. The bottoms of the vertical
monitoring tubes were set at distances of 0.10 m (one tube), 0.65 m (four tubes), and 1.30 m (four tubes)
from the tree trunk or tank center (Figure 4). The vertical monitoring tubes were made from plexiglass
(internal diameter = 0.01 m, external diameter = 0.02 m, length = 2.0 m), and were inserted to a depth
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of 0.35 m from the soil surface. The mean infiltration rates (I, m/d) at distances of 0.10 m, 0.65 m,
and 1.30 m were calculated using the equation below:

I = a × (h1 − h2)/(A × ∆t) (5)

where a is the cross-sectional area of the plexiglass tube (a = 7.85 × 10−5 m3), h1 and h2 are the initial
and final water levels in the plexiglass tube (h1 = 2.70 m and h2 = 1.15 m), and ∆t is the time interval
between the starting water level, h1, and the final water level, h2. Mean infiltration rates (I, m/d) of the
soil at distances of 0.65 m and 1.30 m were calculated by the four infiltration rates at the “02”, “03”,
“04”, and “05” monitoring tubes and by the four infiltration rates at the “06”, “07”, “08”, and “09”
monitoring tubes (Figure 4). For each test, only the outlet at the bottom was open.Water 2019, 11, x FOR PEER REVIEW 5 of 12 
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3. Results and Discussion

3.1. Temporal Variation in Infiltration Rates

The temporal variation in the soil infiltration rates at the tank soil surfaces (Iin) and at the tank soil
bases (Iout) in the three different test tanks is shown in Figure 5. In all tanks, from 0–2.5 h, the soil was not
saturated (Iin decreased and Iout increased). The saturation stage was reached between 2.5–7 h (Iin and
Iout stabilized). Finally, the soil became unsaturated again between 7–21 h due to the termination of
the water supply (Iout decreased). The similar infiltration rates at the tank soil surfaces (Iin) and at
the tank soil bases (Iout) during the saturation stage indicated that the measurement of all inflow and
outflow components were reliable (i.e., in good water balance, as governed by Equation (1)) during all
tests. The same trends were obtained by other tanks where M. baccata and S. japonica were planted.
The measured variation over time in the soil infiltration rates (Iin and Iout) provided a dataset that could
be used for validation of the mathematical models that describe the entire process of infiltration through
the soil. In this study, only the data obtained during the saturation stage were utilized for discussion.
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Figure 5. Variation in the soil infiltration rates over time in the three different test tanks. Values of
water inflow (Iin) and outlet flow (Iout) are shown. (Q is the rate of inflow to the test tank).

3.2. Steady-State Infiltration Rates at the Base of Test Tanks

The soil steady-state infiltration rates at the bottom outlets of the three different test tanks are
shown in Table 1. The infiltration rates at the bottom of the tanks were calculated from the bottom
outflow rates during the time period of 3–7 h (at steady state), divided by the horizontal planar area
of each tank (Equation (3)). The two datasets represent repeated test runs. The F test for the mean
value was conducted (Table 1) and the p-value of the mean value was determined to be <0.05, which
indicates a significant mean value.

The mean soil steady-state infiltration rates measured at the base outlet of the tanks without a tree,
with M. baccata, and with S. japonica were 0.28 m/d, 0.33 m/d, and 0.61 m/d, respectively (Table 1).
The mean steady-state infiltration rates in soils with M. baccata and S. japonica increased by 19% and
118%, respectively, compared with the soil without a tree. The mean steady-state infiltration rates of
the soil with S. japonica increased by 99%, as compared with the soil with M. baccata. The same trend
was obtained in other tanks where M. baccata and S. japonica were planted. These results suggest that
trees with a tap root system (such as S. japonica) affect deep soil permeability due to their deeper and
more vertical roots, which help to loosen deeper soils and transport more water to the base of the
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tank [45,46], and that trees with fibrous root systems (such as M. baccata) which have shallower and
more horizontal roots have little influence on the permeability of deep soils [47–49].

Table 1. Soil steady-state infiltration rates (m/d) at the bottom outlets of three test tanks.

Tank Blank Test M. baccata S. japonica

Run 1 0.28 0.34 0.61
Run 2 0.28 0.33 0.62

Mean value of soil
steady-state infiltration rates 0.28 ± 0.003 0.33 ± 00.009 0.61 ± 0.007

F test of mean value of soil
steady-state infiltration rates 11.55 a (3.02 × 10−3) b 78.51 (3.56 × 10−8) 21.69 (1.72 × 10−4)

Note: a The F statistics of the mean value of soil steady-state infiltration rates with df 1 and 19; b p-value of the mean
value of soil steady-state infiltration rates from the F test. (df is degrees of freedom)

3.3. Spatial Distribution of Soil Permeability in Test Tanks

3.3.1. Infiltration Rates at Different Soil Depths

The soil infiltration rates at different soil depths in the three different test tanks are shown in
Figure 6 and Table S1. The values measured by four horizontal monitoring tubes on the same horizontal
plane were averaged. The mean soil infiltration rate (I) (Figure 6) decreased along the vertical direction
from 0.98 m/d at 0.35 m to 0.35 m/d at 0.70 m in soils in the tank without a tree, but it decreased
from 1.06 m/d at 0.35 m to 0.62 m/d at 0.70 m in soils with M. baccata, and decreased from 0.91 m/d at
0.35 m to 0.51 m/d at 0.70 m in soils with S. japonica. The soil without a tree had a lower infiltration
rate at greater depths, which was attributed to greater soil compaction with increasing depth due to
sedimentation and decreased soil porosity [19]. The same trends were obtained by other tanks which
Malus baccata and Sophora japonica were planted.
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Tree roots were observed to improve the soil infiltration rate in the vertical direction compared to
the soil in the blank test. Comparing the soil infiltration rate depths of 0.35 m and 0.70 m, the mean I of
the soil in the blank test decreased by 64%, but decreased by only 41% (M. baccata) and 44% (S. japonica)
when trees were planted. The relative I of the soil decreased less with an increase in soil depths
when trees were present, indicating that the permeability of deeper soils was improved by tree roots.
Tree roots can enlarge and generate pores in soils, which reduce the density of the soil and increases
the infiltration rate [14,15]. In addition, M. baccata has a larger influence on the mean I of soil (1.06 m/d
to 0.62 m/d) compared with S. japonica (0.91 m/d to 0.51 m/d) in the upper layer (i.e., for measurements
taken at 0.35 m and 0.70 m). The same trend was obtained by other tanks in which M. baccata and
S. japonica were planted. Pohl et al. [30] found that different trees with root systems that provided
different functions had different geometries (e.g., root depths and horizontal root spreading), and that
these different geometries may be important for soil permeability. M. baccata has mainly fibrous and
lateral roots [47–49], and this root system dominantly changed the permeability of surface soils in the
experiments of this study. In contrast, S. japonica has mainly tap roots [45,46], which penetrate deeply
into the soil. This root system was shown to change the permeability of deep soils in the experiments
of this study.

3.3.2. Infiltration Rates at Different Distances from Tree Trunks

The infiltration rates at different distances from the tree trunks in the three test tanks were
determined. The values were measured by four vertical monitoring tubes at the same distances away
from the tree trunks (tubes “02”–“05” were at a distance of 0.65 m; tubes “06”–“09” were at a distance
of 1.3 m). The mean infiltration rate (I) of the soil (Table S2, Figure 7) at a distance of 0.10 m from the
tree trunks of M. baccata and S. japonica increased to 0.14 m/d and 0.19 m/d, respectively, compared
with the blank test soil (0.11 m/d). Additionally, I also increased to 0.48 m/d and 0.52 m/d at a distance
of 0.65 m from the tree trunk compared to the blank test soil (0.31 m/d), and increased to 0.80 m/d and
0.84 m/d at a distance of 1.30 m from the tree trunk compared to the blank test soil (0.44 m/d). Although
the mean I of the soil was affected by the boundary (vertical wall) of the tank (e.g., I always decreased
with increasing distance from the tree trunk), a significant influence from the tree roots on the I of the
soil can be observed, as I values increase more in the tests with trees than in the blank test. This may
be attributed to the increase in root channels. The measured influences of M. baccata (fibrous roots) and
S. japonica (tap roots) on the infiltration rate of surface soils at different distances from the tree trunk
were not substantially different. The same trends were obtained by other tanks in which M. baccata and
S. japonica were planted. However, it is possible that M. baccata may have a larger influence on the I of
surface soils than S. japonica in the horizontal plane after a few more years of growth, resulting from
the extension of the fibrous and lateral roots of the M. baccata root system [47–49].
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It is noteworthy that the value of soil infiltration rates in vertical (0.35 m, Figure 6) and horizontal
directions (0.35 m, Figure 7) represent different soil layers. The value of the infiltration rate in the
vertical direction (0.35 m, Figure 6) represents the soil permeability at a depth of 0–0.35 m, but the value
of the infiltration rate in the horizontal direction (0.35 m, Figure 7) represents the soil permeability at
depth from 0.35–1.05 m. Additionally, the same value of infiltration rates at different distances (10 cm,
65 cm, and 130 cm) from the tree trunks or the center of the blank tank are still difficult to obtain due to
the heterogeneity of soil caused by the tree roots and the influence of the sidewall effect of the tank.
The tree roots may be mainly affected by the infiltration rates at 10 cm and 65 cm, and the sidewall
effect of the tank may be mainly affected by the infiltration rates at 130 cm.

4. Conclusions

Different tree species have root systems with different geometries (e.g., root depth and horizontal
root spreading) that are pertinent to soil permeability. However, past studies on the influences of
different tree root systems (fibrous and tap roots) on soil permeability, as well as on the variation in
their effects at different vertical and horizontal locations in soil columns, have been limited by the
methods of measurement or by the scope of the research. In this study, two types of trees with different
root systems (M. baccata, with fibrous roots, and S. japonica, with tap roots) were studied experimentally
to assess their relative degrees of soil infiltration enhancement (plus one tank without a tree used as
a blank test) were utilized in the experiments.

The measured rates of steady-state soil infiltration through each test tank were 0.28 m/d (blank
test), 0.33 m/d (M. baccata), and 0.61 m/d (S. japonica). Soil infiltration rates in tanks with M. baccata
and S. japonica increased by 19% and 118%, respectively, compared to the blank test soil, and the soil
infiltration rate in the tank with S. japonica increased by 99% as compared to soil in the tank with
M. baccata. These values suggest the tap root systems of S. japonica help loosen deeper soils and
transport additional water through the entire soil column.

Soil permeability was also measured at different soil depths and different distances from the tree
trunk to investigate the spatial variability. Measurements were taken at depths of 0.35 m and 0.70 m.
In the tanks with trees, M. baccata was observed to have a larger influence on the infiltration rate of
soils (infiltration rate decreased from 1.06 m/d to 0.62 m/d) than S. japonica (infiltration rate decreased
from 0.91 m/d to 0.51 m/d). This implies that the shallow, fibrous, and lateral roots of M. baccata mainly
change the permeability of surface soil.

The results of this study contribute to a deeper understanding of the role of trees in both watersheds
and urban environments. By developing a better understanding and rigorously quantifying how
tree root systems influence soil permeability, we will be able to provide further guidance for urban
stormwater management. Specifically, our findings may be used to develop new approaches regarding
the planting of trees for rainfall runoff reduction, flood mitigation, and groundwater recharge.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/11/8/1700/s1,
Table S1: Soil infiltration rates (m/d) at different soil depths in the three test tanks, Table S2: Soil infiltration rates
(m/d) at different distances (10 cm, 65 cm, and 130 cm) from the tree trunks in the three test tanks.
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