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Abstract: The rainfall forecasts currently available in Korea are not sufficiently accurate to be directly
applied to the flash flood warning system or urban flood warning system. As the lead time increases,
the quality becomes even lower. In order to overcome this problem, this study proposes an ensemble
forecasting method. The proposed method considers all available rainfall forecasts as ensemble
members at the target time. The ensemble members are combined based on the weighted average
method, where the weights are determined by applying the two conditions of the unbiasedness and
minimum error variance. The proposed method is tested with McGill Algorithm for Precipitation
Nowcasting by Lagrangian Extrapolation (MAPLE) rainfall forecasts for four storm events that
occurred during the summers of 2016 and 2017 in Korea. In Korea, rainfall forecasts are generated
every 10 min up to six hours, i.e., there are always a total of 36 sets of rainfall forecasts. As a result,
it is found that just six ensemble members is sufficient to make the ensemble forecast. Considering
additional ensemble members beyond six does not significantly improve the quality of the ensemble
forecast. The quality of the ensemble forecast is also found to be better than that of the single forecast,
and the weighted average method is found to be better than the simple arithmetic average method.
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1. Introduction

Recently, there have been growing concerns of urban flooding and flash flooding that appear to
be related to the rapid population growth and climate change. More of the population has been living
in some specific urban areas [1–5], and people are leaving these areas for outdoor activities such as
camping in very scenic mountain valleys, particularly during the hot summer season [6–8]. Global
warming is believed to change the climate continuously. Very localized and severe rainfall events are
also believed to be increasing [9–13]. The combination of all of these changes unfortunately increases
the risk of urban flooding and flash flooding, which is also expected to worsen in the future. Although
the definitions of urban floods and flash floods differ, they share some unique characteristics, such as
a localized area, short response time, high risk, and so forth.

Urban and/or flash floods occur within one or two hours, sometimes shorter, following severe
rainfall [14–18]. Thus, in this case, the rainfall measurements on the ground may not be applicable for
flood warnings. Put simply, sufficient lead time cannot be secured to warn people in the pruned area
of such flooding. This is an important reason to use the rainfall forecast for this purpose. For example,
the Flash Flood Guidance System (FFGS) in the US that uses rainfall forecasts based on both satellite
and radar observation is used for flash flood warning [19]. The European Flood Awareness System
(EFAS) also uses ensemble rainfall forecasts for flood warning [20]. The flash flood warning system in
Korea also uses the rainfall forecast as input [21,22].
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Various models have been developed for the purpose of producing rainfall forecasts.
Auto NowCaster (ANC) is a model developed by the National Center for Atmospheric Research
(NCAR) for convective storm forecasting [23]. The Thunderstorm Identification, Tracking, Analysis,
and Nowcasting (TITAN) was also developed for convective storm forecasting [24]. The Japan
Meteorological Administration (JMA) uses a Mesoscale Model (MSM), which is a numerical weather
prediction model, for the same purpose [25,26]. The Korea Local Analysis and Prediction System
(KLAPS) and McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation (MAPLE)
are models used in Korea for very short time rainfall forecasting [27–30].

The quality of flash flood warning is clearly very dependent on the rainfall forecast used. However,
it is also well known that the quality of rainfall forecasts is not very satisfactory [31–33]. Various
ensemble techniques have been applied in attempts to improve rainfall forecasting [34–36]. The quality
of rainfall forecasts can be significantly improved, and the effective lead time of the rainfall forecast
can also be increased by applying the ensemble technique [37–40]. The ensemble technique has also
been adopted as an aspect of operational rainfall forecasting in many countries [37,41–44].

Various methods of generating ensemble members have been proposed. First, it is possible to
control the input data. The observed data can be varied by introducing time lag [45–48]. It is also
possible to introduce some amount of perturbation to the observed input data [49–52]. In general,
randomly generated noise is added to the observed data. One important advantage of using this method
of controlling the input data is that it is based on observed data, that is, realistic data. The second method
involves controlling the parameters of the forecasting model [53–55]. Here, the model parameters are
assumed to be stochastic. Under the assumption that the multivariate probability distribution function
governing the model parameters is known, as many parameter sets as possible can easily be generated
to be used to generate rainfall forecasts, i.e., ensemble members. This method is particularly effective
when the forecasting model is very competitive. Recently, several models have been considered
simultaneously for the same purpose of rainfall forecasting [56–59]. Each rainfall forecast from a
different model is assumed to be an ensemble member. As no model is complete with each having
pros and cons, the use of various models must have some benefits to generate ensemble members.

However, it is also possible to imagine a situation in which none of the above methods of
generating ensemble members is applicable. Basically, the users of the rainfall forecast do not handle
the forecasting model. Every hour, the generated rainfall forecast is transferred to the registered users.
It is the same case for flood warning. Particularly in the case that the rainfall forecast is of low quality,
something must be done to improve it. This is what this study addresses.

The objective of this study is to develop an ensemble forecasting method based on the rainfall
forecast generated every hour. For example, the rainfall forecast generated every hour may include the
rainfall data for the following one to six hours. If the target time is three hours later, four different
rainfall forecasts are available at that target time. That is, the three-hour forecast made at the current
time, the four-hour forecast made in the previous hour, the five-hour forecast made two hours prior,
and the six-hour forecast made three hours prior. All four of these four forecasts are considered as
ensemble members to make the ensemble forecast in this study. The ensemble members are going to
be combined based on the weighted average method, where the weights should also be determined
reasonably. The ensemble forecast should also have higher quality than the simple rainfall forecast.
Several issues arise when using this ensemble forecasting method: the first involves the optimal
number of ensemble members, the second involves the determination of the weights, and finally, it is
important to evaluate how the ensemble forecast compares to the single rainfall forecast. This study
attempts to solve these problems one by one. As examples, this study will consider several storm
events that occurred during the summers of 2016 and 2017 in Korea.
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2. Theoretical Framework

2.1. Ensemble Forecast and the Lagged Average Forecast

An ensemble forecast is a collection of two or more forecasts at a certain target time [60]. Ensemble
forecasting is applied to reduce the uncertainty of deterministic forecasting such as the numerical
weather prediction (NWP) [34,35,61]. The uncertainty of the NWP increases significantly, mostly due
to the incompleteness of the initial conditions as well as the incompleteness of the numerical model
itself [62]. Thus, the purpose of the ensemble forecasting is to probabilistically combine multiple
forecasts to yield more reliable results. By setting different initial conditions, physical processes,
and boundary conditions, various forecasts of future weather conditions can be generated [50,63].

Ensemble forecasting has many advantages compared with NWP. The uncertainty of NWP
forecasts is assumed to be considerably large, and its error varies in time and space [64–66]. However,
ensemble forecasting considers all available forecasts which could statistically occur. The use of
ensemble forecasting provides not only improved forecasting results over a long lead time, but also
information about its uncertainty. This information about forecasting uncertainty is particularly
important to forecasters who should make an appropriate decision [67].

Ensemble forecasting techniques can be divided into three types: the first involves controlling the
input data. Some amount of perturbation is added to the observed input data [68–71], or various time
lags are applied to the observed input data [72–74]. The second is to control the model parameters.
Many ensemble members are generated by applying various parameter sets to a model [53,55,75,
76]. The last type involves diversifying models or systems. This is also called the multimodel
ensemble [56,77–79]. There also exists the concept of a super ensemble, which is a combination of the
three types [80–82].

It is also possible to use all of the forecasts available at a specific target time. These forecasts are
those made at different times in the past. The quality of the ensemble forecast can be improved simply
by averaging all available forecasts [83]. This method is called the lagged average forecast (LAF).
The LAF has both advantages and disadvantages; its most important advantage is that it is easy to apply.
No special skills are needed to generate the perturbations. Additionally, the generated perturbation
is not simply random but rather based on the hidden dynamics at each time step. However, as the
LAF is based on a limited number of ensemble members, the representativeness of the ensemble
forecast can be weak. In order to lessen this weakness, the appropriate weight to be applied to each
ensemble member should be determined. Hoffman and Kalnay (1983) presented a method to consider
the expected error for each ensemble member [72].

Due to its simple application, the LAF has frequently been applied to various forecasting
problems [46,47,84–93]. For example, Brankovic et al. (1990) applied the LAF to medium and long-term
forecasts operated by the European Center for Medium Range Weather Forecasts (ECMWF) [46].
The ensemble forecasts were generated using nine prior forecasts with a six-hour interval. The Root
Mean Square Error (RMSE) and the Anomaly Correlation Coefficient (ACC) of the LAF ensemble
forecasts were compared with those of each single forecast, with the results indicating that the LAF
ensemble forecasts were superior in all seasons. Lu et al. (2007) evaluated the forecasts of several
meteorological factors such as air temperature, wind speed, and relative humidity, generated by
the Rapid Update Cycle (RUC) model of the National Oceanic and Atmospheric Administration
(NOAA) [85]. They found that the LAF ensemble forecasts were superior to a single deterministic
forecast, even for a short-term forecasting from 1 h to 3 h. Mittermaier (2007) also showed that LAF
ensemble forecasting reduced uncertainty in high-resolution rainfall forecasting [47]. The ensemble
forecasts of rainfall amount, maximum rainfall amount, and rainfall occurrence probability were
generated using five rainfall forecasts with a six-hour interval from Met Office 4 km UM (Unified
Model) as the ensemble members. They found that the LAF not only improved the forecasting quality
for the rainfall amount, but also significantly reduced the error in forecasting rainfall occurrence.
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2.2. Method of Averaging

The ensemble forecast is made by averaging the ensemble members. That is,

Rt =
n∑

i=1

wiMi (1)

where Rt is an ensemble forecast made at the target time t, wi is a weight for the ensemble member Mi,
and n is the number of ensemble members.

To date, various averaging methods have been proposed. A relatively simple averaging method
is the simple average method (SA method). In this method, an equal weight is simply applied to
each ensemble member. That is, the weight wi in Equation (1) is determined to be 1/n. Although it is
very simple without any deep theoretical background, the SA method has been applied in various
studies [77,80,94]. The weighted average method (WA method) is a statistical method which can
consider the uncertainty of each ensemble member [95–97]. The weight is generally determined to be
inversely proportional to its uncertainty. The application of a linear regression is another method that
can be used to determine the weights of ensemble members [98]. In this method, a linear function is
derived by considering the multiple ensemble members as independent variables. A nonlinear function
approach such as the artificial neural network (ANN) has also been proposed [99]. Additionally,
a so-called time-varying mergence method (TV method) has been proposed in an attempt to consider
the temporal change of weights [97,100,101]. Among the TV methods, a time-varying sum of square
root error method (TVSSE method), first proposed by Granger and Newbold (1977), may be the most
popular [97].

Among many averaging methods, this study selected the weighted average method (WA method).
The WA method is believed to be one which can consider the statistical characteristics of ensemble
members. Specifically, this study adopted the variance–covariance method [95], which combines the
unbiased ensemble members based on the concept of minimum error variance of the ensemble forecast.
As an example, in the case of considering two ensemble members F1 and F2 generated for the true
value of F,

F1 = F + Z1 (2)

F2 = F + Z2 (3)

where Z1 and Z2 represent the stochastic errors involved in the generation of ensemble members. Here,
the two stochastic errors are assumed to follow the Gaussian distribution, but they are not assumed to
be independent of each other.

Based on the linear assumption, the optimal estimate can be expressed as follows.

F̂ = c1F1 + c2F2 (4)

where c1 and c2 are the optimal weights to be determined by considering the uncertainty of the
ensemble members of F1 and F2. Generally, the weights are estimated by applying the two conditions
of the unbiasedness and minimum error variance. That is, the bias of the estimate F̂ should be zero,
and the error variance of the estimate F̂ should be minimized as well [98]. By applying these two
conditions, one can derive the weights as follows.

c1 =
σ2

2 − σ12

σ2
1 + σ

2
2 − 2σ12

(5)

c2 =
σ2

1 − σ12

σ2
1 + σ

2
2 − 2σ12

(6)
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where σ2
1 and σ2

2 are the variances of the two forecasts and σ12 is the covariance between the two
forecasts. If the two forecasts are independent, the covariance becomes zero. However, if they are
dependent on each other, the covariance should be considered to determine the weights.

A generalization of the above result to the case of considering m forecasts is as follows.

Ŵ =

∑
−1 u

uT ∑
−1 u

(7)

where Ŵ is a column vector of the weights of m ensemble members and u is a unit column vector
(i.e., u = [1, 1, · · · , 1]T). Σ is an m×m covariance matrix consisting of the forecasting errors. The weight
for each ensemble member can be calculated using the covariance matrix of forecasts, as given in
Equation (7). Further, the variance of the ensemble forecast can be derived as follows.

σc =
1

uT ∑
−1 u

(8)

This variance represents the quality of the ensemble forecasts, which generally becomes smaller
as the number of ensemble members increases.

2.3. Optimal Number of Ensemble Members and Quality of Ensemble Forecast

In this study, the number of ensemble members was determined based on the quality of the
ensemble forecast. Basically, as the number of the ensemble members increases, the forecasting
quality improves. However, the forecasting quality can also become stagnated if the number of
ensemble members exceeds a certain limit. In this study, the optimal number of ensemble members
was determined as the minimum number of ensemble members that significantly improved the
quality of the ensemble forecast. The difference between the ensemble forecast and the observed data,
as well as the variance of the ensemble forecast were considered to determine the optimal number of
ensemble members.

Once the optimal number of ensemble members has been determined, the ensemble forecast can
be produced by applying the weight to each ensemble member. The forecasting quality of the produced
ensemble forecast is then evaluated by comparing it with the observed data. Two evaluation factors
are used to evaluate the forecasting quality: the root mean square error (RMSE) represents the mean
difference between the ensemble forecast and the observed data, while the pattern correlation coefficient
R is used to quantify the similarity of the ensemble forecast and the observed data. The pattern
correlation coefficient R is calculated using Equation (9).

R =

M∑
m = 1

N∑
n = 1

(
Pm,n − P

)(
Om,n −O

)
√(

M∑
m = 1

N∑
n = 1

(
Pm,n − P

)2
)(

M∑
m = 1

N∑
n = 1

(
Om,n −O

)2
) (9)

where Pm,n and Om,n are the ensemble forecast and observed data, respectively, at each grid point (m, n).
Further, P and O are the mean values of the ensemble forecast and observed data, respectively. Similar
to the ordinary correlation coefficient, the pattern correlation is high when the value of R is near to 1
or −1.

3. Data

3.1. Rainfall Forecast of MAPLE

MAPLE (McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation) is a very
short term rainfall forecasting model. The basic concept of the MAPLE rainfall forecasting was first
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described by Germann and Zawadzki (2002) [28]. The MAPLE provides the forecasts of precipitation
echoes, which are made using storm moving vectors. The storm moving vectors are derived from past
and current radar reflectivity images by applying the variational echo tracking (VET) technique [102].
In order to generate nowcasts over several hours, the MAPLE uses a semi-Lagrangian method, which
is based on the cross-correlation of the rainfall patterns at different times. The MAPLE is known to
have the ability to forecast with consideration of the life cycles of various rainstorms. It has also been
revised consistently to overcome various limitations and problems [29,103–105].

The MAPLE rainfall forecasting system operated by KMA has two limitations: First, as it is
a nondynamic forecasting model, it does not involve any process to consider the growth and decay of
precipitation echoes. Aside from the probabilistic analysis of the rainstorm size, the initial information
of precipitation echoes does not change. Second, the initial echo moving vectors are applied to every
lead time. If the precipitation echo moving vectors change abruptly, the forecasting quality can be
decreased significantly. This limitation is particularly relevant when extending the lead time; if the
lead time is longer than three hours, the forecasting quality of the rainfall forecasts is known to be
decreased abruptly [106].

The MAPLE rainfall forecast is generated as a form of a composite radar map, showing the entire
Korean Peninsula and the surrounding region (Figure 1). Its lead time ranges from 10 min to 360 min
(i.e., six hours). That is, each MAPLE rainfall forecast contains one set of observed data and 36 forecasts
with a 10 min interval. It is composed of 1024 × 1024 grids with a resolution of 1 km × 1 km, as a type
of matrix. The original format of the MAPLE rainfall forecast is a binary gzip, but for use in this study,
it is changed into the ASCII format using the Geographic Information System (GIS) program.
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3.2. Storm Events

This study used the MAPLE rainfall forecasts of four major storm events that occurred in 2016
and 2017. Figure 2 shows radar images of the selected storm events, which are available at the weather
radar center portal (www://radar.kma.go.kr). These radar images show basic information about the
size, intensity, and movement of these storm events.
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The selected major storm events have different characteristics (Table 1). For a specific example,
consider the second event, Typhoon Chaba. Typhoon Chaba caused severe damage in several cities
located in the southern part of the Korean Peninsula. This storm event was recorded as the worst
typhoon that occurred in October among those that landed in the Korean Peninsula. The maximum
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rainfall intensity, 104.2 mm/hr and total rainfall depth of 266.0 mm were recorded at the Ulsan rain
gauge station [107]. The fourth event was Typhoon Talim. This storm event landed on the Korean
Peninsula on 10 September 2017 with a lot of rainfall, and decayed the next day at the Jeolla Province.
The first and third events are those that occurred during the monsoon seasons in 2016 and 2017,
respectively. In this study, 10 target times were selected in total to generate the weighted average
ensemble forecasts. Each storm event contains two or three target times, which were those at which
relatively high rainfall intensity occurred. Table 1 summarizes detailed information about the rainfall
that occurred at these 10 target times.

Table 1. Characteristics of the selected storm events in this study.

Characteristics Storm 1 Storm 2 Storm 3 Storm 4

Dates 2016/07/04–05 2016/10/04–05 2017/07/08 2017/09/10–11
Duration (hrs) 20 16 17 13

Maximum rainfall intensity (mm/hr) 42.8 104.2 78.9 73.4
Type Monsoon Typhoon Monsoon Typhoon

Region Central Southern Central Southern
Direction ↗ ↗ ↘ →

Target times
(rainfall intensity)

07/05 02:30
(42.8 mm/hr)
07/05 03:00

(34.5 mm/hr)

10/05 08:00
(57.7 mm/hr)
10/05 09:00

(98.3 mm/hr)
10/05 10:00

(104.2 mm/hr)

07/08 07:00
(66.2 mm/hr)
07/08 08:00

(78.9 mm/hr)
07/08 09:00

(71.2 mm/hr)

09/11 04:30
(68.1 mm/hr)
09/11 06:00

(73.4 mm/hr)

4. Results

4.1. Weighted Average Ensemble Forecast

The structure of the covariance is the key factor for determining the weight for each forecast. First,
the cross-correlation coefficient was estimated to consider the difference in lead time among ensemble
members. In this estimation process, the unit time lag was assumed to be 10 min. For example, the time
lag between the 30 min forecast and the 90 min forecast corresponds to lag-6, and the time lag between
the 60 min forecast and the 120 min forecast also corresponds to lag-6. As there were many cases
corresponding to a given time lag, their average was assumed to be the represented value.

Figure 3 shows the change in the cross-correlation coefficient in terms of the time lag, derived
from the forecasts collected at the 10 target times. Further, the solid thick line represents their average.
As can be expected, the cross-correlation coefficient decays slowly and stagnates after some time lag.
It is obvious that a higher cross-correlation coefficient is expected for short time lags, but a lower one is
expected for long time lags. This also indicates that the diagonal components of the covariance matrix
are the highest.

Water 2019, 11, x FOR PEER REVIEW 8 of 20 

 

relatively high rainfall intensity occurred. Table 1 summarizes detailed information about the rainfall 
that occurred at these 10 target times. 

Table 1. Characteristics of the selected storm events in this study. 

Characteristics Storm 1 Storm 2 Storm 3 Storm 4 
Dates 2016/07/04–05 2016/10/04–05 2017/07/08 2017/09/10–11 

Duration (hrs) 20 16 17 13 
Maximum rainfall intensity (mm/hr) 42.8 104.2 78.9 73.4 

Type Monsoon Typhoon Monsoon Typhoon 
Region Central Southern Central Southern 

Direction ↗ ↗ ↘ → 

Target times 
(rainfall intensity) 

07/05 02:30 
(42.8 mm/hr) 
07/05 03:00 

(34.5 mm/hr) 

10/05 08:00 
(57.7 mm/hr) 
10/05 09:00 

(98.3 mm/hr) 
10/05 10:00 

(104.2 mm/hr) 

07/08 07:00 
(66.2 mm/hr) 
07/08 08:00 

(78.9 mm/hr) 
07/08 09:00 

(71.2 mm/hr) 

09/11 04:30 
(68.1 mm/hr) 
09/11 06:00 

(73.4 mm/hr) 

4. Results 

4.1. Weighted Average Ensemble Forecast 

The structure of the covariance is the key factor for determining the weight for each forecast. 
First, the cross-correlation coefficient was estimated to consider the difference in lead time among 
ensemble members. In this estimation process, the unit time lag was assumed to be 10 min. For 
example, the time lag between the 30 min forecast and the 90 min forecast corresponds to lag-6, and 
the time lag between the 60 min forecast and the 120 min forecast also corresponds to lag-6. As there 
were many cases corresponding to a given time lag, their average was assumed to be the represented 
value. 

Figure 3 shows the change in the cross-correlation coefficient in terms of the time lag, derived 
from the forecasts collected at the 10 target times. Further, the solid thick line represents their average. 
As can be expected, the cross-correlation coefficient decays slowly and stagnates after some time lag. 
It is obvious that a higher cross-correlation coefficient is expected for short time lags, but a lower one 
is expected for long time lags. This also indicates that the diagonal components of the covariance 
matrix are the highest. 

 

Figure 3. Change of the cross-correlation coefficient with respect to the time lag derived with the 
forecasts collected at the 10 target times and their average. 

The covariance matrix was derived separately for each storm event. For example, Figure 4 shows 
the covariance matrix derived from all of the available rainfall forecasts on 04:30, 11 September 2017. 

Figure 3. Change of the cross-correlation coefficient with respect to the time lag derived with the
forecasts collected at the 10 target times and their average.



Water 2019, 11, 1752 9 of 20

The covariance matrix was derived separately for each storm event. For example, Figure 4 shows
the covariance matrix derived from all of the available rainfall forecasts on 04:30, 11 September 2017.
This figure includes the results for cases with ensemble members 2, 3, 6, 9, 18, and 36. Regardless of
which ensemble members were considered, the diagonal components of the covariance matrix were
always higher than the other components. This indicates that the quality of the rainfall forecast drops
as the lead time increases. The correlation also becomes lower as the lead time increases.
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Figure 4. Covariance matrix derived from all the available rainfall forecasts with ensemble members 2,
3, 6, 9, 18, and 36 on 04:30, 11 September 2017.

As explained previously, the weights to be applied to the ensemble members (i.e., the rainfall
forecasts available at a given target time) are derived by analyzing the covariance matrix. This study
considered three different forecasting times; one, two, and three hours. For example, the case with the
forecasting time of one hour considered all of the rainfall forecasts with a lead time longer than or
equal to one hour. This procedure was repeated 10 times by considering all of the 10 different target
times listed in Table 1. The weights were estimated independently for each case, and the final weights
were determined as their arithmetic average. Figure 5 compares the final weights determined for the
cases with the following numbers of ensemble members: 2, 3, 4, 6, and 9. The solid line represents the
final weights determined for each case.

The characteristics of the determined weights were as expected. For example, the weight of the
most recently made forecast was higher than that of the older one. The difference among weights was
larger when a smaller number of ensemble members were considered. As the number of ensemble
members considered increased, the weights became more similar to each other. That is, the simple
arithmetic averaging could be a valid method when considering a large number of ensemble members.
For example, Figure 5a shows the determined weights for the case considering four ensemble members.
The weight of the first ensemble member (i.e., rainfall forecast with a lead time of one hour) was
determined to be 0.4235, while that of the second one (i.e., rainfall forecast with a lead time of one hour
and 10 min) was 0.2337. The third and fourth weights were determined to be much smaller at 0.1739
and 0.1689, respectively.

However, the above characteristics become rather weakened when a longer forecasting time is
considered. For example, the weight of the first ensemble member for the forecasting time of three
hours (see Figure 5c) was determined to be substantially smaller than that for the forecasting time
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of one hour. On the other hand, the weights of the other ensemble members became slightly higher.
The case for the forecasting time of two hours is in between the two forecasting times of one hour and
three hours. This indicates independence among the ensemble members, which becomes stronger
when considering a longer forecasting time. This result is also consistent with the characteristics of the
covariance matrix. The cross-correlation coefficient was found to be negligible when the difference in
lead time was longer than 150 min.
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In general, the quality of the ensemble forecast increases as more ensemble members are considered.
However, it is not economical to simply consider as many ensembles as possible. The optimal number
of ensembles is determined as the minimum number of ensembles which guarantees a similar quality
of ensemble forecast. The uncertainty (or variance) of the ensemble forecast is analyzed to determine
the optimal number of ensemble members. In this study, for the forecasting times of one, two, and
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three hours, the behavior of the RMSE of the ensemble forecast was examined in terms of the number
of ensemble members. In order to consider together all of the RMSEs estimated for each of the 10 target
times evaluated in this study, the RMSE estimated for each target time was also normalized by the
RMSE for the case of considering just one ensemble member (i.e., the biggest RMSE). The optimal
number of ensemble members was determined as that near the inflection point of the RMSE curve.

Figure 6 shows the behavior of the RMSEs estimated for the 10 target times. The solid thick line
represents their average. The two red dashed lines represent the tangent lines from the beginning
and from the end. These two lines meet at the inflection point. As shown in this figure, the optimal
number of ensemble members is around six. This result was the same regardless of the forecasting
time. The ensemble forecast hereafter is made by considering a total of six ensemble members.
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4.2. Quality of Weighted Average Ensemble Forecast

In the previous section, the optimal number of ensemble members was determined to be six.
For the case of a forecasting time of one hour, as an example, six rainfall forecasts made from the prior
60 min to the prior 110 min were used to make the ensemble forecast. For the case of a forecasting time
of two hours, six rainfall forecasts made from the prior 120 min to the prior 170 min were used, and
for the case of a forecasting time of three hours, six rainfall forecasts made from the prior 180 min to
the prior 230 min were used to make the ensemble forecast. Table 2 summarizes the weights to be
used to make the weighted average (i.e., ensemble forecast based on the weighted average method)
with these six ensemble members. The weight for the first ensemble member (the most recent rainfall
forecast among the ensemble members considered) was the highest, and the weight dropped as the
time gap increased.

Table 2. Weights to be used to make the ensemble forecast with six ensemble members.

No.
Forecasting Time

1 h 2 h 3 h

1 0.3040 0.2635 0.2465
2 0.1705 0.1890 0.2450
3 0.1711 0.1628 0.1739
4 0.1697 0.1519 0.1475
5 0.1271 0.1292 0.1058
6 0.0576 0.1037 0.0813

The quality of the MAPLE rainfall forecast decreases with longer lead time. Figure 7 shows six
rainfall forecasts made at 09:00 8 July 2017 for the lead times from 60 min to 110 min. On this basis of
these rainfall forecasts, the storm center was predicted to move to the bottom of the right-hand side.
These forecasts also indicate that the forecasting quality decreases with increasing lead time, which is
also a crucial factor for the practical use of rainfall forecasts.
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The quality of the ensemble forecast was first evaluated at the target time by comparing it with
the observed rainfall field (Figure 8). Comparisons with the ensemble forecast based on the simple
arithmetic average method and the single forecast at the target time (i.e., the case with just one ensemble
member) were also conducted in order to emphasize the usefulness of the ensemble forecast. As shown
in Figure 8, the storm center of the observed rainfall field is located around 36◦10′ N~36◦20′ N and
128◦30′ E~128◦40′ E. A similar pattern could also be found in the ensemble forecasts based on the
weighted average method as well as the simple average method. Both of the results were similar. On the
other hand, in the single forecast, the overall pattern was found to be somewhat different from the
observed result. Two storm centers were found: one around 36◦0′ N~36◦10′ N and 128◦10′ E~128◦25′ E
and another around 36◦20′ N~36◦30′ N and 128◦40′ E~128◦50′ E.
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The quality of the ensemble forecast was also quantitatively evaluated according to the pattern
correlation coefficient R and the root mean square error RMSE. These measures of the ensemble
forecast were also compared with those of the single forecast and the ensemble forecast based on
the simple arithmetic average method. For example, the evaluation result at the target time of 09:00
8 July 2017 shows that the ensemble forecast based on the weighted average method is most similar to
the observed. For the case of a forecasting time of one hour, R and RMSE of ensemble forecast based
on the weighted average method were 0.42 and 6.85, respectively. On the other hand, those of the
single forecast were estimated to be 0.25 and 9.66, while those of the ensemble forecast based on simple
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arithmetic averaging were 0.39 and 7.14, respectively. Overall, the ensemble forecast was found to
be better than the single forecast, and the weighted average method was found to be better than the
simple arithmetic average method. Similar results were derived for the forecasting times of two and
three hours, as summarized in Table 3.

Table 3. Evaluation of the single forecast, the ensemble forecast based on the simple arithmetic
averaging, and the ensemble forecast based on the weighted averaging at 09:00 July 8, 2017.

Measure Type Forecasting Time

1 h 2 h 3 h

R
Single forecast 0.25 0.31 0.09

Ensemble forecast based on the simple arithmetic averaging 0.39 0.25 0.09
Ensemble forecast based on the weighted averaging 0.42 0.30 0.13

RMSE
Single forecast 9.66 8.69 10.56

Ensemble forecast based on the simple arithmetic averaging 7.14 7.12 8.50
Ensemble forecast based on the weighted averaging 6.85 6.90 8.23

The above evaluation process was repeated for all 10 target times considered in this study, and the
results are summarized in Table 4. Basically, the same result was derived for all 10 target times. That is,
the ensemble forecast was found to be better than the single forecast, and the weighted average method
was found to be better than the simple arithmetic average method. In addition, the evaluation result
was found to be slightly deteriorated as the forecasting time increased. That is, the evaluation result
for the case of a forecasting time of one hour was mostly better than that of the forecasting time of two
or three hours. Further, the evaluation result for the case of a forecasting time of two hours was mostly
better than that of a forecasting time of three hours. There were some exceptions, but this trend was
seen in all three different forecasts: the ensemble forecast based on the weighted average method, the
ensemble forecast based on the simple arithmetic average method, and the single forecast. It should
also be noted that, as the forecasting time increased, the evaluation result of the single forecast became
substantially worse than that of the ensemble forecast. This result seems to be based on the fact that the
ensemble forecast was made by considering the uncertainty of rainfall propagation, i.e., by considering
more feasible cases of rainfall propagation. Also, this limitation, which is the quality of three hour
forecast is far lower than that of one hour and two hours can be found in the previous studies in
Korea [108–110].

Table 4. Evaluation of the single forecast, the ensemble forecast based on the simple arithmetic
averaging, and the ensemble forecast based on the weighted averaging at 10 target times.

Measure Type Forecasting Time

1 h 2 h 3 h

R
Single forecast 0.26 0.19 0.18

Ensemble forecast based on the simple arithmetic averaging 0.27 0.21 0.19
Ensemble forecast based on the weighted averaging 0.27 0.22 0.20

RMSE
Single forecast 7.05 7.95 8.20

Ensemble forecast based on the simple arithmetic averaging 6.07 6.29 6.53
Ensemble forecast based on the weighted averaging 5.97 6.36 6.57

5. Summary and Conclusions

This study proposed an ensemble forecasting method based on the rainfall forecast generated
every hour. The ensemble members (i.e., the available rainfall forecasts at the target time) were
combined using the weighted average method. Three issues were raised with this ensemble forecasting
method: the first involved the optimal number of ensemble members, the second was concerned with
the determination of the weights, and the last one involved the quality of the ensemble forecast. One by
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one, this study showed possible solutions to these issues, with example applications to four storm
events that occurred during the summers of 2016 and 2017 in Korea.

First, the weights were determined by analyzing the covariance matrix of the rainfall forecasts
under the two conditions of the unbiasedness and minimum error variance. As expected, the weight
of the most recently made forecast was higher than that of older ones. The difference among weights
was also larger when a smaller number of ensemble members were considered. As the number of
ensemble members increased, the weights became similar to each other. That is, the simple arithmetic
averaging could be a valid method when considering a large number of ensemble members. However,
this trend was rather weakened when considering a longer forecasting time. For example, the weight
of the first ensemble member for the forecasting time of three hours was determined to be substantially
smaller than that for the forecasting time of one hour. On the other hand, the weights of the other
ensemble members became slightly higher. This indicates independence among the ensemble members,
which becomes stronger when considering a longer forecasting time.

Second, the optimal number of ensembles was determined to be the minimum number of
ensembles which guarantee a similar quality of ensemble forecast. The uncertainty (or variance) of
the ensemble forecast was analyzed, and the optimal number of ensemble members was determined
as that near the inflection point of the RMSE curve. In this study, the optimal number of ensemble
members was determined to be around six. This result was the same regardless of the forecasting time.

Third, the quality of the ensemble forecast was quantitatively evaluated by the pattern correlation
coefficient R and the root mean square error RMSE. These measures of the ensemble forecast were also
compared with those of the single forecast and the ensemble forecast based on the simple arithmetic
average method. The results indicated that the ensemble forecast was better than the single forecast,
and that the weighted average method was better than the simple arithmetic average method.

Finally, it was also found that the evaluation result was slightly deteriorated as the forecasting
time increased. That is, the evaluation result for the case of a forecasting time of one hour was mostly
better than that of a forecasting time of two or three hours. However, it should be mentioned that,
as the forecasting time increased, the evaluation result of the single forecast became substantially worse
than that of the ensemble forecast. This result underscores the usefulness of the ensemble forecast.
In fact, this is a fundamental problem which cannot be solved immediately. However, even though the
results for the lead times of two or three were confusing, the rainfall prediction based on the weighted
average method was superior to that based on the simple arithmetic average method.

The ensemble forecasting method proposed in this study may help increase the usefulness of
the rainfall forecast one step further. The rainfall forecasts that are currently available in Korea are
not sufficiently accurate to be directly applied to the flash flood warning system or urban flood
warning system. The quality becomes even lower as the lead time increases. However, by introducing
the ensemble technique, this problem could be alleviated a bit. The usefulness of the proposed
ensemble forecasting method can be even higher in the near future if more accurate rainfall forecasts
become available.
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