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Abstract: The purpose of this study was to provide a detailed framework to use the spatiotemporal
kriging to model the space-time variability of precipitation data in Paraíba, which is located in
the northeastern region of Brazil (NEB). The NEB is characterized by an irregular, highly variable
distribution of rainfall in space and time. In this region, it is common to find high rates of rainfall
at locations adjacent to those with no record of rain. Paraíba experiences localized periods of
drought within rainy seasons and distinct precipitation patterns among the state’s mesoregions. The
mean precipitation values observed at several irregularly spaced rain gauge stations from 1994 to
2014 showed remarkable variations among the mesoregions in Paraíba throughout the year. As a
consequence of this behavior, there is a need to model the rainfall distribution jointly with space and
time. A spatiotemporal geostatistical methodology was applied to monthly total rainfall data from
the state of Paraíba. The rainfall data indicate intense spatial and temporal variabilities that directly
affect the water resources of the entire region. The results provide a detailed spatial analysis of sectors
experiencing precipitation conditions ranging from a scarcity to an excess of rainfall. The present
study should help drive future research into spatiotemporal rainfall patterns across all of NEB.
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1. Introduction

The spatiotemporal behavior of rainfall is of great importance in the regional management of water
resources and has a direct influence on human activities such as livestock management, agriculture,
and commerce. One of the statistical techniques responsible for analyzing this type of behavior is
spatiotemporal geostatistical analysis. The interpolation of spatiotemporal observations presents
benefits compared to purely spatial predictions. One of these benefits is that interpolation can be
applied to georeferencing positions over space-time [1,2].

In this study, a spatiotemporal geostatistical methodology was applied to monthly total rainfall
data from the state of Paraíba, which is located in the northeastern region of Brazil (NEB). The NEB is
characterized by an irregular, highly variable distribution of rainfall in space and time. In this region,
it is common to find high rainfall rates at locations adjacent to those with no record of rain [3]. Paraíba
also experiences localized periods of drought within rainy seasons and distinct precipitation patterns
among the state’s mesoregions [4,5]. As a consequence of this behavior, there is a need to model the
rainfall distribution jointly with space and time.
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In the literature, several studies have been carried out on the spatial interpolation of precipitation
data using geostatistical techniques [6–9]. Martínez-Cob [10] used three methods of geostatistical
interpolation (ordinary kriging, cokriging, and modified residual kriging) to interpolate the mean total
annual precipitation in a mountainous region of Aragon, located in northeastern Spain. Goovaerts [11]
constructed maps of the spatial prediction of rainfall erosivity in the Algarve region of Portugal.
To calculate these predictions, the author used three geostatistical methods (simple kriging with
varying local means, kriging with external drift, and collocated cokriging), in addition to linear
regression, concluding that linear regression, not considering the spatial dependence among the
stations, produced the greatest predictive errors. Haberlandt [12] carried out a study on daily
precipitation at 281 stations located in the southeast region of Germany using the methods of kriging
with external drift and indicator kriging with external drift for spatial interpolation of precipitation.
Also, an increasing number of studies in recent years have used geostatistical methods to model not
only the spatial, but also the temporal, dynamics of precipitation [13,14].

In recent years, studies have appeared analyzing the regional spatiotemporal distribution of
precipitation. Raja et al. [15] applied the spatiotemporal kriging technique to rainfall data from Turkey.
They consequently observed that Turkey is located in a region with a higher risk of possible effects
from climate change, similar to the state of Paraíba, Brazil. Thus, they reported that an understanding
of the temporal and spatial characteristics of rainfall is crucial for risk management, as well as for
the planning, management, and utilization of water resources, which depend heavily on rainfall.
Similarly, Hu et al. [13] performed spatiotemporal regression using kriging in the Xinjiang Uygur
Autonomous region, located in northwestern China, to model monthly rainfall data from 2004 to 2013.
The authors identified a strong spatiotemporal correlation in the rainfall distribution in this region,
thereby justifying the use of their proposed methodology. Furthermore, Martínez et al. [14] performed
a spatiotemporal analysis of rainfall data from Colombia and identified regions that exhibit irregular
rainfall distributions.

The novelty of this study is the detailed presentation of a tool for spatiotemporal interpolation of
precipitation in the region under study. It is worth noting that no research has applied this type of
methodology to rainfall data from this region until now. The present study should help drive future
research into spatiotemporal rainfall patterns across all of NEB. The purpose of this study was to
provide a detailed framework to use the spatiotemporal kriging to model the space-time variability of
precipitation data in Paraíba, Brazil.

2. Materials and Methods

The datasets used in this study were obtained from the Executive Agency of Water Management
in the State of Paraíba (AESA), which is responsible for rainfall information in the region. The state
of Paraíba spans an area of approximately 56,585 km2 in northeastern Brazil between the 6◦ and 8◦

parallels of south latitude and the 34◦ and 39◦ meridians of west longitude. The state of Paraíba is
situated in a tropical region, and it is divided into the following four mesoregions: Zona da Mata,
Agreste, Borborema, and Sertão.

The dataset utilized in the present study includes the time series of the total monthly rainfall
recorded at 269 rain gauge stations from 1994 to 2014. About 80% of the stations have missing data,
represented as white tones (Figure 1). Thus, to adjust the trend of the total monthly rainfall data and
then to adjust the residual variogram, 54 stations with records for all of the months in the study period
were considered because these locations adequately represent the variability in the data. The other
stations excluded from the adjustment of the variogram were used to perform spatiotemporal kriging.

The spatial distribution of the 269 rainfall stations is shown in Figure 2. The different color tones
in the map identify the four mesoregions—namely, Zona da Mata, Agreste, Borborema, and Sertão—of
Paraíba. The smaller points within the map represent rain gauge stations, whereas the larger points
are the 54 rainfall stations that were used to adjust the trend and the variogram.
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2.1. Spatiotemporal Model 

In this study, a spatiotemporal process {𝑍(𝐬, 𝑡): (𝐬, 𝑡) ∈ 𝐷 ⊆ ℝ × ℝ} was assumed, where 𝐬 ∈ℝ , 𝑑 = 2 represented the two dimensions in space (latitude and longitude), and 𝑡 ∈ ℝ represented 
only one dimension, namely, time. The spatiotemporal variation in 𝑍  was established by the 
decomposition of the deterministic 𝑚 and stochastic residual 𝜀 as follows: 𝑍(𝐬, 𝑡) = 𝑚(𝐬, 𝑡) + 𝜀(𝐬, 𝑡) (1) 
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2.1. Spatiotemporal Model

In this study, a spatiotemporal process
{
Z(s, t) : (s, t) ∈ D ⊆ Rd

×R
}

was assumed, where s ∈ Rd,
d = 2 represented the two dimensions in space (latitude and longitude), and t ∈ R represented only
one dimension, namely, time. The spatiotemporal variation in Z was established by the decomposition
of the deterministic m and stochastic residual ε as follows:

Z(s, t) = m(s, t) + ε(s, t) (1)

In Equation (1), it was assumed that Z had both first- and second-order moments. The component
of the tendency m(s, t) = E[Z(s, t)] is the expectation variable Z. This component was determined
here by an ordinary least squares (OLS) regression model. The residual ε included the following
three components: spatial, temporal, and interaction-based components [1]. For modeling purposes,
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it was assumed that these three components were second-order stationary, mutually independent, and
spatially isotropic.

The observed rainfall values were considered in the spatiotemporal random field defined in
Equation (1), where the deterministic component m(s, t), which is spatiotemporally non-constant,
represented a large-scale variation, while the residual ε(s, t) described random fluctuations at a small
scale [16].

2.2. Components of the Trend

The deterministic component m(s, t) was estimated using multiple linear regression. Several
studies have used this type of regression method to model the trend component in spatiotemporal
geostatistics [1,13,17,18]. In this study, the geographic coordinates (latitude and longitude) and a
temporal index employed to contour the effect of the annual seasonality on the precipitation were
considered covariates. The adjusted trend model is given by the following:

m̂(s, t) = β̂0 + β̂1x1 + β̂2x2 + β̂3x3 + β̂4x4 + β̂5x5, (2)

where x1 = cosx = cos((month/12) · 2π) and x2 = senx = sin((month/12) · 2π). The cosx and senx
functions were used as covariates in the multiple regression model to explain the seasonal variation.
The variables x3, x4, and x5 represent the latitude, longitude, and the quadratic effect of the longitude,
respectively. Although the covariates exhibit spatial, temporal, and spatiotemporal variations, the
regression model alone cannot account for all the variations. Therefore, the residuals of this model may
exhibit spatiotemporal dependencies, indicating that a spatiotemporal variogram can be estimated
and later used to interpolate the residues with kriging [19].

2.3. Spatiotemporal Variogram

After specifying the trend component and obtaining the parameter estimates, the results were
then subtracted from Z, leaving the spatiotemporal stochastic residue ε. The residuals produced by
this regression were then used for the construction of a sample variogram. For a more detailed model,
the monthly rainfall (Z) was modeled as a sum of the trend and the spatiotemporal residue ε(s, t), as
defined by the following:

Z(s, t) = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + ε(s, t) (3)

After analyzing and removing the spatial and temporal trends in the data, the spatiotemporal
interest is shown in terms of an empirical evaluation of the covariance function [14]. The spatiotemporal
covariance was described using a spatiotemporal variogram, γst, which measured the mean
difference between the separated data in the spatiotemporal domain using the distance vector
(hs, ht). The spatiotemporal variogram was defined as follows:

γst(hs, ht) = 0.5× E[ε(s, t) − ε(s + hs, t + ht)]
2 (4)

In Equation (4), hs = s− s′ and ht = t− t′ for any (s, t) and (s′, t′) in the spatiotemporal domain.
An estimation of the variogram γst(hs, ht) was established as follows:

γ̂st(rs, rt) =
(
2
∣∣∣L(rs, rt)

∣∣∣)−1
ΣL(rs,rt)[ε(s + hs, t + ht) − ε(s, t)]2 (5)

According to the sample variogram presented in Equation (5),
∣∣∣L(rs, rt)

∣∣∣ is the cardinality for
the set L(rs, rt), that is, L(rs, rt) =

{
(s + hs, t + ht) ∈ A, (s, t) ∈ A : hs ∈ Tol(rs) and ht ∈ Tol(rt)

}
, where

Tol(rs) and Tol(rt) are the vectors of the spatial and temporal lags of rs and rt, respectively.
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2.4. Generalized Product-Sum Model

In the next step of the analysis, a theoretical model was used to adjust the data based on the
covariance functions of the spatiotemporal sample variogram. In this study, a non-separable model of
a generalized product-sum [1,20] was used to model the spatiotemporal rainfall structure in the state
of Paraíba. This model was written as follows:

Cst(hs, ht) = kCs(hs)Ct(ht) + Cs(hs) + Ct(ht) (6)

In Equation (6), Cs and Ct are the spatial and temporal covariance functions, respectively.
The spatiotemporal variogram (γst(hs, ht)) was expressed as follows:

γst(hs, ht) = γst(hs, 0) + γst(0, ht) − kγst(hs, 0)γst(0, ht) (7)

In Equation (7), γst(hs, 0) and γst(0, ht) were the spatial and temporal marginal variograms,
respectively. The generalized product-sum model can be seen as a surface with six parameters: two
parameters for each variogram (sill and range), and a joint spatiotemporal sill and nugget [2]. Also, the
parameter k is positive and has the following identity that involves the global sill (sillst), together with
the spatial and temporal sills, namely, sills and sillt, respectively:

sillst = k · sills · sillt + sills + sillt (8)

In Equation (8), k was estimated by using the information of the sill. This approach constitutes an
alternative that Graler et al. [20] described for the formulation of the product-sum model proposed in
Equation (7). In this study, the authors proposed the following restructured Equation (7), which was
used in this study:

γst(hs, ht) = (k · sillt + 1)γst(hs, 0)+

(k · sills + 1)γst(0, ht) − kγst(hs, 0)γst(0, ht)
(9)

To fit a spatiotemporal theoretical variogram to a sample variogram, for the weighting of squared
residuals in the least-squares estimation, we used the number of pairs in the spatiotemporal bin divided
by the square of the current variogram model’s value: N[ j]/γst(hs[ j], ht[ j])

2. The marginal variograms
in this study were outlined based on the sample spatiotemporal variogram γ̂st(rs, rt). Through visual
analysis, it was possible to define the theoretical models as being Gaussian, exponential, and spherical,
which were components of Equation (9). In this way, it was possible to direct the structures for γst(hs, 0)
and γst(0, ht).

2.5. Spatiotemporal Kriging

After establishing the trend function and the covariance for the residual, interpolation was
performed using spatiotemporal regression kriging [16,18,21]. According to Kilibarda et al. [21], the
variogram model is crucial in spatiotemporal kriging for calculating the best non-biased linear predictor,
which was given by the following:

ε̂(s0, t0) = cT
0 Cn

−1ε (10)

In Equation (10), ε̂(s0, t0) was the linear predictor obtained using kriging for the location (s0, t0),
Cn was the covariance matrix of order n× n of the residues for the n points observed in space-time as
derived from the spatiotemporal variogram, c0 was a covariance vector of residues for the observed
and predicted points, and ε was a vector of residues in the n observed points.

The final predictor (ẑ(s0, t0)) for the rainfall variable (Z) at the location (s0, t0) was defined
as follows:

ẑ(s0, t0) = m̂(s0, t0) + ε̂(s0, t0) (11)
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In Equation (11), m̂(s0, t0) is the estimated amount for the location (s0, t0) obtained by Equation (2),
and ε̂(s0, t0) is as defined in Equation (10). The error variance of the prediction in spatiotemporal
kriging was defined as:

σ2(s0, t0) = C(0, 0) − cT
0 C−1

n c0+(
m0 −MTC−1

n c0
)T(

MTC−1
n M

)−1(
m0 −MTC−1

n c0
) (12)

In Equation (12), C(0, 0) is the variance for Z, M is the matrix of order n× p of variable predictors
at the observed points, and m0 is the vector of predictors at the prediction point.

Thus, kriging by regression was performed through the following steps:
Step 1: the values estimated using Equation (2) were extracted, followed by the extraction of the

residues for all of the observations.
Step 2: After obtaining these residues, the values of the sample spatiotemporal variogram were

calculated as defined in Equation (5), followed by the theoretical model fitting defined in Equation (9).
Step 3: The residues were then interpolated using Equation (10), after which, the trend component

was added, resulting in the final predictor defined in Equation (11).

2.6. Selection and Performance of the Model

To determine the best theoretical variogram model that fit the sample variogram, the root mean
square error (RMSE) and Nash–Sutcliffe efficiency (NSE) between the sampling variogram and the
theoretical variogram were calculated [22]:

RMSE =

√√
1
n

n∑
i=1

[zi(s, t) −− ẑi(s, t)]2 (13)

NSE =

∑n
i=1[zi(s, t) − z(s, t)]2 −

∑n
i=1[zi(s, t) −− ẑi(s, t)]2∑n

i=1[zi(s, t) − z(s, t)]2
(14)

where, n is the number of observations, zi(s, t) is the i-th observed value, ẑi(s, t) is the i-th predicted
value, and z(s, t) is the mean observed value.

After selecting the model that best fit the cloud of points from the sample variogram, spatiotemporal
kriging was conducted to measure the performance of the adjusted model. Thus, interpolation was
implemented by accounting for the leave-one-out method [14,18,23], as applied to all 269 rain gauge
stations. This method consisted of removing an observed point from the rainfall in space-time (z(s0, t))
and then predicting its value (ẑ(s0, t)). This process was then repeated for all remaining points and
residues of this process, after which the difference between the observed and predicted values is taken
at each location (z(s0, t) − ẑ(s0, t)).

After the leave-one-out method was applied to measure the kriging performance, a scatter plot of
the observed values versus the values predicted by spatiotemporal kriging was constructed, and the
coefficient of determination was computed. It is worth noting that the application of the methodology
proposed in this study allows for missing data to be entered. One of the advantages of spatiotemporal
kriging relative to purely spatial kriging is that it not only interpolates to non-sampled locations but
also predicts values for a time in which there was no data collection [1,24].

All statistical analyses were performed in software R [25], using the packages gstat [20] and sp [26].

3. Results

3.1. Exploratory Analysis

The descriptive measures and boxplots of rainfall values in millimeters (mm) for the 1994–2014
period are shown in Table 1 and Figure 3.
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Table 1. Mean values, standard deviation (SD), and coefficient of variation (CV) of rainfall (mm) for
the period 1994–2014 in the mesoregions of Zona da Mata, Agreste, Borborema, and Sertão.

Months
Zona da Mata Agreste Borborema Sertão

Mean SD CV (%) Mean SD CV (%) Mean SD CV (%) Mean SD CV (%)

January 86.6 79.8 92 62.9 83.8 133 61.5 85.9 140 124.7 116.4 93
February 99.4 79.1 80 66.2 62.8 95 64.9 61.6 95 133.2 87.7 66

March 121.1 85.2 70 85.8 62.3 73 106.6 86.5 81 187.6 115.1 61
April 173.0 111.7 65 95.5 70.1 73 84.2 76.1 90 156.1 106.9 69
May 191.1 121.1 63 100.2 77.2 77 67.8 66.7 98 92.9 76.8 83
June 273.3 146.2 54 131.0 80.2 61 44.9 41.5 93 34.0 36.5 107
July 190.3 114.8 60 106.0 76.2 72 26.3 26.3 100 17.1 19.6 114

August 116.3 67.2 58 64.8 48.7 75 14.4 18.7 130 6.8 14.3 210
September 59.9 68.9 115 29.5 41.7 141 4.6 9.5 207 2.1 7.7 359

October 20.8 19.2 92 9.8 13.3 135 7.8 23.6 302 13.0 30.3 233
November 17.7 18.1 103 12.0 18.9 158 6.1 16.0 260 13.5 25.8 192
December 31.7 30.8 97 20.6 23.8 116 20.0 29.7 149 41.5 45.6 110

Based on the average values and coefficient of variation, differences in rainfall distribution were
observed between the analyzed months (Table 1). Moreover, within each month, the monthly rainfall
exhibited a distinct behavior in each mesoregion. Similar results were reported in References [27,28].
Figure 3 demonstrates that each mesoregion had a distinct rainy period and a different mechanism
for the rainfall distribution. For example, in the mesoregion of Sertão, the highest rainfall volume
occurred from January to April, whereas the rainfall in Zona da Mata was well distributed from
January to August. For the analyzed period, September presented the greatest variability in all the
mesoregions. Through these results, the spatial and temporal variability in the rainfall throughout the
state is well known.
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3.2. Regression Analysis for the Trend Component

The estimated parameters, standard error, statistical t, p-value, and adjusted coefficient of
determination (R2) for the monthly total rainfall for the 1994–2014 period are presented in Table 2.
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Considering the results presented in Table 2, the covariates cosx, senx, latitude, and longitude,
in addition to the quadratic effect of the longitude, are associated with precipitation at the 0.01 level of
significance. The R2 estimated by the model shows that this trend model explained 29% of the variation
in the total monthly precipitation. This low R2 strongly indicates that the trend component was unable
to explain the spatiotemporal variability in the precipitation. Moreover, it was challenging to provide
a precise estimate for climatic variables, especially precipitation, because the spatial and temporal
distributions of such variables exhibited large variations, causing the trend model to present a low
R2 [15]. It is worth noting that the methodology proposed in this paper to estimate the precipitation
accounts not only for the trend but also for the dependence of spatiotemporal data. Then, the residues
produced by this trend component were modeled.

Table 2. Estimation of the parameters of the model described in the Equation (2) of the rainfall in the
region analyzed from 1994 to 2014.

Variable Estimation Standard Error t-Value p-Value R2

Intercept 323.193 124.843 2.589 <0.01

0.290

cosx −19.981 0.854 −23.392 <0.01
senx 52.554 0.854 61.525 <0.01

Latitude 0.061 0.013 4.884 <0.01
Longitude −2.308 0.079 −29.330 <0.01
Longitude2 0.002 0.001 30.082 <0.01

A histogram of the residues in the multiple linear regression is shown in Figure 4. This is suitable
for visual analysis of the residue behavior, which appears to have a positive asymmetry. In Figure 4,
it is also possible to perceive the large scale of the variation in the residues, which is explained by the
high variability in the precipitation.
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Next, the residuals from this regression were used to analyze the spatiotemporal autocorrelation
using the variogram described in Equation (5).

3.3. Spatiotemporal Variogram of the Residuals

After removing the spatiotemporal rainfall trend, the variogram was calculated using the residuals.
The empirical spatiotemporal variogram model (Figure 5a) and the fitted product-sum model (Figure 5b)
are shown in Figure 5. As shown, the residues indicated a clear correlation between both space and
time, and spatial and temporal components explained the total variation in these residues. Note that
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the spatial structure became weaker as the time differences increased, and the temporal structure
became weaker as the spatial differences increased.Water 2019, 11, x FOR PEER REVIEW 9 of 16 
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Figure 5. Sample spatiotemporal variogram (a) and the adjusted product-sum model (b) obtained from
the residuals of the multiple linear regression.

The sample variogram can be visualized in terms of its marginal variograms, with one for space
and another for time. The increasing trends in the spatial and temporal dimensions in the sample
variogram indicated the presence of a strong spatiotemporal correlation. Hu et al. [2] stated that the
characteristics present in Figure 5a further reinforced the need to apply spatiotemporal kriging to
residues. In this sample spatiotemporal variogram, different structures were fitted for the generalized
product-sum model class. Figure 5b shows one of these results when using a Gaussian model for space
and a Gaussian model for time.

Subsequently, an exploratory analysis was performed for the empirical spatiotemporal variogram
to construct the marginal variograms (Figure 6).
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Figure 6. Marginal variograms of the residues: purely spatial (a) and purely temporal (b).

For the analyzed data, the spatial variability exhibited by the spatial marginal variogram (Figure 6a)
was different from the temporal variability shown by the temporal marginal variogram (Figure 6b)
because the two variograms present different sill values. Iaco et al. [1] observed characteristics similar
to those presented in Figure 6a,b and stated that, in this situation, the spatiotemporal correlation of the
residues could be adequately fitted using the generalized product-sum variogram model defined in
Equation (9). In this case, as mentioned above, the structures of the spatial and temporal correlation
were noticeable. However, some studies on rainfall distribution did not present this significant
correlation; for example, Muthusamy et al. [29] developed a spatial variogram for the region of
Bradford, England, but did not report a spatial correlation of the rainfall data.

Different variogram models were evaluated during the adjustment of the generalized product-sum
model. For both space and time, the following models were used: Gaussian, exponential, and spherical.
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3.4. Selection and Validation of the Model

The estimated parameters for the generalized product-sum model are presented in Table 3, were
obtained by considering the different structures for the spatial and temporal components. The RMSE
and NSE were used to compare the models. Some studies, such as References [1,2,21,24], used only a
single spatiotemporal correlation structure. In this study, a more comprehensive analysis was proposed
by using different structures in the model formation.

Table 3. Estimations of parameters (sill, range, and nugget) of the generalized product-sum variogram
model fitted for the residuals and root mean square error (RMSE) and Nash–Sutcliffe efficiency (NSE).
The parameter k involves the global sill.

Model Sill Range Nugget k RMSE NSE

Space Gaussian 7.648 181 km 1.713
23.480 10.207 0.903Time Exponential 26.683 43 days 8.446

Space Gaussian 4.140 178 km 0.930
25.129 10.155 0.905Time Spherical 45.686 143 days 24.184

Space Gaussian 8.591 180 km 1.933
19.861 10.150 0.905Time Gaussian 27.963 71 days 17.075

Space Exponential 6.889 192 km 0.616
23.486 10.646 0.899Time Gaussian 29.500 71 days 18.056

Space Exponential 4.380 192 km 0.400
23.614 10.667 0.900Time Spherical 46.065 147 days 24.232

Space Exponential 6.280 195 km 0.574
24.823 10.686 0.897Time Exponential 30.775 45 days 10.401

Space Spherical 1.804 388 km 0.237
15.857 10.341 0.901Time Exponential 162.584 42 days 49.179

Space Spherical 5.967 391 km 0.758
9.251 10.288 0.904Time Gaussian 85.384 70 days 51.693

Space Spherical 3.047 392 km 0.385
23.750 10.294 0.904Time Spherical 65.444 143 days 34.775

For the generalized product-sum variogram model, the best structure, having the lowest RMSE
and higher NSE, was found when considering the Gaussian model for both the spatial component
and the temporal component. According to the selected model, the parameters related to the range
showed spatial and temporal variations in the rainfall distribution over the state of Paraíba. The spatial
range of 180 km suggested that the spatial correlation became insignificant after this sill, whereas the
time interval of 71 days (approximately two months) indicated that the temporal correlation became
insignificant after this interval.

After the best model was selected by adjusting the variogram, the cross-validation leave-one-out
method was applied, and the results are presented below.

The spatiotemporal distribution of the mean RMSE values based on the 1994–2014 period is
presented for each month in Table 4, in which high values indicate a high variability between the
estimated and observed amounts in the rainfall distribution.

The highest values of the RMSE are shown between October and December. In the mesoregion
of Sertão, smaller values of RMSE were noted between January and May, because it was during this
period that the lowest variability of precipitation occurred (Table 1). These results are similar to those
found in References [15,27]. The rainy seasons presented high spatial variability due to the actions
of different weather systems, such as the Intertropical Convergence Zone (ITCZ) and Upper-Level
Cyclonic Vortex (ULCV), as described by Macedo et al. [28].
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Table 4. Mean values of RMSE of rainfall (mm) for 1994–2014 in the mesoregions of Zona da Mata,
Agreste, Borborema, and Sertão.

Month Zona da Mata Agreste Borborema Sertão

January 30.4 32.9 30.4 30.9
February 31.5 30.2 29.2 31.0

March 30.9 30.0 32.1 29.7
April 30.5 31.9 32.9 31.4
May 31.6 35.1 32.1 30.6
June 31.2 32.6 35.8 33.7
July 33.3 31.9 32.7 33.4

August 33.4 33.4 31.5 31.4
September 28.4 31.2 31.5 31.3

October 34.5 33.4 33.1 33.3
November 33.6 34.6 33.7 33.0
December 33.1 35.2 33.4 34.2

The months from January to March provided the lowest RMSE throughout most of the study
region, indicating that the predicted values were close to the observed rainfall values. These results are
consistent with Raja et al. [15], who reported that the lowest variability in Paraíba occurred during
these months. Accordingly, it was also possible to observe a substantial monthly statistical variation.

To evaluate the quality of the fit for the model that was selected earlier, graphics were created
using all of the values predicted using spatiotemporal kriging according to their actual values and the
histogram of the difference between these values (Figure 7) considering all 269 rain gauge stations.

Figure 7 shows a strong linear relationship of the form y = x between the estimated and observed
values, which was supported by an R2 value of 0.85, which indicates that 85% of the total precipitation
variability could be explained using spatiotemporal kriging. Additionally, a visual analysis of the
differences between these values presented in Figure 7a shows that the differences were distributed
symmetrically with a frequency near zero. In other words, the scatter plot of the observed versus the
estimated values during the 1994–2014 period, as well as the histogram of the differences between
these values (Figure 7b), showed that the predictions were not significantly biased.
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3.5. Spatiotemporal Kriging

Maps of the estimated rainfall for January in the years of 2015–2018 are shown in Figure 8.



Water 2019, 11, 1843 12 of 16

Water 2019, 11, x FOR PEER REVIEW 12 of 16 

 

Figure 7. Comparison between the observed and estimated values (a) and the histogram of the 
difference between these values (b). 

3.5. Spatiotemporal Kriging 

Maps of the estimated rainfall for January in the years of 2015–2018 are shown in Figure 8. 

 
Figure 8. Prediction maps of precipitation in January 2015–2018. 

The application of the methodology proposed in this study presents a great advantage because 
it enables the use of spatiotemporal kriging to make predictions at any point in space-time within the 
chosen region. Thus, it enables an evaluation of how rainfall distribution patterns change with regard 
to both space and time, in addition to presenting values in places that are not monitored by weather 
stations. This application is illustrated in Figure 8, which shows the predicted amount of 
spatiotemporal rainfall in the state of Paraíba for January in the years of 2015–2018. January was 
chosen because it presented the highest rainfall values throughout the entire region, and it showed 
high variabilities in both space and time. The predicted rainfall presented strong spatial and temporal 
patterns in the study region, evidencing the success achieved when applying the proposed 
geostatistical spatiotemporal methodology. 

Regardless of the selected period, the highest rainfall level was distributed in the Zona da Mata 
mesoregion (Figure 8). There was little variation in precipitation in the north–south direction. 
However, high variability was observed among predictions in the east–west direction. Finally, the 
greatest variation in rainfall was found in the Sertão mesoregion of Paraíba. In Figure S1, which is 
available in the supplementary material, the predicted rainfall values are shown for all months within 
the 2015–2020 period. 

In addition to the spatiotemporal kriging-related predictions for January from 2015 to 2018, 
Figure 9 shows maps of the standard error representing the uncertainty in the rainfall predictions in 
the chosen period. The error showed variations in the east–west direction. Moreover, within each 
mesoregion, there were variations in the estimates. It is also worth noting that the Borborema 
mesoregion presented the highest indexes for the standard error of the prediction; this behavior was 
attributed to the more intense rainfall in this area. 

Figure 8. Prediction maps of precipitation in January 2015–2018.

The application of the methodology proposed in this study presents a great advantage because
it enables the use of spatiotemporal kriging to make predictions at any point in space-time within
the chosen region. Thus, it enables an evaluation of how rainfall distribution patterns change with
regard to both space and time, in addition to presenting values in places that are not monitored by
weather stations. This application is illustrated in Figure 8, which shows the predicted amount of
spatiotemporal rainfall in the state of Paraíba for January in the years of 2015–2018. January was
chosen because it presented the highest rainfall values throughout the entire region, and it showed
high variabilities in both space and time. The predicted rainfall presented strong spatial and temporal
patterns in the study region, evidencing the success achieved when applying the proposed geostatistical
spatiotemporal methodology.

Regardless of the selected period, the highest rainfall level was distributed in the Zona da Mata
mesoregion (Figure 8). There was little variation in precipitation in the north–south direction. However,
high variability was observed among predictions in the east–west direction. Finally, the greatest
variation in rainfall was found in the Sertão mesoregion of Paraíba. In Figure S1, which is available
in the Supplementary Material, the predicted rainfall values are shown for all months within the
2015–2020 period.

In addition to the spatiotemporal kriging-related predictions for January from 2015 to 2018,
Figure 9 shows maps of the standard error representing the uncertainty in the rainfall predictions
in the chosen period. The error showed variations in the east–west direction. Moreover, within
each mesoregion, there were variations in the estimates. It is also worth noting that the Borborema
mesoregion presented the highest indexes for the standard error of the prediction; this behavior was
attributed to the more intense rainfall in this area.
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4. Discussion

In this study, rainfall in the state of Paraíba was spatiotemporally modeled using well known
geostatistical techniques, such as kriging. Similar studies involving spatial [30] or temporal [31]
analyses of rainfall distributions have already been performed for the state of Paraíba, although they
did not take into account the combined spatiotemporal variability in this phenomenon. Thus, this
research presents a joint spatiotemporal study of the rainfall distribution in this state.

Here, the trend component represented 29% of the temporal variability in the rainfall. Studies
in References [13,17,18] indicated that modeling this trend component influenced the fitting of the
spatiotemporal variogram of the residues. Accordingly, this study could be improved by considering
environmental factors, such as the temperature, in the adequate description of the trend component;
this would likely result in an expected increase in the phenomenon variability percentage being
modeled. Thus, the model for the trend only somewhat explained the variability in the data because
it accounted for less than half of the variability of the spatiotemporal precipitation in the study area.
Several studies have shown that the integration of climatic variables into precipitation predictions
generates models with greater accuracy, thereby reducing error metrics and increasing R2 values [15,32].
However, there is a lack of meteorological variables for the study region. For the state of Paraíba, only
eight weather stations provided recorded data, and it was impossible to use a few of those stations in
this work because their data could negatively affect the predictions in the model. For future studies,
the results obtained in this study could be compared with those derived from the application of data
obtained using simulations. Another important topic addressed in this research is the ability to explain
the variability in the data beyond just the trend component; this analytical ability was achieved by
adjusting the covariance functions for the residuals obtained by adjusting the trend because they had
space-time dependence [14,21].

The rainfall distribution in the state of Paraíba showed a clear correlation for both space and time,
thereby justifying the use of spatiotemporal kriging. When constructing the spatiotemporal variogram
of the residues, several researchers found that spatial dependence became weaker with an increase in
time, while the temporal dependence became insignificant over vast spatial distances [19,21,27,33].
In the studies mentioned above, the modeled phenomena did not present common characteristics
in the spatiotemporal structure during the construction of the variogram. After the removal of the
trend component, the rainfall data showed a clear spatial correlation structure over different temporal
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distances and a temporal correlation structure over different spatial distances. From a theoretical
perspective, some studies fitted models to the marginal sample variograms obtained from an empirical
spatiotemporal variogram and then inserted the individual fittings into the product-sum model [1,24].
Nevertheless, this study proposes a method to fit the spatiotemporal theoretical model because
spatiotemporal interactions directly impact the parameter estimations; when theoretical models are
fitted to the marginal variograms, there is no interference in the estimation from this interaction.
However, this type of procedure results in problems during the optimization and determination of
the parameter estimations. Examples of studies that employed this type of fitting can be found in
References [2,34].

This research represents a breakthrough for climatological studies because it employs a technique
that is more accurate than traditional statistical methods. The application of the statistical methodology
proposed in this paper constitutes a significant contribution toward understanding the variability in
precipitation and water resources of a region. The proposed approach considers that the spatiotemporal
variability is decomposed by the trend component and the stochastic residue. However, the method
presents some limitations, one of which is the difficulty in capturing the variabilities between the
locations separated by great distances in the dataset. Additionally, for future work involving this type
of modeling, it will be necessary to include auxiliary variables, such as the humidity and temperature,
for the trend component to present better metrics.

The interpolation of climate data is widely used for research and management purposes in
several disciplines, including social science [1], hydrology [14], and forestry [33]. The importance of
both spatial and temporal modeling of the rainfall distribution in the state of Paraíba is crucial for
the management of high-priority areas that may experience a scarcity of rainfall caused by periods
of drought or instances of flooding caused by excess rainfall, thereby inducing environmental and
socioeconomic damages [35]. The application of spatiotemporal kriging to obtain rainfall records from
unobserved sites should provide favorable conditions for the planning and management of water
resources because it will be possible to analyze regions that have a high impact on the state economy.
For example, Biondi [36] performed spatiotemporal rainfall kriging and presented results that directly
addressed the planning needs for the distribution of water and natural resources once the occurrence
of drought in a river basin has been diagnosed because it was possible to analyze which geographic
areas were more likely to be affected by severe droughts.

5. Conclusions

The rainfall mechanisms throughout the analyzed region presented variability over both space
and time. Furthermore, the spatiotemporal kriging of precipitation clarified the dramatic spatial and
temporal variability of water resources among the mesoregions throughout the state, thereby providing
a detailed visual analysis of sectors experiencing precipitation conditions ranging from water scarcity
to an excess of rainfall.

In this study, a rainfall data analysis methodology was proposed through spatiotemporal
geostatistics and was applied to irregularly spaced weather stations by considering the rainfall
distribution over both space and time. Notably, the rainfall variability may be related to spatial and
weather covariates, such as the temperature, humidity, and altitude, among others, suggesting the
need to include such covariates for future studies to model the effect of the rainfall trend. Moreover,
the monthly rainfall in the analyzed region presented a series of records with null values, which
affected the application of a standard regression model to a certain extent. Exploring these issues in
detail will require the development of a non-normal model that enables a better explanation regarding
the variability in the rainfall distribution throughout the region. This model will constitute the next
investigative step and it will be reported soon.

The results achieved in this research should motivate further research, including studies throughout
the northeastern region of Brazil, to make predictions to diagnose which sites might experience droughts
or floods.



Water 2019, 11, 1843 15 of 16

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/11/9/1843/s1,
Figure S1: Prediction maps of precipitation in 2015–2020.

Author Contributions: Conceptualization, E.S.d.M., R.R.d.L., R.A.d.O., and C.A.C.d.S.; Methodology, E.S.d.M.,
R.R.d.L., and R.A.d.O.; Software, E.S.d.M.; Validation, E.S.d.M. and R.R.d.L.; Formal analysis, E.S.d.M., R.R.d.L.,
R.A.d.O., and C.A.C.d.S.; Investigation, E.S.d.M., R.R.d.L., R.A.d.O., and C.A.C.d.S.; Resources, E.S.d.M.; Data
curation, E.S.d.M. and C.A.C.d.S.; Writing—original draft preparation, E.S.d.M., R.R.d.L., R.A.d.O., and C.A.C.d.S.;
Writing—review and editing, E.S.d.M., R.R.d.L., R.A.d.O., and C.A.C.d.S.; Visualization, E.S.d.M.; supervision,
E.S.d.M., R.R.d.L., R.A.d.O., and C.A.C.d.S.

Funding: This research was funded by the Brazilian National Council for Scientific and Technological
Development (CNPq) and the Brazilian Federal Agency for the Support and Evaluation of Graduate
Education (CAPES). The fourth author also acknowledges the CAPES—Finance Code 001 (Pró-Alertas Research
Project—Grant No. 88887.091737/2014-01 and 88887.123949/2015-00; and Visiting Professor Fellowship—Grant No.
88881.172029/2018-01).

Acknowledgments: The main author wish to acknowledge the administrative support provided by the UFLA
(Federal University of Lavras) and UFGD (Federal University of Grande Dourados) and the technical support
provided by Water. The fourth author also acknowledges Lacey Bodnar from the Daugherty Water for Food
Global Institute (DWFI) at the University of Nebraska-Lincoln for her invaluable assistance.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Iaco, S.D.; Palma, M.; Posa, D. Spatio-temporal geostatistical modeling for French fertility predictions.
Spat. Stat. 2015, 14, 546–562. [CrossRef]

2. Hu, Y.; Li, R.; Bergquist, R.; Lynn, H.; Gao, F.; Wang, Q.; Zhang, S.; Sun, L.; Zhang, Z.; Jiang, Q. Spatio-temporal
Transmission and Environmental Determinants of Schistosomiasis Japonica in Anhui Province, China.
PLoS Negl. Trop. Dis. 2015, 9, e0003470. [CrossRef]

3. Lopes, I.; Santos, S.M.; Leal, B.G.; Melo, J.M.M. Variation of aridity index and climatic trend to desertification
for the semi-arid region of the Brazilian Northeast. Rev. Bras. Geogr. Física 2017, 10, 1014. [CrossRef]

4. de Almeida, H.A.; Medeiros, E.A. Variabilidade no regime pluvial em duas mesorregiõres da Paraíba e sua
relação com o fenômeno EL Niño Oscilação Sul. J. Environ. Anal. Prog. 2017, 2, 177. [CrossRef]

5. Gomes, O.M.; dos Santos, C.A.C.; Souza, F.; de Paiva, W.; de Olinda, R.A. Análise Comparativa da Precipitação
no Estado da Paraíba Utilizando Modelos de Regressão Polinomial. Rev. Bras. Meteorol. 2015, 30, 47–58.
[CrossRef]

6. Tabios, G.Q.; Salas, J.D. A Comparative Analysis of Techniques for Spatial Interpolation of Precipitation.
J. Am. Water Resour. Assoc. 1985, 21, 365–380. [CrossRef]

7. Phillips, D.L.; Dolph, J.; Marks, D. A comparison of geostatistical procedures for spatial analysis of
precipitation in mountainous terrain. Agric. For. Meteorol. 1992, 58, 119–141. [CrossRef]

8. Hevesi, J.A.; Flint, A.L.; Istok, J.D. Precipitation Estimation in Mountainous Terrain Using Multivariate
Geostatistics. Part II: Isohyetal Maps. J. Appl. Meteorol. 1992, 31, 677–688. [CrossRef]

9. Goovaerts, P. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall.
J. Hydrol. 2000, 228, 113–129. [CrossRef]

10. Martínez-Cob, A. Multivariate geostatistical analysis of evapotranspiration and precipitation in mountainous
terrain. J. Hydrol. 1996, 174, 19–35. [CrossRef]

11. Goovaerts, P. Using elevation to aid the geostatistical mapping of rainfall erosivity. Catena 1999, 34, 227–242.
[CrossRef]

12. Haberlandt, U. Geostatistical interpolation of hourly precipitation from rain gauges and radar for a large-scale
extreme rainfall event. J. Hydrol. 2007, 332, 144–157. [CrossRef]

13. Hu, D.; Shu, H.; Hu, H.; Xu, J. Spatiotemporal regression Kriging to predict precipitation using time-series
MODIS data. Clust. Comput. 2017, 20, 347–357. [CrossRef]

14. Martínez, W.A.; Melo, C.E.; Melo, O.O. Median Polish Kriging for space–time analysis of precipitation.
Spat. Stat. 2017, 19, 1–20. [CrossRef]
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