
water

Article

Assessing Changes of Water Yield in Qinghai Lake
Watershed of China

Xi-hong Lian 1,2 , Yuan Qi 1,*, Hong-wei Wang 1, Jin-long Zhang 1 and Rui Yang 1,2

1 Key Laboratory of Remote Sensing of Gansu Province, Northwest Institute of Eco-Environment and
Resources, Chinese Academy of Sciences, Lanzhou 730000, China; lianxh@lzb.ac.cn (X.-h.L.);
wanghw@lzb.ac.cn (H.-w.W.); zjinlong@lzb.ac.cn (J.-l.Z.); yangrui@lzb.ac.cn (R.Y.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: qiyuan@lzb.ac.cn

Received: 26 November 2019; Accepted: 16 December 2019; Published: 19 December 2019 ����������
�������

Abstract: Water yield is an important ecosystem service, which is directly related to human welfare
and affects the sustainable development. Using the integrated valuation of environmental services
and tradeoffs model (InVEST model), we simulated the dynamic change of water yield in Qinghai
lake watershed, Qinghai, China, and verified the simulation results. This paper emphatically explored
how precipitation change and land use/land cover change (LUCC) affected the change of water
yield on the spatial and temporal scales. Before 2004, the areas of cultivated land and unused land
showed a dramatic increasing tendency, while forestland and water area presented a decreasing trend.
After 2004 cultivated land changed slowly, unused land decreased. Grassland revealed a general
trend of decline during 1977–2018, while built-up land basically presented a linear increase. The
results show that water yield fluctuated and increased during 1977–2018. From 1977 to 2000, the
mean water yield in each sub-watershed showed an increasing trend and afterward a decreasing
one. After 2000, the sub-watersheds basically showed an increasing tendency. There was a strong
correlation, with a correlation coefficient of 0.954 ** (** correlation is significant at the 0.01 level),
between precipitation and water yield. Land use/land cover change can change the hydrological state
of infiltration, evapotranspiration, and water retention. Meanwhile, the correlation between built-up
land and water yield was the highest, with a correlation coefficient of 0.932, followed by forestland,
with a correlation coefficient of 0.897. Through the analysis of different scenarios, we found that
compared with land use/land cover change, precipitation played a more dominant role in affecting
water yield.
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1. Introduction

Ecosystem services, which represent the benefits that human beings derive from ecosystem,
are related to socioeconomic development and human wellbeing [1,2]. Ecosystem services include
provisioning, regulatory, supporting, and cultural services [3,4]. Many ecosystem services are crucial
for human survival, especially the water-related ecosystem services [5,6], such as water yield, which
plays a basic role in agriculture, industry, and quality of life for humans [7,8]. Abundant water
provision means the sustainable development of the regional economy and society. Quantitative
evaluation and visualization of water yield is helpful to understand the trends of water supply function
of ecosystem, and is beneficial to reveal the relationship between human beings and water resources,
which is of great significance for scientific management and utilization of water resources [9].

Models play a significant role in assessment of water yield, because they can estimate and simulate
the spatial distribution of water yield [10]. However, more and more attention has been paid to the
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accuracy of the model output and the validation and evaluation of the performance of models in
different circumstances and locations [11,12]. The input parameters have a great influence on the output
results of the model. Many studies use sensitivity analysis methods to analyze the dependence between
model output and variables [13,14], and in turn adjust model input parameters to find a set of optimal
parameters. In fact, the input parameters of water yield module need to be calculated by physical
equation or empirical equation [15,16]. So, we should make the input parameters more reasonable
and accurate by standardizing the input data and taking full account of the regional characteristics
and differences. In addition, the output results of the model are compared and verified through the
observation data to evaluate the performance of the model without sensitive analysis methods and
parameter adjustment, so as to provide a supporting evidence for us to use the model in the similar
areas without measured data or insufficient data.

Since the 1970s, many distributed hydrological models, including soil and water assessment
tool (SWAT) [17], artificial intelligence for ecosystem services (ARIES) [18], integrated valuation of
ecosystem services and tradeoffs (InVEST) [19] and so on, have been established. Each model has
advantages and disadvantages. However, in the absence of reliable and readily available datasets,
simpler models are potentially more attractive. Compared with SWAT and ARIES, InVEST model has
become a popular framework in the analysis of a series of ecosystem services and has been applied in
a variety of places [20–22]. As InVEST was designed to deal with long-term average input data, we
argue that it is suitable for exploring the long-term effects of LUCC and climate changes on water yield.

Climate change and land use/land cover change (LUCC) caused by human activities are the most
important factors for change of water yield [23]. Climate change which regulates water supply on a
macro scale, can alter the water yield by changing the precipitation and potential evapotranspiration in
a watershed [24,25]. The water yield may change because of human-induced land use [26,27]. Previous
studies have explored the effects of land use changes on spatial and temporal variations in water
yield [28–30]. The land use data they used were only the results of the primary classification. In fact,
the effect of land use change on water yield is very complicated [31]. Different land use conversions
are not same on water yield. Little attention has been given to using more detailed classification
criteria, especially in long time series. Therefore, it is necessary to explore how these two factors affect
the changes of water yield in study area. Understanding underlying mechanisms of driving factors
to water yield is the ultimate goal of our simulation and evaluation. Previous studies elucidate the
driving mechanisms by using scenario simulations and calculating contribution rates [32]. There are
few studies on quantitative evaluation of water yield ability of different types of LUCC. It is significant
to quantify individual LUCC type to water yield, because it is not only crucial to analysis, also useful
to improving the predictability of water yield dynamic response to LUCC [33].

In this study, we selected the Qinghai lake watershed as the study area, and analyzed the changes
of water yield because of the climate change and LUCC. The performance of the integrated valuation
of environmental services and tradeoffs (InVEST) water yield models was assessed in Qinghai lake
watershed. The primary aim of this paper is to provide foundation for scientific management of water
resources. The specific objectives of this study are to: (1) Assess the dynamic change of water yield
over the period of 1977 to 2018; (2) verify the model results by observation data; (3) reveal the dynamic
relationship between water yield change and precipitation and LUCC, especially specific to individual
LUCC type; (4) evaluate the applicability of the InVEST model in Qinghai lake watershed and provide
reference information for water resource management and ecological protection.

2. Materials and Methods

2.1. Study Area

Qinghai lake watershed (Figure 1) is located in the northeast of Qinghai-Tibet Plateau, China
between 36◦15′–38◦20′ N and 97◦50′–101◦20′ E, and covers an area of approximately 29,646 km2.
Qinghai lake is the largest inland saline lake in China. Qinghai lake watershed is a natural barrier to
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prevent the west from desert spreading from the east, and is an important node to maintain ecological
security in the northeast of Qinghai-Tibet Plateau [34,35]. In general, the temperature increases from
northwest to southeast in the watershed. The watershed has a typical plateau continental climate with
average annual temperatures of about −0.7 ◦C and a mean annual precipitation of 381 mm [36,37].
The topography of the watershed decreases from the northwest to the southeast. There are three
main vegetation types in the study area, they are Potentilla fruticosa shrub, Kobresia meadow, and
Achnatherum splendens steppe. The ecological environment of Qinghai lake watershed largely reflects
the overall ecological change trend of Qinghai-Tibet plateau. Because of its unique geographical
location and environment, the watershed has become an ecologically fragile area.
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Figure 1. Location of Qinghai lake watershed.

2.2. Water Yield Module

The InVEST model was developed in 2007 by Stanford University, the World Wildlife Fund for
Nature and the Nature Conservancy to assess the ecosystem services and support environmental
decision-making. The water yield module in the InVEST model is based on the Budyko curve and the
annual average precipitation [38,39]. The model algorithm is as follows:

Yx = (1−
AETx

Px
) × Px (1)

where Yx is the water yield of pixel x, AETx is the annual actual evapotranspiration for pixel x, and Px

is the annual precipitation on pixel x. AETx
Px

approximates the Budyko curve [40].

AETx

Px
= 1 +

PETx

Px
−

[
1 +

(PETx

Px

)ω] 1
ω

(2)

where PETx is the potential evapotranspiration for pixel x, ω is the empirical parameter and its
expression is:
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ω = Z ·
AWCx

Px
+ 1.25 (3)

where AWCx is the plant available water content and Z is empirical parameter.
Potential evapotranspiration is defined as:

PETx = Kc(`x) · ET0(x) (4)

where Kc(`x) is the plant evapotranspiration coefficient associated with LUCC on pixel, and ET0(x) is
the reference evapotranspiration.

2.3. Data Sources and Preparation

Water yield module requires annual precipitation, average annual reference evapotranspiration,
root restricting layer depth, plant available water content (PAWC), LUCC, watersheds, sub-watersheds,
biophysical table, and seasonality factor (Z).

The annual precipitation and temperature data were acquired from the China Meteorological
Administration. The original data were the daily meteorological observation data of meteorological
station and were interpolated into 30 m × 30 m grid data by the Australian National University Splines
(ANUSPLIN) package. It should be pointed out that DEM data were used as auxiliary data in the
process of meteorological data interpolation. Meteorological stations within and around the Qinghai
lake watershed were selected, including 16 stations, such as Tianjun station, Gangcha station, and
Haiyan station.

The Penman-Monteith equation is the best equation for estimating ET0, because it can be used
globally without any local calibration [41]. This method is limited in application by the lack of input
parameters. With this in mind, Allen suggested to use the Hargreaves equation [42] for estimating ET0.
So in this study, ET0 is calculated based on the Modified-Hargreaves equation, its expression is:

ET0(x) = CRa(Tmax − Tmin)
E
(Tmax + Tmin

2
+ T

)
(5)

where Tmax and Tmin are the monthly highest temperature and lowest temperature respectively. Ra is
the monthly radiation from the sun’s upper atmosphere and is obtained by Allen equation. We used
the values of C, E, and T recommended by Hu on the Qing-Tibet plateau [43].

Root restricting layer depth is replaced by reference soil depth as a proxy. PAWC is defined as the
difference between the fraction of volumetric field capacity and permanent wilting point. Zhou developed
a method for PAWC estimation using physical and chemical properties of soil [44], its expression is:

PAWC = 54.509− 0.132× sand%− 0.003× (sand%)2
− 0.055× silt%− 0.006× (silt%)2

−

0.738× clay% + 0.007× (clay%)2
− 2.688×OM% + 0.501× (OM%)2 (6)

where PAWC is the plant available water fraction; sand%, silt%, clay%, OM% are the proportion of sand,
silt, clay, and organic matter in soil. The soil data comes from the Harmonized World Soil Database
version 1.2 (HWSD) [45]. The data set was provided by Cold and Arid Regions Sciences Data Center
at Lanzhou.

The LUCC data included the LUCC data in 1977, 1987, 2000, 2005, 2010, 2018. The first five phases
of land use data were interpreted from Landsat Thematic Mapper (TM) and/or Enhanced Thematic
Mapper (ETM) images. The last phase of the natural features was interpreted by Landsat ETM images,
while the artificial features were interpreted by Gaofen-2 remote sensing images. The LUCC data
were classified into 22 classes at 30 m spatial resolution. Considering the difference between the data
source of the first five phases and the last phase, we collected the LUCC of Qinghai lake watershed
in 2010, which was derived from Data Center for Eco-Environment Protection in the Qinghai Lake
Basin, and also obtained the LUCC with spatial resolution of 100 m in 2018, which was taken from the
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Data Center of the Chinese Academy of Sciences. Those datasets were used for cross-validation of our
interpretation results.

The sub-watersheds data were generated from the 30 m digital elevation model (DEM) by
Hydrology Analyst Tools in ArcGIS 10.5. Biophysical table is a table that contains the biophysical
coefficients used in water yield module. Each column contains a different attribute. Lucode is the
unique code corresponding to each LUCC class. LUCC_desc is to describe the name of each LUCC class.
LUCC_veg contains the information on which AET Equation (1) to use. Root_depth is often given as
the depth as which 95% of a vegetation type’s root biomass occurs. Kc is the plant evapotranspiration
coefficient for each LUCC class.

Seasonality factor (Z) is an empirical parameter which describes the rainfall intensity and
topography characteristics, with typical values ranging from 1 to 30. There are three methods to
calculate Z [46]: (i) Using the observed streamflow data; (ii) as a function of the average annual number
of rain events; (iii) using global estimations of ω. In our study, we used the third approach to estimate
Z, and its expression, that is:

Z =
(ω− 1.25) · P

AWC
(7)

where P and AWC are the average annual values of precipitation and available water capacity,
respectively [8]. According to this method, the calculated Z of the Qinghai lake watershed was equal
to 8.5.

We obtained the volume of water yield of Qinghai lake watershed over the years from the Qinghai
water resources bulletin, which was published by Qinghai water resources information website.

3. Results

3.1. Dynamic Change of LUCC

LUCC data were divided into 6 level (I) classes and 22 level (II) classes. The interpretation results
were verified with the field survey data in 2018, indicating that the overall accuracies of level (I) class
and level (II) class were 94.5% and 86.4%, respectively. We compared the results of our interpretation
with the collected LUCC data. The results showed that our interpretation was 92% consistent with the
published data in 2010. We used field survey data to evaluate the accuracy of published data, and we
found that our interpretation accuracy was 5% higher than the data collected in 2018. Meanwhile, it is
further explained that different data sources do not affect the final interpretation result.

The mainly land cover types in the Qinghai lake watershed were cultivated land, forestland,
grassland, water area, built-up land, and unused land. We divided 22 secondary subcategories under the
six primary land types. It can be seen from the spatial distribution of LUCC that the area of grassland
coverage was the highest, accounting for approximately 63% of the total area of the watershed. That is to
say, the watershed is well covered by vegetation. The area of water area, unused land, forestland, and
cultivated land accounted for about 18%, 15%, 1.6%, and 1.5% of the total area, respectively. Forestland is
mainly distributed in the Gangcha county. Sandy land is mostly located at the eastern and western parts
of Qinghai lake. Wetland is mainly distributed in Tianjun county and Gangcha county. Built-up land is
mainly concentrated in the surrounding area of Qinghai lake (Figure 2).

The area of cultivated land increased sharply before 2000 and slowly changed after 2000. The area
of cultivated land had increased by 163 km2 in the past 40 years. From 1977 to 2000, the area of forest
land decreased promptly. After 2000, it began to rise. In 2018, the area of forestland was basically
the same as that in 1970s. Grassland basically showed a downward trend, which is closely related to
regional human activities. Grassland area decreased by 207 km2 before 2000, and slowly rose from
2000 to 2004. However, it reduced generally after 2004. Before 2004, the water area basically showed a
decreasing trend, while, it increased after 2004. Built-up land showed a tendency of linear growth
between 1977 and 2018. In particular, built-up area expanded significantly faster from 2010 to 2018.
The change in the area of unused land generally increased significantly, then remained stable, and
finally decreased sharply (Figure 3).
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Figure 2. Land use and land cover change (LUCC) patterns in the Qinghai lake watershed.

Taking 1977 as the baseline year, we calculated the land cover change transfer probability matrix
of 1987, 2000, 2004, 2010, and 2018. The results indicated that the transformation rules of land
types were basically the same in 1987, 2000, 2004, and 2010. The proportion of non-cultivated land
conversion from cultivated land was less than 3%. Cultivated land was mostly converted into built-up
land, and the proportion had been growing. Forestland was mainly converted into grassland. The
percentage of forestland converted to non-forestland increased from 5.47% to 6.72% between 1987
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and 2010. Grassland was mostly converted into cultivated land and unused land, and the grassland
area remained above 97.76% of the original area. Water area was largely converted into unused land,
and proportions of water area were 96.64%, 96.30%, 94.88%, and 95.17% in 1987, 2000, 2004, and 2010,
respectively. The percentage of built-up land that had not been transformed into other types of land
increased year by year and remained above 99%. Unused land was mainly converted into grassland.
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Figure 3. Temporal changes of land use and land cover.

From the transition probability matrix of LUCC during 1977 to 2018, the percentage of cultivated
land to forestland, grassland, and built-up land was 3.69%, 2.78%, and 2.81%, respectively. The
proportion of forestland to grassland was 8.37%, in addition, there were 2.83% and 0.11% forestland
converted to unused land and cultivated land. The proportion of non-grassland conversion from
grassland was 3.62%. And 1.80% grassland was converted to unused land, it implied that grassland
in these areas had degraded. Water area was basically converted into grassland and unused land,
with the proportion of 2.49% and 3.00% respectively. 13.25% of the built-up land was converted to
cultivated land, while 1.40% of the built-up land was transformed into grassland. It is notable that
3.54% of built-up land was converted to unused land. The percentage of unused land to grassland and
water was 6.08% and 1.11% respectively (Table 1).

Table 1. Transition probability matrix of LUCC during 1977–2018.

Time LUCC
1977

Cultivated
Land

Forest
Land

Grass
Land

Water
Area

Built-Up
Land

Unused
Land

2018

Cultivated land 90.54% 0.11% 0.93% 0.00% 13.25% 0.03%
Forestland 3.69% 87.74% 0.18% 0.21% 0.10% 0.07%
Grassland 2.78% 8.37% 96.38% 2.49% 1.40% 6.08%
Water area 0.02% 0.93% 0.49% 94.28% 0.21% 1.11%

Built-up land 2.81% 0.02% 0.22% 0.02% 81.50% 0.04%
Unused land 0.16% 2.83% 1.80% 3.00% 3.54% 92.67%

From 1977 to 2004, the proportion of cultivated land converted to built-up land was 1.8%.
An obvious phenomenon was the degradation of forestland into grassland and the transformation of
water into unused land (Table 2). From 2004 to 2018, cultivated land was transformed into forestland
and grassland. Forestland was transformed into grassland and unused land. The percentage of
grassland to water area was the largest. The water area was mainly transformed into grassland and
unused land. The proportion of built-up land converted to cultivated land was 10.25%. Unused land
was mainly transformed into grassland and water area (Table 3).
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Table 2. Transition probability matrix of LUCC during 1977–2004.

Time LUCC
1977

Cultivated
Land

Forest
Land

Grass
Land

Water
Area

Built-up
Land

Unused
Land

2004

Cultivated land 98.12% 0.00% 0.84% 0.00% 0.47% 0.00%
Forestland 0.00% 92.85% 0.07% 0.08% 0.00% 0.03%
Grassland 0.08% 6.41% 97.84% 1.56% 0.17% 2.46%
Water area 0.00% 0.32% 0.13% 94.88% 0.00% 0.24%

Built-up land 1.80% 0.01% 0.08% 0.00% 99.36% 0.01%
Unused land 0.00% 0.40% 1.04% 3.48% 0.00% 97.26%

Table 3. Transition probability matrix of LUCC during 2004–2018.

Time LUCC
2004

Cultivated
Land

Forest
Land

Grass
Land

Water
Area

Built-Up
Land

Unused
Land

2018

Cultivated land 89.33% 0.11% 0.22% 0.00% 10.25% 0.03%
Forestland 3.38% 93.59% 0.10% 0.19% 0.21% 0.04%
Grassland 5.68% 2.58% 98.03% 1.64% 2.24% 4.20%
Water area 0.02% 0.91% 0.58% 96.19% 0.48% 3.49%

Built-up land 1.46% 0.01% 0.14% 0.01% 85.00% 0.04%
Unused land 0.12% 2.80% 0.94% 1.96% 1.82% 92.21%

3.2. Simulation Verification

It should be pointed out that no data were published before 2000, and the water yield data in
2000 refers to the water yield in the surrounding area of Qinghai lake (QHLS). Simulation error was
calculated by published data and simulation results. It turned out that simulation errors were 6.93%,
3.45% and 0.26% in 2004, 2010, and 2018, respectively. The year with the largest simulation error
was 2004, and the year with the smallest was 2018 (Table 4). Therefore, it can be proved that the
InVEST model can be well used to simulate the spatial-temporal change of water yield in Qinghai lake
watershed. Meanwhile, it is proved that the input parameters of the model are in accordance with the
geographical characteristics of the study area.

Table 4. Actual water yield, simulated results, and simulation error.

Year Actual_Water Yield/108 m3 InVEST_Water Yield/108 m3 Simulation Error

1977 NAN 18.17 NAN
1987 NAN 23.84 NAN
2000 13.05 (QHLS) 19.03 (QHLW) —
2004 23.25 24.98 6.93%
2010 29.97 28.97 3.45%
2018 45.57 45.45 0.26%

Note: QHLS refers to the surrounding area of Qinghai lake, and QHLW refers to Qinghai lake watershed.

3.3. Dynamic Change of Water Yield

We focused on the temporal and spatial dynamic changes of water yield in 1977–2018. The results
show that water yields tended to increase in Qinghai lake watershed. Volumes of total annual water
yield, which were calculated by InVEST model during 1977 to 2018, are showed in Table 2. The lowest
water yield value was in 1977, and the highest water yield value was in 2018 (Figure 4). Comparing
the water yield and average annual precipitation, we found that two trends were basically the same.
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Figure 4. Annual water yields and precipitation of Qinghai lake watershed (1977–2018).

The watershed was delineated into 12 sub-watersheds (Figure 5). We calculated the mean water
yield in each sub-watershed. QHL-1 was the largest sub-watershed, which contributed the most to
the water yield of Qinghai lake watershed. It should be noted that the mean values of sub-watershed
QHL-8 and sub-watershed QHL-9 were close to 0, so no analysis was performed. The lowest mean
water yield was sub-watershed QHL-2, and the highest mean water yield was sub-watershed QHL-5.
From 1977 to 2000, the mean water yield in each sub-watershed showed an increasing trend and
afterward a decreasing one. From 2000 to 2010, sub-watershed QHL-7 and sub-watershed QHL-1
showed a trend of continuous increase, however, sub-watershed QHL-7 showed a decreasing trend
from 2010 to 2018. Except for sub-watershed QHL-7, all other sub-watersheds were basically in an
increasing trend from 2010 to 2018.
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Figure 5. Sub-watershed and mean water yield of each sub-watershed (1977–2018).

As can be seen from the spatial distribution, the distribution of water yield had significant spatial
heterogeneity. The spatial pattern of high and low values of water yield distribution was basically
consistent during 1977 to 2018. Water yield increased gradually from southeast to northwest. We can
find that areas of low water yield were mainly concentrated in the surrounding area of Qinghai lake.
Water yield in mountain area was obviously more than that in the surrounding area of Qinghai lake.
Areas with high water yield were located in the northern, western mountainous areas and edge of the
watershed, especially in the central part of Tianjun county. Regional water yields showed an obvious
increasing trend in Tianjun County and Gangcha County between 1977 and 2018. Water yield was
very high in the area of alpine tundra. Water yields fluctuated between 0 mm and 780.68 mm in study
area. The maximum water yield in 2018 was abnormally higher than before (Figure 6). In fact, the
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population was mainly concentrated in the surrounding area of Qinghai lake. In contrast, areas with
high water yield had less population distribution.
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3.4. Effect of Precipitation on Water Yield

Meteorological stations we analyzed were mainly three meteorological stations within the Qinghai
lake watershed and the nearby Haiyan station. The names of the meteorological stations are Tianjun
station, Gangcha station, Haiyan station, and Jiang Xigou station, respectively. We calculated the
cumulative annual precipitation for each station (Figure 7). We used the moving average method to fit
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the data of each meteorological station, in order to reflect the detailed change characteristics. Then, the
linear fitting method was utilized to find a line to show the overall trend of data changes. The results
showed that, the annual precipitation of Tianjun station had fluctuated from 250 mm to 450 mm, with
an overall upward trend since 1955. The highest annual precipitation was 563.6 mm, and the lowest
annual precipitation was 211.6 mm. Annual precipitation of Gangcha station had fluctuated from
270 mm to 450 mm, with an overall upward trend. The highest annual precipitation was 572.3 mm,
and the lowest annual precipitation was 260.0 mm. It should be pointed out that Haiyan station only
had precipitation data since 1976. Minimum precipitation of Haiyan station was 248.2 mm, and the
maximum value was 522.3 mm. It showed a general upward tendency. Although the data of Jiang
Xigou station was rare, the precipitation data of Jiang Xigou station from 1973 to 1998 only showed a
slow rising trend. The highest annual precipitation was 635.7 mm, and the lowest annual precipitation
was 325.2 mm.
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Figure 7. Annual precipitation of meteorological stations: (a) Tianjun station, (b) Gangcha station,
(c) Haiyan station, and (d) Jiang Xigou station.

We calculated the average precipitation of the three meteorological stations in 1977, 1987, 2000,
2004, 2010, and 2018. Pearson correlation analysis was subsequently performed using these values
and the annual water yields of the watershed. The results of this analysis indicated that the Pearson
correlation coefficient between annual water yield and annual average precipitation was 0.954 ** (**
correlation is significant at the 0.01 level), with a significance of 0.001. Taking regional variability into
account, we carried out the Pearson correlation analysis on the annual precipitation of each station and
the water yield of the sub-watershed where the station was located. It turned out that the Pearson
correlation coefficient between annual water yield and annual precipitation was 0.899 * (* correlation is
significant at the 0.05 level), with a significance of 0.006 in Tianjun station. And the Pearson correlation
coefficient was 0.929 **, with a significance of 0.002. When precipitation changed with time period,
water yield of the watershed also changed significantly, and there was a high correlation between the
two variables. Therefore, precipitation became a very important factor which affected the changes of
water yield.

Geographical distribution of the ratio of water yield to precipitation, which can reflect the
consistency between the two, is showed in Figure 8. Comparing the spatial distribution of water yield
depth per pixel to annual precipitation, the water yield rises with high precipitation. It can be seen from
the spatial and temporal dynamic changes of the ratio of water yield to precipitation that precipitation
had a high contribution rate to water yield. For instance, in 2018, the highest water yield was located
in the northern, western mountainous areas (Figure 6). The ratio of water yield to precipitation also
tended to be the highest in the same places, correspondingly (Figure 8).
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3.5. Effect of LUCC on Water Yield

The Pearson correlation was carried out to study the influence of LUCC on the changes of water
yield (Table 5). The 22 LUCC classes were aggregated into six land cover types for each year. The Pearson
correlation coefficients were calculated between changes of water yield and changes of cultivated land,
forestland, grassland, water area, built-up land, and unused land. The highest positive correlation was
observed between the change of water yield and the change of built-up land area, and the correlation
coefficient was 0.932 *. The Pearson correlation coefficient between changes of water yield and changes
of built-up land was 0.897 *. It should be noted that the changes of water yield were negatively correlated
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with the changes of unused land and cultivated land. In conclusion, the change in the forestland,
built-up land and unused land made major contribution to the change in the water yield.

Table 5. Pearson correlation between the changes of water yield and LUCC.

LUCC Correlation Significance

Cultivated land −0.198 0.750
Forestland 0.897 * 0.039
Grassland 0.075 0.905
Water area 0.314 0.607

Built-up land 0.932 * 0.021
Unused land −0.398 0.506

Note: * correlation is significant at the 0.05 level.

Figure 9 depicts the water yield in different LUCC types from 1977 to 2018. Overall, the water yield
of each LUCC type showed an increasing trend. The mean and median of water yield of cultivated land
were basically close from 1977 to 2010, and increased significantly in 2018. In fact, the area of cultivated
land in 2018 declined slightly compared with 2010. The average water yield of forestland was 99 mm
in 1977 and had been rising ever since. The mean water yield by forestland in 2018 was twice the
average amount in 1977. The average water yield of grassland in 2018 was four times that of 1977. The
lower quartile of water yield of grassland in 2018 was basically the same as the mean value in 2004.
Grassland basically showed a downward trend, while the water yield of grassland increased. The
mean and median of water area were close to 0. The water yield of built-up land increased significantly
during 1977 to 1987. The average water yield of built-up land was approximately 50 mm and 100 mm,
respectively, in 1977 and 1987. The variation range of water yield in 2000 was basically the same as
that in 1987. The lower quartile and the upper quartile were similar to that in 1977, but the mean
and median of water yield were both higher than that in 1977. Water yield of built-up land showed
significant upward trend during 2000 to 2018. The lower quartile in 2004 was equal to the mean value
in 2000. Compared with 2004, the lower quartile in 2010 was significantly higher, but the maximum
was lower. The upper quartile in 2018 was approximately equal to the maximum in 2010, and the
mean value and median were much higher than the upper quartile in 2010. The average water yield of
unused land was basically above 115 mm, and the upper quartile was above 300 mm from 1977 to 2010,
and the median was above 160 mm in 2018. The area of wetlands accounted for approximately 8.2% of
the whole watershed. Wetlands which absorbed water during wet periods and released it during dry
seasons could play an important role in hydrological process. In fact, water yield of wetlands was not
high from 1977 to 2010, but increased in 2018. While, water yield of unused land increased from 1977 to
2018. In terms of spatial distribution, we found that the high value of water yield of unused land was
mainly in the area of alpine tundra. The region of alpine tundra was less affected by human activities.

Water 2020, 12, x FOR PEER REVIEW 13 of 18 

 

the change in the forestland, built-up land and unused land made major contribution to the change 

in the water yield. 

Table 5. Pearson correlation between the changes of water yield and LUCC. 

LUCC Correlation Significance 

Cultivated land −0.198 0.750 

Forestland 0.897 * 0.039 

Grassland 0.075 0.905 

Water area 0.314 0.607 

Built-up land 0.932 * 0.021 

Unused land −0.398 0.506 

Note: * correlation is significant at the 0.05 level. 

Figure 9 depicts the water yield in different LUCC types from 1977 to 2018. Overall, the water 

yield of each LUCC type showed an increasing trend. The mean and median of water yield of 

cultivated land were basically close from 1977 to 2010, and increased significantly in 2018. In fact, the 

area of cultivated land in 2018 declined slightly compared with 2010. The average water yield of 

forestland was 99 mm in 1977 and had been rising ever since. The mean water yield by forestland in 

2018 was twice the average amount in 1977. The average water yield of grassland in 2018 was four 

times that of 1977. The lower quartile of water yield of grassland in 2018 was basically the same as 

the mean value in 2004. Grassland basically showed a downward trend, while the water yield of 

grassland increased. The mean and median of water area were close to 0. The water yield of built-up 

land increased significantly during 1977 to 1987. The average water yield of built-up land was 

approximately 50 mm and 100 mm, respectively, in 1977 and 1987. The variation range of water yield 

in 2000 was basically the same as that in 1987. The lower quartile and the upper quartile were similar 

to that in 1977, but the mean and median of water yield were both higher than that in 1977. Water 

yield of built-up land showed significant upward trend during 2000 to 2018. The lower quartile in 

2004 was equal to the mean value in 2000. Compared with 2004, the lower quartile in 2010 was 

significantly higher, but the maximum was lower. The upper quartile in 2018 was approximately 

equal to the maximum in 2010, and the mean value and median were much higher than the upper 

quartile in 2010. The average water yield of unused land was basically above 115 mm, and the upper 

quartile was above 300 mm from 1977 to 2010, and the median was above 160 mm in 2018. The area 

of wetlands accounted for approximately 8.2% of the whole watershed. Wetlands which absorbed 

water during wet periods and released it during dry seasons could play an important role in 

hydrological process. In fact, water yield of wetlands was not high from 1977 to 2010, but increased 

in 2018. While, water yield of unused land increased from 1977 to 2018. In terms of spatial distribution, 

we found that the high value of water yield of unused land was mainly in the area of alpine tundra. 

The region of alpine tundra was less affected by human activities. 

  1977 1987 2000 2004 2010 2018

0

70

140

210

280

350

w
at

er
 y

ie
ld

/m
m

(a)

1977 1987 2000 2004 2010 2018

0

150

300

450

600
(b)

w
at

er
 y

ie
ld

/m
m

Figure 9. Cont.



Water 2020, 12, 11 14 of 18
Water 2020, 12, x FOR PEER REVIEW 14 of 18 

 

  

  

Figure 9. Water yield in different LUCC types from 1977 to 2018. (a) Cultivated land, (b) forestland, 

(c) grassland, (d) water area, (e) built-up land and, (f) unused land. 

3.6. Mechanism for LUCC and Climate Change Influencing Water Yield 

LUCC and climate change are key drivers to the change of water yield in the Qinghai lake 

watershed. To further explore which factor is more significant for water yield changes in the study 

area, two different scenarios were designed: under the scenario without climate change and under 

the scenario without LUCC. Under the scenario without climate change, there was no change in the 

input meteorological data, which was always the meteorological data from 1977. However, the LUCC 

data in 1977, 1987, 2000, 2004, 2010, and 2018 were treated as the input data for the corresponding 

years. Under the scenario without LUCC, the LUCC conditions were assumed to be the same as 1977. 

Finally, the two scenarios and the actual conditions were compared to reveal the impacts of LUCC 

and climate change on water yield. It should be acknowledged that the impact of LUCC was far 

smaller than that of climate change (Table 6). 

Table 6. Water yield under different scenarios. 

Year Only LUCC Scenario/108 m3 Only Climate Change Scenario/108 m3 Real Scenario/108 m3 

1977 18.17 18.17 18.17 

1987 18.74 23.78 23.84 

2000 19.64 18.81 19.03 

2004 18.78 24.68 24.98 

2010 18.33 28.54 28.97 

2018 17.97 44.56 45.45 

Under the scenario without LUCC, the water yield in the Qinghai lake watershed significantly 

increased, which was basically consistent with the real situation. Precipitation tends to quickly form 

runoff, which reduces soil moisture while increasing the water yield. Thus, precipitation directly 

impacts the water yield. Under the scenario without climate change, the water yield showed an 

increasing trend and afterward a decreasing one. 

1977 1987 2000 2004 2010 2018

0

150

300

450

600 (c)
w

at
er

 y
ie

ld
/m

m

1977 1987 2000 2004 2010 2018

0

150

300

450

600 (d)

w
at

er
 y

ie
ld

/m
m

1977 1987 2000 2004 2010 2018

0

120

240

360

480
(e)

w
at

er
 y

ie
ld

/m
m

1977 1987 2000 2004 2010 2018

0

160

320

480

640

800

(f)

w
at

er
 y

ie
ld

/m
m

Figure 9. Water yield in different LUCC types from 1977 to 2018. (a) Cultivated land, (b) forestland, (c)
grassland, (d) water area, (e) built-up land and, (f) unused land.

3.6. Mechanism for LUCC and Climate Change Influencing Water Yield

LUCC and climate change are key drivers to the change of water yield in the Qinghai lake
watershed. To further explore which factor is more significant for water yield changes in the study
area, two different scenarios were designed: under the scenario without climate change and under the
scenario without LUCC. Under the scenario without climate change, there was no change in the input
meteorological data, which was always the meteorological data from 1977. However, the LUCC data
in 1977, 1987, 2000, 2004, 2010, and 2018 were treated as the input data for the corresponding years.
Under the scenario without LUCC, the LUCC conditions were assumed to be the same as 1977. Finally,
the two scenarios and the actual conditions were compared to reveal the impacts of LUCC and climate
change on water yield. It should be acknowledged that the impact of LUCC was far smaller than that
of climate change (Table 6).

Table 6. Water yield under different scenarios.

Year Only LUCC Scenario/108 m3 Only Climate Change Scenario/108 m3 Real Scenario/108 m3

1977 18.17 18.17 18.17
1987 18.74 23.78 23.84
2000 19.64 18.81 19.03
2004 18.78 24.68 24.98
2010 18.33 28.54 28.97
2018 17.97 44.56 45.45

Under the scenario without LUCC, the water yield in the Qinghai lake watershed significantly
increased, which was basically consistent with the real situation. Precipitation tends to quickly form
runoff, which reduces soil moisture while increasing the water yield. Thus, precipitation directly
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impacts the water yield. Under the scenario without climate change, the water yield showed an
increasing trend and afterward a decreasing one.

To explore which one had the most impact on changes of water yield, the Pearson correlation was
carried out between LUCC and the change of water yield under the scenario without climate change
(Table 7). The highest positive correlation was observed between the change of water yield and the
change of built-up land area, and the correlation coefficient was 0.979 **. The change of water yield was
negatively correlated with the change of grassland and forestland, and the correlation coefficients were
−0.952 * and −0.885 *, respectively. Correlation results indicate again that built-up land, grassland, and
forestland made major contribution to the change in the water yield.

Table 7. Pearson correlation between the changes of water yield and LUCC (Only LUCC scenario).

LUCC Correlation Significance

Cultivated land 0.490 0.402
Forestland −0.885 * 0.046
Grassland −0.952 * 0.012
Water area 0.498 0.393

Built-up land 0.979 ** 0.004
Unused land 0.617 0.267

Note: * correlation is significant at the 0.05 level, ** correlation is significant at the 0.01 level.

4. Discussion

LUCC can change the hydrological state of infiltration, evapotranspiration, and water retention [47].
The mechanism for LUCC influencing water yield was far more complex. Cultivated land had a
capacity to hold the water in plants and soil. Meanwhile, crops need water to grow. During the
stage from 1977 to 2000, the area of grassland decreased, which was consistent with the previous
study [48]. Vegetation land produced lower water yield, because vegetated land had the ability to
convert water into soil. This conclusion has been proved in existing studies [49,50]. Water yield of
forestland increased, however, forestland decreased before 2010, and increased from 2010 to 2018. This
was at odds with most previous studies [51], which suggested that forestland was responsible for the
most water yield loss. A possible reason is that area of forestland in Qinghai lake watershed was only
about 1.6% of the total area, and up to 85% of forest were sparse forest and shrubs, which have a lower
water retention capacity. Built-up land is usually covered with asphalt, cement and concrete, forming
an impermeable layer, which reduced the infiltration and concentration time [52]. Increases in built-up
land led to increases in water yield. The conclusion was in line with the existing conclusions [53].

The finding that grassland and forestland produce lower water yield while built-up land generates
more water yield was consistent with the existing studies [33,54]. But it is worth noting that the
processes of LUCC are more complex. Meanwhile, conversions of LUCC lead to both negative and
positive influence. Therefore, the overall consequence is not clear. In contrast, climate change is
straightforward, but requires a long time to have a noticeable impact.

However, our study still has some limitations. InVEST represents bio-physical processes in a
simplified manner, the model assumes all water yield from a pixel reaches a point. So the model
does not distinguish between surface and subsurface water. At the same time, the limited ability
of the model accounts for intra- annual variation in water supply. The retention and transport of
water are both neglect in the model. Therefore, it is necessary to make some further improvement in
future research. Although with these uncertainties, the results of this study can still reflect the general
tendency of water yield, and reveal the relationship between water yield and LUCC and climate
change. It can provide some reference information for scientific management and utilization of water
resources and conserving the ecological environment.
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5. Conclusions

Water yield is an important component of ecosystem services, which is related to regional
ecological security and sustainable development of resources. In this study, we evaluated the dynamic
change of water yield in Qinghai lake watershed from 1977 to 2018, and verified the simulation results
with the data published by Qinghai water resources department. We also explored the influence of
precipitation and LUCC on the water yield.

Our results demonstrated that water yield of the whole watershed tended to increase from 18.17
× 108 m3 in 1977 to 45.45 × 108 m3 in 2018. The distribution of water yield had obviously spatial
heterogeneity. The water yield of mountain area was larger than that of the surrounding lake area.

The results show that precipitation change and LUCC both had important influence on water yield
during 1977 to 2018. Compared with land use/land cover change, precipitation played a more dominant
role in affecting water yield. In particular, we focused on the specific impact of each individual LUCC
type on the change of water yield. The water yield of each LUCC type showed an increasing trend.
The change in the built-up land, forestland, and unused land made major contribution to the change in
the water yield.

In conclusion, InVEST model has good applicability and performance in Qinghai lake watershed.
There are still some uncertainties in the simulation, but the results provide decision foundation for the
scientific management of water resources and ecological environment protection.
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