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Abstract: In this study, we developed a workflow that applies a complex groundwater model for
purpose-driven groundwater monitoring network design and uses linear uncertainty analysis to
explore the predictive dependencies and provide insights into the veracity of the monitoring design.
A numerical groundwater flow model was used in a probabilistic modelling framework for obtaining
the spatial distribution of predicted drawdown for a wide range of plausible combination of uncertain
parameters pertaining to the deep sedimentary basin and groundwater flow processes. Reduced rank
spatial prediction was used to characterize dominant trends in these spatial drawdown patterns using
empirical orthogonal functions (EOF). A differential evolution algorithm was used to identify optimal
locations for multi-level piezometers for collecting groundwater pressure data to minimize predictive
uncertainty in groundwater drawdown. Data-worth analysis helps to explore the veracity of the
design by using only the sensitivities of the observations to predictions independent of the absolute
values of predictions. A 10-bore monitoring network that collects drawdown data from multiple
depths at each location was designed. The data-worth analysis revealed that the design honours
sensitivities of the predictions of interest to parameters. The designed network provided relatively
high data-worth for minimizing uncertainty in the drawdown prediction at locations of interest.

Keywords: groundwater monitoring; uncertainty; optimization

1. Introduction

Onshore gas industry dominated by coal seam gas has been growing in Australia over the last
decade. Unlike conventional gas, production of coal seam gas often involves extraction of large
volumes of water from the coal beds. Where freshwater aquifers are connected to the coal beds, it is
important to assess and monitor whether depressurization of coal seams cause pressure drawdown in
the connected freshwater sources over the life and beyond the gas development project. Monitoring of
groundwater using dedicated observation networks is important to monitoring the status quo of the
resource subjected to stressors like mining and gas, irrigation, and or climate change.

Prediction and monitoring of groundwater impacts caused by the large scale onshore gas resource
development activities is challenged by the fact that such activities focus on coal seams or reservoirs in
deeper parts of sedimentary basins where conventional groundwater monitoring datasets are often
sparse. Consequently, there are large-scale uncertainties about the hydrogeological characteristics
of the aquifers and intervening aquitards involved. In data-poor areas, an iterative procedure of
assessment of groundwater impacts from resource development should be adopted to inform adaptive
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management. The essential steps in such a management framework comprises three steps. These are:
(a) predictive analysis of impacts using models informed by existing datasets; (b) identifying the types
and locations for new monitoring data that can inform the predictions of interest; and (c) refining the
predictions and management actions, including make-good arrangements where needed. Such an
iterative approach can help to ensure that groundwater impacts are quantified in advance, whilst
acknowledging the uncertainties. The validity of predictions and the extent of any potential impacts
can be verified by collecting compliance monitoring data and managed adaptively with an appropriate
level of certainty. This can also help regulators to ensure that resource development projects achieve
minimal impact to the environment and water resources. In this study, we developed and applied a
workflow of predictive modelling and monitoring network design that focus on identifying the data
gaps and optimizing monitoring strategies. These two foci can progressively help reduce uncertainty
and improve confidence in predicted groundwater impacts from anthropogenic activities like mining
and gas development.

Numerous research studies in the past have employed optimization methods in conjunction with
numerical simulation models to inform optimal monitoring strategies [1–16]. Many of these studies
have been developed in the context of water quality monitoring and/or detection of contaminant
migration from point sources [17–25]. The objectives of optimization considered in these studies
include minimization of variance of the statistical estimator, minimization of uncertainty over the
predicted spatial domain and strength of contaminant plumes, minimizing the cost of monitoring and
maximization of the worth of data collected while satisfying budgetary constraints.

Such monitoring network optimization studies have previously not been developed in the context
of monitoring groundwater drawdown impacts from CSG development. Previous practical approaches
to design groundwater monitoring networks in regions of CSG development [26] have focused on
the footprint of the planned CSG development, with the objective of achieving specified monitoring
bore density within long-term affected areas and providing background monitoring and information
required for supporting regional flow models. Sreekanth et al. [27] developed a theoretical basis for
designing monitoring networks in the case of contaminant transport monitoring, using spatial basis
functions and stochastic optimization. The proof-of-concept of the method was tested for designing a
monitoring network for monitoring contamination risks in proposed well field for managed aquifer
recharge. However, the use of simulation and optimization for monitoring network design when
impacts can potentially arise over large spatial extents horizontally and vertically in the case of deep
sedimentary basins is challenged by several factors. One of the biggest challenges of using predicted
variables (groundwater heads or concentrations) for monitoring network design is that the veracity of
the design is dependent on the model predictions.

Linear uncertainty analysis provides a powerful tool to identify the influence of model parameters
on predictions and uncertainties [28,29]. Data-worth identification using linear uncertainty analysis
have been applied in the recent past in groundwater modeling studies [30,31]. Middlemis and
Peeters [32] discussed the value of relative composite sensitivity analysis as used in the above studies
for informing the relative value of measurements in informing predictions. Recently, Sundell et al. [33]
presented a value of information analysis (VOIA) to determine the need for additional information
when assessing the effect of alternative designs in hydrogeological systems. Our study and the
proposed workflow, in addition to optimization of the monitoring design, enables us to explore
the predictive dependencies and veracity of the design independent of the predicted variables by
employing these methods. The workflow employs linear analysis techniques that uses only the model
sensitivities in computing the data-worth instead of absolute values of predictions at the designed
monitoring locations.

Another major challenge is the scalability of conventional simulation-optimization methods to
regional scale modelling problems. Historically, optimization of monitoring networks has largely
focussed on informing monitoring decisions in groundwater remediation contexts. In the context
of groundwater drawdown induced by onshore gas extraction, groundwater models need to cover
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spatial domains extending hundreds of kilometres horizontally and many hydrostratigraphic layers
(aquifers and aquitards) vertically. Informing the design of groundwater monitoring networks using
groundwater models in such contexts requires numerous simulations from regional scale models.
Often, these models take several hours to complete a single simulation run [26,34].

Another major challenge is the difficulty in accounting for predictive uncertainty of these large-scale
models in monitoring network design. A significant source of uncertainty stems from a paucity of
data relating to hydraulic characteristics of deep aquifers, aquitards and coal seams. This is especially
true in the green field sites where minimal onshore gas development has occurred and where the only
available information about hydraulic characteristics is from the coal exploration bores. Observations
of water levels from deep bores and continuous record of groundwater pressures are almost always
absent in such regions, resulting in substantial uncertainty in the model predictions of pressures and
pressure changes over large spatial scales.

Often, highly parameterized models that have hundreds or thousands of parameters are required
to adequately capture the uncertainty in spatially varying hydraulic characteristics to appropriately
estimate the model prediction uncertainty. In such cases, deterministic simulations using groundwater
models cannot provide reliable information for major investment decisions like drilling of monitoring
bores. Probabilistic approaches that help to estimate the predictive uncertainty and their spatial
characteristics are better suited to identify the type of data and the locations of its measurement that
will enable to reduce the uncertainty in the predictions of interest.

The main aim of this study is to address the practical challenges of design and verification
of groundwater monitoring network using an integrated methodology and apply it to a
complex groundwater flow model for groundwater monitoring network design and explore
prediction-independent verification of the design. The remaining sections of this paper are organized in
the following order. Section 2 describes the development of the proposed methodology and workflow.
Section 3 describes various steps in the application of the methodology for the selected case study.
Section 4 describes and discusses the results, and Section 5 presents the conclusions.

2. Materials and Methods

The workflow presented in this study for optimal design of groundwater monitoring network has
three essential steps: (1) Probabilistic predictive analysis of the variables of interest (e.g., drawdown)
and their spatial variability using a numerical groundwater model; (2) monitoring network design using
the predictive analysis in conjunction with spatial basis function and global optimization algorithm;
and (3) independent verification of the relative data-worth of observations collected at the designed
optimal locations using linear analysis. The workflow is diagrammatically represented in Figure 1.

Figure 1. Workflow for optimal monitoring network design and data-worth analysis.
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2.1. Probabilistic Predictive Analysis

A numerical groundwater model developed for simulating the variables of predictive interest
forms the basis of this task. The model should ideally be developed in such a way that uncertainties in
the input parameters are variables can be propagated through the model to quantify the uncertainties
in the predicted variables. Calibration of the model results in identification of parameter sets that
honour the observation data sets by satisfying a threshold objective function. Predictive analysis
is subsequently undertaken by running Monte Carlo simulations of the model scenario for all
combinations of parameters that satisfy the threshold objective function. These predictive simulations
then form the essential data set for doing the optimal monitoring network design in step 2. The details
of the model development, calibration and Monte Carlo simulations used in our case study is described
in detail in Section 3.

2.2. Optimal Monitoring Network Design

We extended and applied the optimization method proposed in Sreekanth et al. [27].
Sreekanth et al. [27] tested the applicability of spatial basis functions in reproducing predicted
patterns in the transport of contaminant plumes in an aquifer and used that information in designing a
monitoring network to minimize the error in predicting the contaminant plume over the spatial domain
using measurements at limited number of monitoring points in the aquifer. In this component of our
present study, we applied the same method and tested the scalability and adaptability of the method to
a larger dimensional problem in terms of the number of variables and patterns for which spatial basis
functions were to be developed. In this study we used spatial basis functions to reproduce D-max
and T-max patterns in five different model layers corresponding to different aquifers and aquitard
formations. In practical terms, this provides the additional advantage of optimizing the placement of
multi-level piezometers to monitoring propagation of depressurization towards risk receptors that
are separated from the coal seam gas target formations by means of hydraulically distinct formations.
Such sentinel monitoring networks are important to provide early warnings and identify mitigation
measures before important risk receptors are impacted.

Spatial Basis Functions and Monitoring Network Optimization

The methodology for development of spatial basis functions in this study used orthogonal basis
function expansion. As noted in [35], there are several choices for spatial basis functions, including
empirical orthogonal functions (EOFs), Fourier basis functions, splines, and wavelets, among others.
EOFs have been used in several successful model simulations in many disciplines (see [35]). Following
the successful application in groundwater modelling by Sreekanth et al. [27] we use EOFs to project
the groundwater simulations of predicted groundwater head drawdown in multiple model layers into
a lower dimensional space. Critically, these EOFs account for the spatial dependence as well as the
interlayer and model output dependencies. The theoretical basis of the development of spatial basis
function using this approach is described in detail in Sreekanth et al. [34].

In this study, we used the differential evolution optimization algorithm [36] in conjunction with
the spatial basis functions to optimize monitoring network. In this case, implementation of the DE
algorithm in the reduced-rank space minimizes the uncertainty of the predicted drawdown pattern for
the project region, regardless of what the true values of D-max and T-max across space are.

We made use of n = 500 runs of the probabilistic groundwater model to determine the optimal
locations of monitoring wells. Initially, we undertook an investigation into whether the number of
model runs undertaken, sufficiently covered the range of outcomes possible from the model simulation.
This was undertaken by cross-validation where we sampled without replacement from our 500
simulations to create smaller sets of simulations. Increasingly larger in-sample sets of simulations were
used to explore how well the constructed basis functions could predict the remaining out-of-sample
model runs.
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The probabilistic simulations of the impacts of CSG-induced drawdown provided the best
available information regarding the range of potential impacts. Each model prediction from this set is
an equally probable sample from the distribution of potential impact corresponding to a plausible
realization of aquifer connectivity in the sedimentary basin. The objective of the monitoring network
design was to find a set of m well locations, denoted w = (w1, w2, . . . , wm)

T amongst all possible well
locations given by

W ≡
{
wi ∈

{
1, 2, · · · , p

}m : wi , w j ∀ i, j ∈ {1, · · · , m}
}

(1)

Given m model runs each consisting of s spatial fields each containing p pixels, our aim is to solve
the optimization problem [27]

w∗ ≡ argminw∈W f (w|X) (2)

The objective function f(w
∣∣∣X) is a function of the well locations and its value is conditional on the

matrix, X, containing a representative sample of m possible model realizations. Herein, we define the
objective function as

f (w|X) =
m∑

j=1

sp∑
k=1

∣∣∣∣(̃x j)k −
(
x j

)
k

∣∣∣∣2 (3)

where (̃x j)k denotes the kth element of the predicted vector where our observations are taken from
model run j and (̃x j)k denotes the kth element of the vector from model run j.

Differential evolution [36] was used to solve the global optimization problem. The stochastic
optimization procedure implemented using the DEoptim package [37] for the R statistical programming
language [38] was used for this purpose.

This method was employed to identify locations for 10 monitoring bores within areas of predicted
drawdown impact. The choice of the maximum number of bores was arbitrary in this case reflecting
practical limitation that the total investment is often decided a priory based on available budget. The
10 locations were identified for multi-level piezometers that would collect groundwater head data from
5 different depths corresponding to 2 coal formations, 2 inter-burden formations, and the potentially
impacted aquifer.

2.3. Data-Worth Analysis

Monitoring network design described in the previous section used the non-linear predictive
analysis-based Monte-Carlo simulations of CSG-induced groundwater drawdown changes in multiple
model layers. The data-worth analysis described in the current section employs the linear uncertainty
analysis technique based on first order second moment-based methods [39] to investigate the utility
and worth of the data collected at the potential monitoring bores. While the monitoring network
design was based on trends in absolute values of predicted drawdown, the data-worth analysis is
based on sensitivities of the prediction and future observation (monitored at the designed locations)
to model parameters. Thus, data-worth analysis does not require the actual values of parameters or
observations. Instead, only the sensitivities of predictions and observations with respect to parameters
are used. This implies that the relative worth of future observations in informing the predictions of
interest can also be calculated using these approaches. In this study, we calculated the relative worth
of 100 drawdown data points measured at the 10 monitoring bore locations in informing maximum
drawdown predictions.

The theoretical bases of such linear analysis approaches have been discussed in [30,31,40,41].
We applied a data-worth analysis method that is based on Schur’s complement. Schur’s complement
for linear uncertainty analysis can be viewed as a form of Bayes equation under the assumption of
a linear model and a multivariate Gaussian distribution to describe the distribution of parameters,
forecasts, and observation noise [31,41–43]. The Schur’s complement approach, implemented in the
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software utility pyEMU [41], uses the following equation to estimate the posterior parameter covariance
matrix Σθ as

¯
Σθ = Σθ − ΣθJT

(
JΣθJT + Σε

)−1
JΣθ (4)

where Σθ is the prior parameter covariance matrix, Σε is the epistemic observation noise covariance
matrix, and J is the Jacobian matrix of partial first derivatives of observations with respect to parameters.
This equation highlights the behaviour of the inversion process [41].

The first term (i.e., Σθ) represents the parameter uncertainty prior to inversion, and the second

term ie ΣθJT
(
JΣθJT + Σε

)−1
JΣθ)) encapsulates the inversion process, through the Jacobian matrix

and both parameter and observation covariance, as mapping of information from observations to
parameters. The estimation of prior uncertainty for the prediction is identical across these two
approaches. We used this formulation to evaluate prediction uncertainty in CSG-induced drawdown
impacts at chosen risk receptors in this study. For this purpose, the Σθ matrix was obtained from the
observed parameter covariance structure underpinned by the variogram. Similarly, the Σε matrix
representing the observation error variance was obtained from the limited calibration analysis.

Prior and posterior uncertainty estimates for forecasts, defined as σ2
s and σ2

s respectively, can be
easily calculated by projecting the requisite parameter covariance matrix to the forecast output space
using a forecast sensitivity vector

σ2
s = yTΣθy (5)

and,

σ2
s = yT ¯

Σθy (6)

where y is the vector of prediction sensitivity to each parameter. The details of the implementation of
this method in pyEMU is described in [41].

3. Case Study

The Gunnedah Basin (northern NSW, Australia) has significant CSG resources and the state
Government is currently considering the proposal for gas development from coal seams in the Maules
Creek and Hoskissons Coal formations. The Gunnedah Basin underlies parts of the geological
Surat Basin and hydrogeological Great Artesian Basin in this region which is a major source of
fresh groundwater. The aquifers of the Namoi alluvium that overlies the Surat Basin formations are
also important sources of fresh groundwater that are extensively used for irrigation and other uses.
CSG development from the Gunnedah Basin requires extraction of large volumes of water from the
coal seams. One of the potential environmental impacts of CSG development is the propagation of
depressurization into the aquifers that overlie the Gunnedah Basin formations resulting in groundwater
drawdown in the aquifers, and potentially affecting water availability for irrigation and other beneficial
groundwater users and groundwater dependent ecosystems [36]. The extent of groundwater drawdown
that may result in the aquifers largely depends on the volume of water extracted for gas production,
the hydraulic characteristics of aquitards and other inter-burden formations in between the coal seams
and the aquifers and water balance component of the aquifers. The plan and cross section view of the
study area is shown in Figure 2.

In deep sedimentary basins with no history of gas production, field data to constrain these
characteristics of the groundwater system are largely uncertain and model-based predictive analysis of
potential impacts is challenged by data-scarcity resulting in substantial uncertainties over large spatial
domains. Ideally, predictive analysis of impacts, in such circumstances, should be undertaken in a
probabilistic fashion and the knowledge derived from uncertainty analysis should inform strategies
for data collection to minimize uncertainty in future prediction of impacts in an iterative manner.
In this study, we make use of probabilistic prediction of impacts and predictive uncertainty analysis to
identify groundwater bores and other risk receptors that are potentially impacted by gas development.
Additionally, predictive uncertainty analysis is used to identify optimal locations of future monitoring
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bores that can provide groundwater head measurements that will help constrain prediction of the
propagation of depressurization. Furthermore, the proposed workflow also permitted us to do an
independent data-worth analysis to validate the usefulness of measurements at these locations to
inform the predictions of our interest. The implementation of the method for this case study is described
in the following.

Figure 2. Plan and cross-section view of the model area indicating the important outcropping units
and hydrostratigraphic units [36].

3.1. Numerical Groundwater Model

A 15-layer numerical groundwater model that was recently developed for the study area [36,44,45]
to assess groundwater impacts from coal seam gas development in the Gunnedah Basin. We adopted
this model with a modified and improved parameterization scheme in this study. MODFLOW-USG [46]
was adopted as the preferred modelling platform considering the complexity of the geology comprising
two distinct sedimentary basins (Surat and Gunnedah). This was especially useful to realistically
represent pinching out layers and allowed model layers to follow the geometry of the geological
formations and boundaries.
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The extraction of CSG from the Hoskissons Coal and Maules Creek Formation (refer Figure 2)
targets in the Gunnedah Basin has been proposed. Most of the important assets including stock and
domestic and irrigation bores and groundwater-dependent ecosystems in the region rely on water
from important aquifers in the region including alluvial and other deeper formations, such as the
Pilliga Sandston. These formations were represented by independent numerical layers in the model.
The formations that are present between the alluvium and the Pilliga Sandstone were conceptualized as
inter-burden layers with variable hydraulic characteristics. Similarly, the formations between the Pilliga
Sandstone and the two coal formations were represented in the numerical groundwater model by
means of inter-burden layers with distinct effective hydraulic characteristics. The basement rock under
the Maules Creek Formation is represented by means of another layer in the numerical model layer.
This resulted in a numerical model architecture with nine layers to represent the hydrostratigraphy.
Each inter-burden layer in the hydrostratigraphy was further divided into three layers in the numerical
model grid to characterize realistic vertical gradients within aquitards. This resulted in a numerical
model grid with 15 layers corresponding to the hydrostratigraphic units shown in Figure 2.

An earlier version of the model used a simplified parameterization approach which used
depth-dependent hydraulic characteristics in the model layers [44]. In this study, we updated the
model with a highly parameterized approach for undertaking predictive analysis of CSG-induced
drawdown changes. The highly parameterized approach enabled a better representation of the
potential spatial heterogeneity in the hydraulic properties of the model layers and was underpinned
by measured data available from core samples [47], downhole porosity logs and geostatistical models
that conform to this dataset. This approach was also more appropriate for the methods used in this
study for explicit analysis of the model sensitivity and data-worth of observations and parameters to
many spatially explicit predictions.

A total of 1672 parameters were used for parameterizing the groundwater model. Most of these
parameters were used for characterizing the heterogeneity and spatial variability in the hydraulic
properties in multiple layers of the model. Pilot points [48] were used as the parameterization device
for this purpose. The remaining parameters were used to represent flood and irrigation recharge
and river conductance (all of which are spatially variable). The spatial variability adopted in this
parameterization was based on the data analysis and upscaling of hydraulic properties undertaken by
another study that looked at aquitard properties in this gas development region [47].

Turnadge et al. [47] collected core samples of key aquitard sequences within the Gunnedah and
Surat basin formations in the region and correlated measured permeability with available geophysical
borehole data. Porosity–permeability relationships were derived based on this and were applied to
downhole porosity logs obtained from 97 exploration wells located across the Gunnedah Basin [47].
These were then used to estimate vertical distributions of permeability at various locations across the
Gunnedah Basin. They applied upscaling approaches to use these core scale aquitard vertical hydraulic
conductivity (Kv) values in a regional-scale numerical groundwater model [49]. Furthermore, they
used this upscaled data to fit geostatistical variogram models to characterize the spatial co-variance
of hydraulic properties in the aquitard sequences. Two parametric models were used to characterize
the experimental variograms: a spherical and an exponential model. The models were fitted to
experimental variograms using least squares curve fitting. We adopted a spherical variogram with
a Sill of 0.764, Nugget of 0.327 and range of 129 km to define the co-variance structure of hydraulic
properties horizontally in different model layers based on this previous study. The highly parameterized
modelling approach used in the current study is underpinned by this spatial covariance structure for
characterizing prior uncertainty in hydraulic properties.

We undertook probabilistic simulation analysis to predict the impacts of a proposed CSG
development project in the Gunnedah Basin that considered drilling 850 CSG wells near Narrabri in
NSW. The drawdown was predicted as the difference between the baseline and CSG development
cases. This was accomplished by taking the difference between model predictions of two possible states
of GAB groundwater resource—one corresponding to no depressurization and the other corresponding
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to depressurization based on a generic case of CSG asset development. This approach assumes that all
other uses of groundwater remain unchanged over this period and quantifies only the changes in flux
and water balance resulting from depressurization only.

3.2. Model Calibration and Predictive Analysis

Calibration of a groundwater model using field observations (e.g., groundwater level/pressure) is
most valuable when the information content of the dataset is sufficient to constrain the model. While
groundwater observation from many bores were available for the Namoi alluvial and water table
aquifers, only a small proportion of the bores screen deeper formations in the Surat and Gunnedah
basins. Intuitively, these observations were not very useful for constraining the model when the
predictions of interest were the propagation of CSG-induced drawdown in GAB and other formations.
This is quantitatively demonstrated in the data-worth analysis results presented in the following
section. Nonetheless, the model was used together with the parameter estimation software suite
(PEST) to enable linear uncertainty and data-worth analyses, based on first order second moment
(FOSM) sensitivities. However, rather than constraining the predictions to a narrow range based on
calibrated parameters that are less relevant for the predictions concerned, we chose to do the predictive
analysis using a Monte Carlo simulation framework which sampled the model parameters from
their full prior-distribution. The probabilistic modelling analysis was used to simulate 500 plausible
CSG-induced groundwater drawdown patterns in multiple model layers. Specifically, the two variables
of predictive interest in this study for monitoring network design are: (i) maximum CSG-induced
drawdown (D-max); and (ii) the time elapsed before we observe the maximum drawdown (T-max)
following the extraction of gas. These patterns were used in the monitoring network design as
described in Section 2

4. Results and Discussion

The calibration error analysis undertaken using PEST provided useful insights concerning errors
in the model structure and parameters. The model calibration scatter plot and distribution of calibration
error is shown in Figure 3. The distribution of errors is also used to inform the observation error
variance that is required for the linear uncertainty analysis. The error distribution showed that nearly
75% of the errors are in the range −10 m to 10 m. The errors in this range are more likely to be occurring
because of uncertainties in the model parameters and boundary conditions. A small proportion of
large errors indicate the possibility of some model structural errors and errors in aquifer assignments.

Figure 3. Scatter plot of observed versus simulated groundwater heads and distribution of
calibration errors.

Five hundred model simulations resulted in 500 predictions of plausible CSG-induced groundwater
drawdown in different model layers corresponding to plausible realization of uncertain model
parameters. The 5th, 50th, and 95th percentile of predicted drawdown in the Pilliga Sandstone is shown
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in Figure 4. The 50th percentile drawdown prediction indicated that CSG depressurization would not
result in a drawdown over 0.2 m in the GAB aquifer. The 95th percentile, indicated drawdown up to
1.3 m in the GAB aquifer. The drawdown was calculated as the difference between the baseline and
CSG development cases. The predictive analysis resulted in simulation of CSG water extraction in the
range 4.4 GL to 107.1 GL over the life of the gas project. The wide range reflects the large uncertainty in
estimation of CSG water production. This range encompasses the base and high case water production
of 35.5 GL and 87.1 GL respectively estimated by the proponent.

Figure 4. 5th, 50th, and 95th percentiles of predicted groundwater head drawdown in the model layer
6 corresponding to the GAB aquifer, the Pilliga Sandstone. The 50th percentile plot indicates that
drawdown over 0.2 m is not predicted for significant areas.

As described in Section 2, the variance in the prediction arises not only from the simulations
of wide range of CSG water extraction, but also because of plausible wide range of values for the
hydraulic properties of aquitards that separate the coal seams from the shallower aquifers.

Given the nature of water and gas extraction from deeper sedimentary basin it is intuitive that
early detection of the propagation of depressurization would require sentinel monitoring bores, ideally
multi-level piezometers placed in different formations at different depths from the surface. Such a
monitoring network is designed in this study using the proposed method. Subsequently, the data-worth
of monitoring in existing monitoring bores and the designed network is assessed independent of the
predicted variables.
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4.1. Optimal Monitoring Network

Simulated patterns of CSG-induced maximum drawdown (D-max) obtained from the Monte
Carlo simulation were used to design the optimal monitoring network. The contour plots of D-max for
model layers 8 and 12 are shown in Figure 5. Such drawdown patterns (D-max and T-max) simulated
for six model layers (layers 6, 7, 8, 10, 12, and 14) were used in the monitoring network design.

Figure 5. Four examples of simulated D-max in (a) model layer 8 and (b) model layer 12.

As discussed in the methods section, we used EOFs to project these model-simulated groundwater
drawdown patterns into a lower dimensional space. These EOFs account for the spatial dependence
as well as the interlayer and model output dependencies. Ten EOFs were used to explain most
of the variability in the groundwater model simulations and were calculated using singular value
decomposition of the model output. Ten EOFs were used in this study because 10 monitoring wells are
designed. This allows to estimate 10 coefficients for each of the EOFs when fitting the surface to the
observations at the bores.

Importantly, the first EOF accounts for the most variability of all the EOFs, followed by the second
one and so on. Figure 6 shows that beyond 200 model runs, the mean squared error in reconstructing
the out-of-sample model runs decreased little and indicates that over 200 model runs has adequately
explored most of the patterns of variability in the model output.

Figure 6. Reduction in out-of-sample mean squared error in a cross-validation experiment as the
number of sample model runs is increased.
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Examples of spatial basis functions generated for D-max and T-max in model layer 6 are shown
respectively in Figures 7 and 8. Such spatial basis functions developed for the D-max and T-max
patterns in the six model layers were used in conjunction with the differential evolution algorithm
to identify 10 optimal locations where multi-level piezometers could be installed within the CSG
development region. The choice of the locations were restricted to areas where all six model layers of
interest were present. The 10 optimal locations identified using this approach are shown in Figure 9.

Figure 7. Spatial basis function for D-max in model layer 6. The subplots show the dominant 10
empirical orthogonal functions (EOF) that explain the greatest proportion of variability in the ensemble
flow model runs.

Figure 8. Spatial basis function for T-max in model layer 6. The subplots show the dominant 10
empirical orthogonal functions (EOF) that explain the greatest proportion of variability in the ensemble
flow model runs.
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Figure 9. Optimal locations for 10 multi-level piezometers.

4.2. Data-Worth Analysis

Before applying data-worth analysis to investigate the utility of the designed we used it to explore
the predictive dependencies between parameters, observations and predictions. Data-worth analysis is
undertaken for specific predictions of interest. In this study we evaluated the data-worth in predicting
the CSG-induced drawdown at model locations where risk receptors were identified. A total of 57 model
nodes were selected for data-worth analysis. These nodes corresponded to locations, within which, risk
receptors were identified and fell within 95th percentile predicted drawdown in the near surface aquifer
(from all model layers). These nodes are shown in Figure 10. The data-worth analysis provided a number
different insights that relates the predictions of interest to the groundwater system characteristics and
the data that can inform these characteristics. Specifically, the following four insights are reported
in the following: (a) relative parameter group contributions to drawdown prediction uncertainty at
the receptors; (b) relative parameter contribution of hydraulic properties of intervening layers for
the predictive uncertainty of vertical propagation of depressurization; (c) parameter estimatability
using existing and designed future monitoring network; and (d) data-worth of the designed optimal
monitoring network in comparison to the existing observation network.

Relative contribution of five different parameter groups to drawdown prediction uncertainty at
the 57 locations is shown in Figure 11.

Important information that is readily gleaned from these plots is that the prediction uncertainty of
drawdown has distinct contributions from different parameter groups. The specific storage groups is
the predominant parameter group for many receptors. Relatively higher contributions from the specific
storage (ss), river (z), and horizontal hydraulic conductivity (kh) groups are observed compared to the
vertical hydraulic conductivity (kv) group. Uncertainty contributions of the z group are enhanced
when the receptor is closer to the river network.

For example, for the receptor nodes 67927 in outcrop areas of layer 6 and have a small 95th
percentile predicted drawdown as shown in Figure 10. It may be observed from Figure 11 that the
parameter contribution of the river (z) group is highest for these receptors. This implies that the
drawdown incurred at these bores depends on how fast/slow the CSG-induced flux losses from this
area is replenished by additional inflows from (or reduction in base flows to) the river.
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This also implies that for CSG-induced drawdown at this scale (noting that maximum drawdown
is close to zero for the 50th percentile), drawdown incurred is more sensitive to how fast/slow the small
flux losses from the aquifer are compensated by release of water from storage, river or recharge, than
to the propagation of declining pressures in deeper formations to these aquifers.

Figure 10. Receptor location for which data-worth analysis for drawdown prediction was conducted.

This is because the aquitard formations that are present between the coal formations and aquifers
dampen the propagation of depressurization, and pressure changes are time lagged before they reach
the GAB and water table aquifers. It is important to note that hydraulic characteristics of deeper
formations are important parameters that govern the propagation of CSG-induced drawdown to the
upper layers. This was quantitatively evaluated by analyzing the parameter contributions to prediction
uncertainty of drawdown propagation through model layers between the water table aquifer and
the coal bearing formations. The hydraulic property parameter groups’ contribution to drawdown
prediction at 20 locations within model layers 12 is shown in Figure 12. It shows that the propagation
of CSG-induced drawdown across the intervening layers depends significantly on the hydraulic
characteristics of these and adjacent layers.
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Figure 11. Relative contribution of parameter groups to prediction uncertainty in drawdown
at the risk receptors (kv—vertical hydraulic conductivity; kh—horizontal hydraulic conductivity;
r—recharge parameters; ss—specific storage; z—river parameters). The numbers on the x-axis before
the _ correspond to the receptor numbers shown in Figure 10 and the numbers after the _ correspond
to the model layer number to which the risk receptor is assigned to.

Figure 12. Relative contribution of hydraulic property parameter groups to drawdown prediction in
model layer 12.

The third set of analyses investigated how currently existing and future dedicated monitoring
networks can inform these hydraulic characteristics and parameters of aquifers and aquitards and
other processes. The top 10 parameters for which prior to posterior uncertainty reduction can be
achieved by the currently existing monitoring data set and future monitoring using the designed
dedicated monitoring network are compared in Figure 13.

Subsequently, we investigated the data-worth of piezometers in multiple model layers obtained
from the monitoring network design in comparison to the existing observation data

The top three parameters for which maximum uncertainty reduction can be achieved using the
observations of groundwater head in the existing monitoring bores are parameters affecting modelled
recharge and horizontal hydraulic conductivity (rfl, rdr, and kh6491) as shown in Figure 13a Other key
parameters for which uncertainty reduction can be achieved by monitoring bores in the shallow aquifers
included the horizontal hydraulic conductivity (kh) and specific storage (ss). These findings reiterate
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the earlier result that the groundwater drawdown experienced in the shallow water table aquifer will
be largely dependent on how quickly the recharge and river processes, and release of water from the
storage, compensates for the water lost due to CSG development. On the other hand, the parameters
for which maximum uncertainty reduction is achieved by monitoring deeper zones, especially in the
intervening formations, included hydraulic characteristics around the coal seams (pilot points ss318753,
kv318753, and kh318753 correspond to the coal seam model layer 14) as indicated in Figure 13b.
It is also noteworthy that majority of the top 10 parameters that achieve an uncertainty reduction,
correspond to vertical hydraulic conductivity. All the above findings from the data worth analysis
confirms that monitoring the vertical and horizontal propagation of groundwater drawdown across
multiple layers influence the impact at the risk receptors and hence having multi-level piezometers
within these drawdown extents is most important for monitoring.

Figure 13. Top 10 parameters for which uncertainty reduction is achieved by using (a) existing
monitoring network and (b) proposed monitoring bores in deeper formations.

Subsequently, we also used the data-worth analysis to identify the relative worth of groundwater
head monitoring in multilevel piezometers at the designed locations. Relative data-worth of monitoring
data from different depths in informing drawdown predictions was calculated as a relative increase
in prediction uncertainty owing to the removal of datasets from the calibration data set. Relative
data worth was calculated for five different observation groups (i.e., data from potential multi-level
piezometers in model layers 7, 8, 12, and 14 names respectively as monit7, monit8, monit12, and
monit14 and the data from existing monitoring bores named the ‘obsgroup’). Figure 14 illustrates the
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relative worth of monitoring observations in model layers 7, 8, 12, and 14 and existing observations
from shallower wells (obsgroup) in informing drawdown prediction at 20 locations within model
layer 6 corresponding to the Pilliga Sandstone. It may be observed that the greatest data-worth for
this purpose arise from observations in model layer 7, that lies immediately below model layer 6.
This implies that measuring groundwater head in the Purlawaugh formation immediately below the
Pilliga Sandstone (and evaluating it in comparison with pre-CSG heads) would be of relatively highest
worth in informing the propagation of drawdown into the Pilliga Sandstone formation. It is also
noteworthy that the design of the multi-level piezometer network provides relatively high data-worth
for minimizing uncertainty in the drawdown prediction at most of the 20 locations.

Figure 14. Relative data-worth of observation groups in informing drawdown prediction at 20 locations
in model layer 6 represented as percent uncertainty increase that results when these observation groups
are removed from the monitoring network5.

5. Conclusions

A workflow comprising probabilistic groundwater modelling, reduced-rank spatial prediction,
and linear analysis was developed and applied for designing optimal monitoring network that
provided maximum data-worth in informing prediction of propagation of coal seam gas-induced
groundwater drawdown changes into a shallower sandstone aquifer. The workflow uses ensemble
predictions of drawdown corresponding to wide range of model parameters to design the network. The
data-worth analysis of observations obtained from the network is assessed independently using linear
uncertainty analysis. The linear analysis uses information from the sensitivity of the observations to
model parameters and is independent of the absolute value of the predicted variables. Thus, the linear
analysis enables to explore the predictive dependencies to provide insights into the veracity of the
designed network. The workflow is generic and could be applied for the design of purpose-built
monitoring networks for monitoring groundwater impacts from anthropogenic and other stresses.

In this study, the probabilistic groundwater flow simulations using a numerical model considered
wide ranges of variability in the CSG water production rates and hydraulic characteristics of several
intervening model layers to account for substantial uncertainty in the groundwater system and
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gas development processes at large spatial scales. This allowed us to probabilistically characterize
potential groundwater drawdown patterns in the region. Reduced rank spatial prediction was used to
characterize dominant trends in these spatial patterns using empirical orthogonal functions. These
EOFs were then used in conjunction with the differential evolution algorithm to identify optimal
locations for multi-level piezometers: helping to minimize predictive uncertainty in groundwater
drawdown. The value of the monitoring bores as a network for minimizing prediction uncertainty
across the region is demonstrated by designing a 10-bore monitoring network that collects drawdown
data from multiple depths at each location. Data-worth analysis validates the suitability of these
optimal monitoring locations. The study demonstrates that both prediction variables (e.g., drawdown
distribution) and independent sensitivity information (data-worth) can provide valuable information
for designing monitoring networks.

In this study, we used the data-worth based on linear uncertainty analysis as a tool for independent
verification of the designed monitoring network. It is possible to include the data-worth directly in
the design to ensure that monitoring wells are placed at locations and times where data-worth is
maximized. There is opportunity for future work in this domain and we are currently pursuing that.
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