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Abstract: To mathematically predict the behavior of a forward osmosis (FO) process for water recovery,
a model was constructed using an asymmetric membrane and glucose as a draw solution, allowing
an examination of both phenomenological and process aspects. It was found that the proposed
model adequately described the significant physicochemical phenomena that occur in the FO system,
including forward water flux, internal concentration polarization (ICP), external concentration
polarization (ECP), and reverse solute diffusion (RSD). Model parameters, namely the physiochemical
properties of the FO membrane and glucose solutions, were estimated on the basis of experimental and
existing data. Through batch FO operations with the estimated parameters, the model was verified.
In addition, the influences of ECP and ICP on the water flux of the FO system were investigated
at different solute concentrations. Water flux simulation results, which exhibited good agreement
with the experimental data, confirmed that ICP, ECP, and RSD had a real impact on water flux and
thus must be taken into account in the FO process. With the Latin-hypercube—one-factor-at-a-time
(LH–OAT) method, the sensitivity index of diffusivity was at its highest, with a value of more than
40%, which means that diffusivity is the most influential parameter for water flux of the FO system, in
particular when dealing with a high-salinity solution. Based on the developed model and sensitivity
analysis, the simulation results provide insight into how mass transport affects the performance of an
FO system.

Keywords: forward osmosis; modelling; process model; global sensitivity analysis; glucose;
diffusion coefficient

1. Introduction

Water shortages have become a key issue facing humanity. According to the United Nations
World Water Development Report in 2019, over 2 billion people suffer from severe water shortage,
and the global demand for fresh water has been increasing by about 1% annually since the 1980s [1].
Consequently, much effort has been made to secure water, in particular safe water, with low energy
consumption. One such means is membrane-based water treatment and desalination technology,
which is relatively energy-efficient and independent of the water cycle [2].
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Several types of membrane-based desalination technology, including electrodialysis, membrane
distillation, reverse osmosis (RO), and forward osmosis (FO), have been developed [3,4]. Among these,
FO-based water desalination, of which the driving force is an intrinsic osmotic pressure gradient, has a
unique position because (1) it is highly resistant to membrane fouling [5], (2) it requires much lower
energy [6] and exerts higher driving force than conventional physical separation methods if proper
draw solutes are used, and (3) it does not deteriorate the physical properties of feed solution (e.g., color,
taste, aroma, and nutrition) [7,8]. For these reasons, FO is viewed as workable especially for difficult
feed water with high salinity or foulants. FO can be applied to treat hypersaline streams that are too
concentrated for RO [9]. Special cases in which there is no requirement to regenerate draw solution also
have high potential, as draw solute: It is possible to use diluted fertilizer for direct fertigation [10–12]
including wastewater treatment [13] and food concentration [7,8]. One such case is the use of fertilizer.

However, there are still many difficult barriers to field implementation of the FO process. Typical
problems involve intrinsic, performance-reducing properties, including concentration polarization (CP)
and reverse solute diffusion (RSD) [14]. Since both sides of the membrane are in contact with two kinds
of solutions, feed solution, and draw solution, CP occurs predominantly at the outer surface of the
membrane, which is in contact with both solutions. When CP occurs on the exterior of the membrane,
the polarization process is termed external concentration polarization (ECP). Because the polarized
layer on the feed side is very concentrated, while the layer on the permeate or draw side is more
diluted than the bulk solution, the overall process obstructs the mass transfer of water molecules across
the selective layer [15]. Solutions to this problem include crossflow and well-designed hydrodynamics,
which are known to mitigate ECP to some degree. Another idea with good potential, and which
has already been implemented in commercial FO membranes, involves an asymmetric structure of a
porous support layer topped by a highly selective layer. Another critical issue is what is called internal
concentration polarization (ICP), resulting from the inherent structure of the membrane: The porous
support layer is in contact with the draw solution, while the solute that has diffused through pores
from the draw solution to the inner part of the membrane reduces the net concentration gradient,
which is, in fact, the actual driving force that moves water through the selective layer [16]. Because
ICP is inherent to the membrane, it is difficult, if not impossible, to mitigate it [17]. The diffusion
of draw solute into the feed solution, reverse solute diffusion (RSD), which occurs due to the solute
concentration gradient is another tough challenge [18]. RSD, together with cake foulants on the feed
side, worsens ECP [19]. This cake-mediated CP leads to a net concentration difference, reducing water
transport across selective layer [20]. All this is closely related to FO performance and has a negative
role in industrial-scale FO processing.

To unravel the effects of key physio-chemical factors, modelling has been practiced in a way that
connects model parameters or subsets of factors that influence the FO performance to the various
physio-chemical phenomena. Loeb et al. [21] suggested an FO model that considered a reverse solute
flux (RSF) and Tang et al. [22] improved Loeb’s model by including the concept of reverse solute
selectivity, which is described by the ratio of RSF to the water flux. A more advanced model of the
reverse flux of a draw solute was developed and validated by Phillip et al. [14]. Suh and Lee [23]
furthered Phillip’s model by considering the ECP of both the draw and feed sides; their results were
validated with previous experimental data. However, little effort has been made to date to understand
the flux behavior of a practical FO system. Models focus on steady-state flux and disregard the kinetics
of the development of the fouling layer. In addition, the van’t Hoff equation, while only used for
ideal and dilute solutions, has been applied indiscriminately, i.e., regardless of concentration and
characteristics of solute, to define the osmotic pressure of solution; what is worse, any model using the
van’t Hoff equation shows large deviation compared to experimental data when dealing with high
concentrations of draw solutes [23].

In this study, a more practical and precise model was developed to realize the real-time behavior
of the process with a viral equation, represented by concentrations, volumes, and water flux of
the system. The model parameters were estimated to reflect the effects of high concentrations of
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glucose as draw solute. To validate the proposed model, FO filtration experiments were carried out
with a commercialized FO membrane in batch mode using glucose as a draw solute and deionized
water and glucose solution as a feed solution. For the batch operation of the FO process, the model
prediction of the permeate flux profiles was found to be in line with the experimental data. To obtain
insight into the dominant factors affecting permeate water flux, global sensitivity analysis using the
Latin-hypercube—one-factor-at-a-time (LH—OAT) method was carried out.

2. Modeling Procedures

2.1. Water Flux in Forward Osmosis Process

The transport of water molecules through FO membranes can be represented by irreversible
thermodynamics, with the membrane treated as a black box, as has been done for biological
membranes [24]. In this approach, the water flux (Jw) for the FO process (Figure 1), in which
hydraulic pressure differences are absent, can generally be described as follows,

Jw = A(πi − πFm) (1)

where A is the water permeability, πi represents the osmotic pressure at the interface between
selective layer and support layer, and πFm represents the osmotic pressure at the interface between
selective layer and feed solution as shown in Figure 1. This equation indicates that the water flux is
linearly proportional to the effective osmotic pressure difference, πi − πFm, across the FO membrane
selective layer.

Figure 1. Schematic of flux behaviors and concentration profile for an asymmetric membrane with an
orientation of a selective layer that faces the feed solution, or forward osmosis (FO) mode. The internal
concentration polarization (ICP) and external concentration polarization (ECP) are considered in the
support layer and on both solution sides, respectively. The concentration of the bulk draw solution
(CDb) is higher than that of the bulk feed solution (CFb ); this difference in concentration simultaneously
creates two opposite directional fluxes: Forward water flux (Jw ) and reverse solute flux (Js ). With the
presence of a concentration gradient, draw solute is diffused into feed solution across the boundary
layers (δD and δF ), across the support layer with thickness ts, and across the selective layer. CDm, Ci,
and CFm represent the solute concentrations at the interfaces between (1) the draw solution and the
support layer, (2) the support layer and the selective layer, and (3) the selective layer and the feed
solution, respectively. πDm, πi, and πFm represent the osmotic pressure of solute concentrations at
each interface.
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2.2. Osmotic Pressure of Glucose

To establish the relationship between osmotic pressure and solute concentration, the van’t Hoff

(1887) equation can be applied for the osmotic pressure (π) for an ideal dilute solution [25], that is,

π = nCRT (2)

where n represents the van’t Hoff factor (n = 1 for glucose), C is the solution molar concentration
(molarity), R = 0.0821 L·atm·mol−1

·K−1 the ideal gas constant, and T is absolute solution temperature
(K). Although the van’t Hoff equation is well fitted for dilute and ideal solutions in which ions do not
affect each other, this is not applicable to the FO process, which deals with highly concentrated draw
and feed solutions [25]. In order to more precisely model the osmotic pressure of general solutions, a
modification is made in the van’t Hoff equation, which is then expressed by a virial expansion to a
power series [26,27], as follows:

π = (Mw)−1cRT + B1c2RT + B2c3RT + B3c4RT (3)

In this equation, the value c represents the solution concentration (g·L−1), Mw is the solute
molecular weight, and B1, B2, and B3 are virial osmotic coefficients. It is possible to obtain these
virial coefficients empirically by using Equation (3) to fit the experimental osmotic pressure data. It is
generally accepted that it is sufficient to determine the coefficients up to the second coefficient (B1 and
B2) for the purpose of reproducing the observed osmotic pressure [28].

2.3. Concentration Polarization

Many experimental and theoretical studies have demonstrated that observed water flux values are
significantly smaller than those calculated on the basis of difference in bulk concentration. The reason
behind this discrepancy is the formation of ICP and ECP; both decrease the effective concentration
slope across the FO membrane selective layer; as a result, the value of water flux that is observed, Jw, is
inevitably lower than expected [29].

2.3.1. Internal Concentration Polarization

It is known that ICP in the support layer can cause severe degradation of cross-membrane water
permeation in the FO process [17]. For a porous support layer, in which draw solution is in contact
with the porous support, there is a concentration gradient that is steeper than that found in bulk
solution. This happens because of decreased solute diffusivity due to porosity and tortuosity. This
dilutive ICP brings about a decrease in the net concentration difference across the selective layer and
results in a corresponding decline in water flux [29]. According to previous studies [14,23], the solute
concentration at the interface between support and selective layers (Ci) can be described as follows:

Ci = CDm exp
(
−Jw

ts

Ds

)
−

Js

Jw

[
1− exp

(
Jw

ts

Ds

)]
= CDm exp

(
−Jw

S
D

)
−

Js

Jw

[
1− exp

(
Jw

S
D

)]
. (4)

Here, CDm represents the concentration of the solute on the surface of the support layer membrane
and ts indicates thickness of the support layer Ds is the reduced solute diffusivity in the porous support
layer [30]. S denotes the membrane structural parameter of the support layer, described as follows [14],

S =
tsτ
ε

(5)

Equation (5) pertains to the effective distance of the support layer through which a solute must
pass to move to the selective layer from the boundary area of the support layer and the draw solution.
In experiments using both RO and FO, the average distance of S can be determined and has been
described in the literature [14].
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2.3.2. External Concentration Polarization

ECP is of great importance in any pressure-driven desalination process, e.g., reverse osmosis [31].
This holds true for the FO system, as the presence of ECP lowers the water movement via a reduced
effective concentration gradient through the membrane. This phenomenon was reflected even in some
early FO models, such as those of Phillip [14] and Suh and Lee [23]. In fact, because the FO membrane
is in contact with two different solutions, ECP can arise on both sides of the membrane surface.
To elaborate, the feed side membrane surface faces a concentrated feed solution, a phenomenon termed
concentrative ECP; the permeate side membrane surface faces a diluted solution, a phenomenon
termed dilutive ECP. According to previous studies [14,23], the solute concentrations at the membrane
surface on the support layer (CDm) and selective layer (CFm) can be estimated as follows,

CDm = CDb exp
(
−Jw

δD

D

)
−

Js

Jw

[
1− exp

(
−Jw

δD

D

)]
, (6)

CFm = CFb exp
(
Jw
δF

D

)
+

Js

Jw

[
exp

(
Jw
δF

D

)
− 1

]
. (7)

Here, CDb and CFb are the bulk solute concentration of draw and feed solutions, respectively. D
δ

can be described in relation to mass transfer coefficient (k); this value has a direct relationship to the
Sherwood number (Sh), and also corresponds to the hydrodynamics of the system (dh), which can be
estimated in the previous studies [14,19,23,31].

2.4. Reverse Solute Flux (RSF)

Js can also be described as shown below [16]:

Js = B(Ci −CFm). (8)

Here, B is the salt permeation coefficient. Substituting Equations (4) and (7) for Ci and CFm into
Equation (8) can represent the effective solute flux existing between the draw solution and the feed
solution, with measurable variables,

Js = B

 CDb +
Js
Jw

exp
(
Jw

S
D

)
exp

( JwδD
D

) − (
CFb +

Js

Jw

)
exp

( JwδF

D

). (9)

Note that Equation (9) contains the proportion of RSF to water flux (Js/Jw) as a repetitive term,
referred to as the specific RSF [32]. Past research has demonstrated that the specific value of RSF (Js/Jw)
can be replaced by a constant [14,27,33], meaning that more water flux leads to more draw solute
moving through the membrane. Philip et al. [14] and Suh and Lee [23] also dealt with the selectivity
of reverse flux (Jw/Js), which is designated as the reverse form of the specific value of RSF; they also
validated the dependency of the reverse flux selectivity (Jw/Js) on the characteristics of the membrane
selective layer (water (A) and solute (B) permeability values in the Appendix A), as follows:

Jw

Js
≈

A
B

nRT. (10)

This result provides insight into the selectivity of the reverse flux, showing that it is independent
of the concentration of the bulk draw solute, the crossflow velocity, and structural parameter S, and
can be handled as a constant coefficient determined in experiments, provided that these experiments
are conducted with the same membrane, the same draw solutes, and identical temperature. Thus, the
specific RSF (Js/Jw) can be described as a constant model parameter:

Jsw =
Js

Jw
. (11)
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Finally, the equation of reverse solute flux and forward water flux for the FO system can be
rearranged as follows:

Jw = AnRT
[
Ci

(
1 + B1Ci + B2C2

i

)
−CFm

(
1 + B1CFm + B2C2

Fm

)]
. (12)

It should be noted that for Equation (12), CDb and CFb are easily measurable independent variables,
and A, D, S, and Jsw are model parameters. Before simulating FO performance, these model parameters
should be determined by experiments. Then, only one unknown dependent variable of the equation
remains, namely Jw. However, Equation (12) is implicit forms with regard to Jw, and cannot be
solved explicitly. Consequently, recursive numerical procedures must be used to solve these implicit
flux equations.

2.5. Mass Balance for Dynamic Modeling (Multistage Operation)

When FO is carried out as a batch operation in such a way that there is an increase of the draw
volume and a decrease of the feed volume, such that water molecules continually traverse the FO
membrane from feed solution to draw solution, as shown in Figure 2, the time profile for the entire
system changes analogously depending on the actual time and can, if the observation time interval
(or sampling time interval) of each stage is sufficiently short but not too short (because mass transfer
should be reached in quasi-steady state), be expressed as a discrete multistage process, as shown in
Figure 3. Considering module length and average crossflow velocity of solution, we set the observation
time interval or sampling time interval to 0.5 s because the water molecule takes 0.5 s after entering to
exit the FO module. It is assumed that the FO system reaches quasi-steady state at each stage during
this sampling time interval. The mass balance of solutes for feed and draw solutions at the j-th stage
(or at the j-th sampling in Figure 3) of the FO unit for batch operation can be represented by

C j+1
Db V j+1

D = C j
DbV j

D − J j
StsAm (13)

and
C j+1

Fb V j+1
F = C j

FbV j
F − J j

StsAm. (14)

Figure 2. Schematic diagram of forward osmosis (FO) system for batch operation.

Here, C represents the concentration of individual components, V is the volume, Js is the reverse
solute flux, Am is the effective area of the membrane, ts is the time interval, the subscript Fb is the bulk
feed solution, the subscript Db is the bulk draw solution, the subscript D is the draw solution, the
subscript F is the feed solution, and the superscript j is the sampling index.



Water 2020, 12, 31 7 of 20

The total volume of the system, including the feed and draw solutions, remains constant because
the volume loss of the feed solution via transverse-FO-membrane water flux permeation is included in
the draw solution volume. This relationship is presented below.

V j+1
D = V j

D + J j
wtsAm (15)

and
V j+1

F = V j
F + J j

wtsAm. (16)

Here, Jw is forward water flux.

Figure 3. Forward osmosis (FO) system that changes analogously can be expressed as discrete
multistage version of the FO model for batch operation. V j

F and V j
D represents volumes of feed and

draw solution, respectively, in the j-th stage. C j
Fb and C j

Db indicates concentrations of feed and draw

solution, respectively, in the j-th stage. V j+1
F and V j+1

D represent volumes of feed and draw solutions,

respectively, in the j+1-th stage. C j+1
Fb and C j+1

Db represents concentrations of feed and draw solution,
respectively, in the j+1-th stage.

2.6. Numerical Simulations

Using the proposed model for the FO process, all iterative calculations for the water flux profile
were conducted with MATLAB software under conditions identical to those of the batch operation
experiments described above. Figure 4 provides a flow chart of the proposed multistage FO modeling
procedure. First, the timer was reset, and invariant variables were initialized. Then, the initial
physio-chemical parameters of the feed and draw solutions of the j-th stage are set. In this step, the
initial estimate of water flux ĵw(t) was also properly set. With the given physio-chemical variables and
ĵw(t), calculations of the dynamic viscosity, density, and mass transfer functions of the feed solution
and the draw solution were performed, yielding feed and draw solution osmotic pressure values.
From the obtained osmotic pressures, the water flux Jw(t) was obtained. This calculation was repeated
with the updated Ĵw(t) using the mean value of Ĵw(t) and Jw(t) until the error tolerance condition,∣∣∣Jw(t) − Ĵw(t)

∣∣∣ ≤ err, was satisfied. The implicit equation in the proposed model was solved using the
bisectional method: The embedded MATLAB ‘fzero’ function [23]. If this j-stage is not reached by the
final stage, as we had hoped, i.e., t = T, the volume and feed and draw solution concentrations were
revised using the value of Jw(t) determined for the next stage.
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Figure 4. Flow chart of calculation procedure. MATLAB software was used to solve implicit equations
for the given operational conditions.

2.7. Sensitivity Analysis Using Latin-Hypercube—One-Factor-at-a-Time (LH–OAT) Method

Sensitivity analyses of model parameters and operating conditions were executed with the
Latin-hypercube—one-factor-at-a-time (LH–OAT) method [34], combing Latin-hypercube (LH)
sampling [35] and one-factor-at-a-time methods (OAT) [36]. In the LH method, proposed by McKay
for use instead of the Monte Carlo method, the parameter space is divided into N intervals with
the same probability, and only one variable is randomly extracted from each interval and analyzed
by multivariate linear regression. Though this method is advantageous compared to other global
sensitivity analyses in that its computational calculation is efficient [34,37], it has limitations in that a
linear regression analysis is assumed and the sensitivity to one specific individual variable cannot be
identified [34]. To analyze the sensitivity in the OAT method, on the other hand, only one variable
in the parameter space is sequentially selected for a small change of the selected parameter, while
other parameters are fixed as constant [36,38]. In general, the OAT method has been widely used as an
efficient method of local sensitivity analysis. One downside is that it does not give any information
on global sensitivity for the whole parameter space. By combining LH sampling and OAT design,
therefore, the merits of both methods can be exploited [39]. The process begins with sampling N LH
points randomly for N intervals as initial points; this is followed by OAT analysis, in which each of
the P parameters is changed [34]. For sensitivity analysis, parameters affecting FO performance were
investigated by changing figures with standard deviations of 10%.
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3. Materials and Methods

3.1. Preparation of Feed and Draw Solution

ACS grade glucose (Daejung Chemicals and Metals Co. Ltd., Busan, Korea), which is neutral
and highly soluble in water, was utilized as a draw solute. For all empirical procedures, glucose was
dissolved in deionized (DI) water (Merck, Daejeon, Korea), which has a resistance value of 18.2 MΩcm
at concentrations in the range of 0 to 2.0 M. Viscosity and osmotic pressures for each concentration were
measured using a viscosity meter, SV-10 (A&D, Seoul, Korea) and an osmometer, Osmomat 0300-D
(Gonotec, Berlin, Germany), respectively. Binary bulk diffusion coefficients for glucose and DI water
were maintained at a constant value (6.7× 10−10 m2/s) [40,41]. The density of each glucose solution was
calculated using the Aspen HYSYS® (Cambridge, MA, USA) chemical database. The characteristics of
glucose solutions are summarized in Table 1.

Table 1. Model parameters for glucose properties.

Condition Description Unit Value

Dglu Bulk binary diffusion coefficient of glucose m2
·s−1 6.7× 10−10(refers to [40,41])

Jsw Specific reverse solute flux for glucose g·L−1 2.7×10−1(refers to [42])
B1 1st order virial coefficient - 6.37× 10−6

B2 2nd order virial coefficient - 2.16× 10−8

µF Feed solution viscosity cP 8.60× 10−1 + 2.58× 10−1C + 4.63× 10−1C2

µD Draw solution viscosity cP 8.60× 10−1 + 2.58× 10−1C + 4.63× 10−1C2

ρF Feed solution density kg·m−3 997.17 + 27.1C + 3.6× 10−4C2

ρD Draw solution density kg·m−3 997.17 + 27.1C + 3.6× 10−4C2

3.2. Membrane Preparation and Crossflow Setup

A commercial thin-film composite (TFC) membrane (Porifera, Hayward, CA, USA), known for
use in osmotically driven processes, was employed for the FO experiments. This membrane, which
has a flat-sheet form, has an asymmetric structure of porous support layer and dense selective layer.
This membrane has seen wide use in past research [42–44]. Referring to previous studies [42,43],
the intrinsic performance parameters of the membrane are summarized in Table 2. The purchased
membrane was preserved in DI water at a temperature of 4 ◦C and was rinsed with DI water prior
to use.

Table 2. Model parameters for membrane properties.

Parameter Description Unit Value

A Water permeability coefficient m · Pa−1
· s−1 7.64× 10−12 (refers to [43])

S Structure parameter m 2.63× 10−4 (refers to [43])
Jsw Specific reverse solute flux for glucose g · L−1 2.7×10−1 (refers to [44])
Jsw Specific reverse solute flux for NaCl g · L−1 4.1×10−1 (refers to [44])

A widely used bench-scale FO set up was constructed and used to estimate the permeated water
flux [11]. The crossflow membrane unit (2.6 cm width × 0.9 cm length × 0.3 cm depth) consisted of
an FO cell with channels present on the two membrane sides to promote the flow of feed and draw
solutions. As can be seen in Figure 2, the feed solution moved into and out of the feed chamber via a
gear pump (Cole-Parmer, Daejeon, Korea). Simultaneously, the draw solution presents in the reservoir
circulated into the draw chamber via the same type of pump. Directions of the flow of feed solution and
draw solution in the FO module were co-current. The flow rate was maintained at 1.5 L/min by use of a
flow meter OM006 (Corea Flow, Daejeon, Korea). The temperature was maintained at 25 ± 1 ◦C using
a heat exchanger (Thermo Fisher, Seoul, Korea A) with a constant-temperature bath. The resulting
permeate water flowing through the FO membrane was quantified using a computer-linked analytical
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balance (CAS, Daejeon, Korea). Operating conditions for simulations and experiments are summarized
in Table 3.

Table 3. Operating conditions for simulations and experiments.

Condition Description Unit Value

dh
F Hydraulic diameter of feed channel m 5.4× 10−3

dh
D Hydraulic diameter of draw channel m 5.4× 10−3

vF Cross-flow velocity of feed solution m · s−1 3.2× 10−1

vD Cross-flow velocity of draw solution m · s−1 3.2× 10−1

VD Volume of feed solution L 0–2
VF Volume of draw solution L 0–2
CFb Bulk feed concentration (glucose) M 0–1.5
CDb Bulk draw concentration (glucose) M 0.5–2

T System temperature °C 25

3.3. Forward Osmosis Runs for Model Validation

After the membrane was loaded into the unit module with FO mode orientation, the FO system
was first operated using deionized water for the feed and draw solutions for 0.5 h; this was done
to achieve temperature equilibrium and operational stabilization. Then, to achieve the necessary
concentration, a designated quantity of stock glucose solution (4 M) was put into the draw solution
tank; the permeated water flux was then quantified. After measuring the water flux, a certain amount
of glucose stock solution was put into the draw solution tank to establish the next desired concentration.
The aforementioned procedure was continued in a consecutive manner to draw solution concentrations
of 0.5, 1, 1.5, and 2 M glucose. After measuring the flux for the last and highest concentration (i.e., 2 M)
with a feed solution of DI water, a certain amount of the stock 4 M glucose solution was put into the
feed solution to obtain the required feed solution concentration. Flux was measured at 0.5, 1.0, and
1.5 M concentrations of glucose with the draw solution concentration fixed at 2.0 M.

4. Results and Discussion

4.1. Parameter Estimation

Among the model parameters, the following physiochemical properties of the glucose solution
were explored: Osmotic pressure (π), viscosity (µ), and density (ρ). As shown in Figure 5a, the
osmotic pressure of the glucose solution, which was measured experimentally using an osmometer,
was different from that obtained by van’t Hoff equation calculation in the region of the high glucose
concentration. A more precise prediction can be achieved by means of a virial equation using a power
series, as shown Equation (3). Using the second-order polynomial regression of π

cRT and the glucose
concentration, the virial coefficients B1 and B2 in Equation (3) can be estimated from the experimental
osmotic pressure measured at different glucose concentrations, as shown in Figure 5b and Table 1.
The viscosity of the solution affects the mass transfer during filtration. The decreased mass transfer
rate due to the high viscosity aggravates ECP and thereby ends in a reduction of the water flux. Using
a second-order polynomial regression, the viscosity (µ) of the glucose solution can be empirically
shown to be a function of the molar concentration (C), as shown in Figure 5c and Table 1. Their
relationship can be obtained as follows, in which the coefficients are obtained by the second-order
polynomial regression

µ = 8.60× 10−1 + 2.58× 10−1C + 4.63× 10−1C2. (17)
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Figure 5. Physio-chemical properties of the glucose solution: (a) Osmotic pressure (π) variation with
glucose concentration (0.1–1.0 M) at 25 °C. The white circle represents the osmotic pressure predicted by
the van’t Hoff equation. The black circle represents the osmotic pressure measured using an osmometer
with the freezing depression method. (b) π

cRT plotted as a function of the glucose solute concentration
(18.02–180.16 g/L) to determine the osmotic virial coefficients (B1 and B2). (c) The viscosity of the
glucose solution plotted as a function of the glucose concentration (0–2.0 M) at 25 °C. The black square
represents the solution viscosity measured using a viscometer (SV-10 VIBRO, Japan). (d) Solution
density plotted as a function of the concentration of glucose (0–2.0 M) at 25 °C. The white triangle
represents the solution density calculated using the Aspen HYSYS® (Cambridge, MA, USA) chemical
database. Osmotic pressures and viscosities are shown in terms of the mean ± standard deviation, with
n = 2.

According to data sourced from the Aspen HYSYS® (Cambridge, MA, USA) chemical database,
the density (ρ) of the glucose solution also increased slightly in line with its molar concentration
(C). This relationship can be expressed as shown below for which the coefficients are obtained by a
second-order polynomial regression

ρ = 997.1679 + 27.0967C + 3.6× 10−4C2. (18)

Among the model parameters, the physio-chemical properties of the FO membrane (Porifera,
USA) have been thoroughly studied, with several reports in the literature [42–44] focusing on the
following: The water permeability (A), the structural parameter (S), and the specific reverse solute
(glucose) flux (Jsw) of the membrane. The water permeability and structural parameter were sourced
from the literature [43]. The specific reverse solute (glucose) permeability of the membrane Jsw was
found in another work [42]. These physiochemical properties of FO are summarized in Table 2.
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4.2. Model Verification

Figure 6 shows the model verification process, which relied on comparisons of predicted data
obtained using the proposed model and experimental data obtained under identical conditions for
FO operations in the FO mode orientation described above. Water flux was plotted against the net
concentration difference of the bulk feed and glucose draw solutions (Figure 6a). Dilutive ICP and
ECP are on the side of the draw solution. The solid line and the white circle indicate the flux; the
feed solution is DI water. When concentrative ECP, dilutive ECP, and ICP are present, the dashed line
and black circle show the flux, with glucose solution as the feed. The model predictions of the flux,
depicted as solid and dashed lines, agreed well with the empirical results, depicted as white and black
circles. More specifically, the experimental flux data were plotted against the data for the estimated
flux shown in Figure 6b. The slope of this relationship lies near the dashed line (slope = 1), which
means that the model predictions and the experimental results are in perfect agreement. The mean
squared error (MSE) between the predicted water flux and the experimental flux data is 0.09, and the
R-squared value (R2) is 0.99.

Figure 6. Model validation after comparing the model predictions and water flux empirical results:
(a) Solid and dashed lines indicate model predictions; circles indicate empirical data. Using the
proposed model and the corresponding physiochemical properties of glucose, as presented in Figure 4,
along with the values of the transport parameters from Table 1, the predicted water flux is calculated at
25 °C after 5 min. (b) The dashed line (slope = 1) shows excellent agreement between the predictions
from the model and the empirical data. The mean squared error (MSE) and R-squared (R2) values are
0.09 and 0.99, respectively. Experimental fluxes are shown in terms of the mean ± standard deviation,
with n = 2. (c) Time profile of the water fluxes; under identical experimental conditions, the solid line
indicates model prediction and the circles indicate empirical data. Time profiles of experimental fluxes
are shown in terms of the mean ± standard deviation, with n = 5.

The water flux profiles for the batch operation plotted against time are shown in Figure 6c.
The blue dashed line represents the process model flux; this is based on the assumption that the glucose
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solute used is 100% pure. The model prediction of the water flux, represented as the blue dashed line
in Figure 6c, initially agreed to a moderate degree, within ±1.0%, with the empirical data; however,
over time, this value diverged from the experimental data. This unexpected discrepancy might be
due to impurities that were actually contained (around 2%) in the supposedly pure chemical; worse
yet, all compounds were ionic compounds, which was not taken into consideration in the modeling
process. There is the possibility that the unknown compounds diffused from the draw solution to
the feed solution and as a result, were able to build up, in a gradual manner, in the feed solution,
impacting considerably the net driving concentration gradient. It is not uncommon that FO models
pay too little attention to impurities, and rightly so, seeing that the primary goal is to obtain values for
the instantaneous water flux or initial water flux of the FO system, and not the flux change over time.
In this study, the 2% impurities were treated as an ionic pure chemical of NaCl, and their behavior was
reflected in the modified process model. With the properties of NaCl as listed in Table 4, the modified
process model can be depicted by the red solid line in Figure 6c. The modified model prediction
of water flux showed better fit to the experimental data than did the unmodified model prediction.
All of this demonstrates that the model precisely represents the practical mass transfer phenomenon
occurring in the FO membranes.

Table 4. Model parameters for NaCl properties.

Condition Description Unit Value

DNaCl Bulk binary diffusion coefficient of NaCl m2
·s−1 1.74× 10−10 (refers to [40,41])

Jsw Specific reverse solute flux for NaCl g L−1 4.1×10−1 (refers to [23])

4.3. Effects of Changes in the Concentration Difference on Concentration Polarization

The developed FO model was used to investigate how changes in the bulk concentration differences
influence the concentration polarization and water flux. Using deionized water as a feed solution
and glucose as a draw solution, with concentrations in the range of 0.5 to 2.0 M, Figure 7 shows
the proportion of each concentration polarization and resultant water flux. All model conditions
were identical to those in the previous parameter estimation and model validation. The side view of
Figure 7a shows a profile of solution concentration change across the membrane when 2 M glucose is
used for the draw solution; it can be interpreted that the water flux increment was reduced as the draw
solution concentration increased. The percentage of effective concentration difference for water transfer
across the selective layer decreased from 27.3% to 11.3% when the concentration of the draw solution
was increased; on the other hand, the proportions of dilutive ICP and ECP increased. The decline in
the increase of the slope of the water flux can be explained in terms of the comparatively increased
ratio of ECP on the support layer surface and support layer ICP.

The most likely reason behind the driving force reduction is probably the presence of internal
ICP [22,29,45]. In addition, the ratio of ICP increased from 52.2% to 56.8% with the increase of the
draw solution concentration shown in Figure 7a. Surprisingly, there was a significant increment of the
dilutive ECP in the draw solution side boundary layer; the increase was in the range of 20.4% to 31.9%
as the solute concentration of the draw solution increased. Dilutive ECP may have a crucial role under
certain circumstances, e.g., when a mixed solution is applied and/or when low crossflow velocities
or high water flux levels are used [46,47]. However, the effect of ECP in a concentrative form on the
side of the feed solution, with deionized water as a feed solution, was found to be insignificant for all
conditions of the draw solution concentration because the simulation also clearly revealed that the
concentrative ECP decreased from 0.07% to 0.03%, which is not shown in Figure 7.
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Figure 7. Proportions of the concentration polarization and water flux against the concentration
differences of feed and draw solutions based on the simulation results using the proposed model:
(a) When a using feed solution of deionized water and draw solutions with various concentrations
of glucose (0.5, 1.0, 1.5, and 2.0 M glucose). (b) When the solute concentration difference was held
constant, with 0.5 M glucose with various feed solution concentrations (0, 0.5, 1.0, and 1.5 M glucose)
and draw solution concentrations (0.5, 1.0, 1.5, and 2.0 M glucose).

Figure 7b shows the ratio of each concentration polarization and resultant water flux when the
concentration difference of the bulk solution was maintained at 0.5 M glucose across the membrane,
with a range of different feed solute concentrations (0, 0.5, 1, and 1.5 M glucose) and draw solution
concentrations (0.5, 1, 1.5, and 2 M glucose). By maintaining the net concentration gradient of the
bulk solution, this simulation attempted to discern the effects of the utilized non-dilute feed and draw
solutions. All other conditions were identical to those in the previous simulation. The side view of
Figure 7b shows the concentration change profile of the solution across the membrane with 1.5 and
2.0 M glucose solutions as the feed and draw solutions, respectively.

As presented in Figure 7b, when the concentration of the feed solution surpasses a certain level,
the ratio of the concentrative ECP increased from 0.1% to 12.9% under the condition of the ideal
net concentration difference in bulk phase, which implies that the concentrative ECP should not be
assumed to have little influence on the water flux; rather, it is because the absolute concentrations of
the two solutions, both the feed and the draw, was increased. Furthermore, the ICP was increased from
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52.2% to 68.1% when the draw solution concentration was increased from 0.5 to 2.0 M, suggesting that
the concentration of the draw solution has a direct effect on the severity of the ICP. Resultantly, both
processes end up slowing down the diffusional movement of water molecules. When the feed solution
is highly concentrated, the draw solution concentration has to be correspondingly high in order for
water permeation to take place, all because of natural osmotic pressure. However, Figure 7b reveals
that the high salinity of both solutions worsens the level of ICP and concentrative ECP. This result is
consistent with the results of previous studies involving NaCl as a draw solution [23].

4.4. Sensitivity Analysis

In the proposed model, parameters that can possibly affect the permeated water flux can be
categorized into operating conditions, membrane properties, and solution properties, as listed in
Tables 1–3. In this study, the bulk diffusion coefficient of glucose (D), the first and second virial
coefficients (B1 and B2), the viscosities of the feed and draw solutions (µF and µD), the densities of
the feed and draw solutions (ρF and ρD), the water permeability (A), the structural parameter (S),
the specific reverse solute flux for glucose (Jsw), the linear velocities of the feed and draw solutions
(νF and νD), the hydraulic diameters of the feed and draw channels (dh

F and dh
D), and the system

temperature (T°C) were selected for the sensitivity analysis. This sensitivity analysis was meant to
provide relative and quantified indices of influential factors and thereby insight into the characteristics
of the FO process.

Figure 8 shows the sensitivity indices of the 15 parameters under different conditions. Similar to
previous studies [23,48], four different feed concentrations, for which the glucose concentration of the
draw solution varies from 0.5 to 2.0 M while maintaining the 0.25 M glucose concentration of the feed
solution, were applied while the draw concentration was kept constant at 2.0 M (Figure 8a), and four
different draw concentrations were used when the feed concentration was fixed at 0.25 M (Figure 7b).
Under all different combinations of the feed and draw concentrations, the diffusivity of the draw solute
(D) had the highest sensitivity index, followed by S and A. An increase of S negatively affects the
permeated water flux, while increases in D and A positively improve it. Similarly, because D over S
( D

S ) is closely tied to the solute mass transfer in the support layer, as described in Equation (4), this
value can have a dominant effect on the ICP; that is, an increase of D

S alleviates the ICP. As discussed
above based on the simulation results, the ICP was a dominant hindrance that caused the water flux to
drop. Thus, these sensitivity analysis results, showing that D and B are the parameters that have the
most influence on the permeated water flux, are indeed in line with previous simulation results and
other studies [23,48]. These results prove that not only developing a support layer but also choosing
an appropriate draw solute is important when it comes to FO performance.

When either the feed solution concentration was raised while keeping the draw solution fixed, or
the draw solution concentration was increased while keeping the feed solution fixed, the sensitivity
indices D and S rose while that of A decreased, as shown in Figure 7. As mentioned for the previous
simulation, the ICP and ECP have specific effects on the water flux that increase according to the
concentrations of the feed and draw solutions, implying that D and B are more related to the ICP
and ECP compared to A. Thus, when dealing with high salinity solutions, the augmentation of D

S is
probably the best method of maximizing the water flux.
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Figure 8. Sensitivity analysis of the parameters affecting the permeated water flux, obtained using
the Latin-hypercube−one-factor-at-a-time (LH–OAT) method: (a) Sensitivity indices were simulated
by changing the glucose concentration of draw solution from 0.5 to 2.0 M while maintaining the
0.25 M glucose concentration as the feed solution. (b) Sensitivity indices were simulated by changing
the glucose concentration in the feed solution from 0.05 to 1.5 M and keeping the 2.0 M glucose
concentration of the draw solution. ν is average crossflow velocity, dh is hydraulic diameter of channel,
T°C is temperature (°C ) of system, D is diffusivity, µ is solution viscosity, ρ is solution density, S is
structural parameter of membrane, A is water permeability of membrane, and Jsw is specific reverse
solute flux. The subscripts F and D indicate feed solution and draw solution, respectively.

5. Conclusions

In this paper, a numerical dynamic model was established, capable of predicting results for a
process of forward osmosis (FO). After a parameter estimation process, the model was found to be
capable of describing significant physio-chemical phenomena during the FO process, such as the
internal (ICP) and external concentration polarization (ECP), as well as diffusion of the reverse draw
solute. The proposed model was verified through comparisons with experimental data. The results of
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our simulation agree well with the empirical data. Furthermore, the influences of the ICP and ECP
on the FO system water flux were investigated with different solute concentrations. The simulation
results indicate that the influences of the ICP, ECP, and reverse draw solute flux must be taken into
account for FO systems. It was also observed that the concentrative ECP on the selective layer surface
does not need to be taken into account when deionized water is used as a feed solution. However, the
concentrative ECP is not negligible if the salinity of the feed solution exceeds a certain point. Similarly,
the high salinity of a draw solution can affect the dilutive ECP on the support layer surface, because the
changes in the ECP can have an effect on the support layer dilutive ICP. Furthermore, with the verified
model, a global sensitivity analysis was used to consider the effects of certain model parameters on the
FO performance. The simulation results confirmed solute diffusivity is the most influential parameter
for water flux; the reason is that the solute diffusivity directly affects both ECP and ICP.
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Appendix A

Table A1. Abbreviation.

A Water Permeability
Am effective area of membrane
B solute permeability
B1 first virial coefficient
B2 second virial coefficient
C molar concentration
c mass concentration
D binary bulk diffusion coefficient of solute in water
dh hydraulic diameter
Js reverse solute flux

Jsw specific reverse solute flux
Jw forward water flux
k mass transfer coefficient
L channel length

Mw molecular weight
n number of dissolved species (van’t Hoff factor)
R ideal gas constant
Re Reynolds number
S structural parameter of support layer
Sc Schmidt number
Sh Sherwood number
T absolute Temperature

T°C temperature in Celsius degree
ts thickness of support layer
vD average crossflow velocity of draw solution
vF linear crossflow of feed solution



Water 2020, 12, 31 18 of 20

Table A2. Symbols.

δ Boundary Layer
ε porosity of support layer
µ viscosity of solution
π osmotic pressure
ρ density of solution
τ tortuosity of support layer

Table A3. Subscripts.

b bulk solution
D draw solution
F feed solution

glu glucose
I interface between selective and support layers
m membrane surface
s solute
w water

Table A4. Superscript.

j sampling index
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