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Abstract: Saline-sodic soils are a major impediment for agricultural production in semi-arid regions.
Salinity and sodicity drastically reduce agricultural crop yields, damage farm equipment, jeopardize
food security, and render soils unusable for agriculture. However, many farmers in developing
semi-arid regions cannot afford expensive amendments to reclaim saline-sodic soils. Furthermore,
existing research does not cover soil types (e.g., Luvisols and Lixisols) that are found in many
semi-arid regions of South America. Therefore, we used percolation columns to evaluate the effect of
inexpensive chemical and organic amendments (gypsum and cow manure) on the reclamation of
saline-sodic soils in the northeast of Brazil. Soil samples from two layers (0–20 cm and 20–40 cm in
depth) were collected and placed in percolation columns. Then, we applied gypsum into the columns,
with and without cow manure. The experiment followed a complete randomized design with three
replications. The chemical amendment treatments included a control and four combinations of
gypsum and cow manure. Percolation columns were subjected to a constant flood layer of 55 mm.
We evaluated the effectiveness of sodic soil reclamation treatments via changes in soil hydraulic
conductivity, chemical composition (cations and anions), electrical conductivity of the saturated
soil-paste extract, pH, and the exchangeable sodium percentage. These results suggest that the
combined use of gypsum and cow manure is better to reduce soil sodicity, improve soil chemical
properties, and increase water infiltration than gypsum alone. Cow manure at 40 ton ha−1 was better
than at 80 ton ha−1 to reduce the sodium adsorption ratio.
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1. Introduction

The use of brackish water in arid and semi-arid regions is increasing due to the increasing food
demand by a growing population and declines in the current and future supply of freshwater [1–3].
However, the increasing use of brackish water in irrigated agriculture and the potential for inadequate
drainage lead to salinization due to the low rainfall and high evaporation rate [4,5]. Under these
conditions, the soils gradually accumulate soluble salts and alter the physical properties of the soil in
the root zone, eventually reducing the potential yield of crops [6].

Soil degradation, caused by increased salinity and sodicity, reduces the soil organic matter and
can weaken the soil due to the unstable structure and low water holding capacity. This degradation
can also disrupt the soil aggregates, thus affecting the soil water, nutrients, and plant development [7].
Furthermore, organic matter applied to the salt-affected soils can increase the physical properties, such
as the water retention capacity [7].

To improve sodic soil, a substantial percentage of the exchangeable sodium needs to be removed
by calcium ions. This reaction can be quickly accomplished using chemical soil amendments, such as
calcium chloride or calcium sulfate (gypsum), followed by leaching for the removal of salts after the
reaction of salts with amendments in an acidic environment. However, adding industrial acids to soils
is an expensive alternative for near-subsistence farmers in developing countries. Thus, alternative and
readily available acidic substances, such as manure, can also help dissolve calcium compounds in soils.
However, there are few guidelines for using manure to reclaim sodic soils. Gypsum (CaSO4·2H2O) is
the most common amendment to reclaim sodic soils and to reduce sodium from the soil profile [8].
Gypsum is also a source of sulfur and calcium to plants, is moderately soluble in water, and is affordable
for farmers in developing countries [9].

Cow manure is a common organic acidic amendment that has been shown to improve the physical
properties of soils and increase soluble calcium. Both of these properties are required to reclaim sodic
and saline-sodic soils [10]. Prapagar et al. [11] observed that gypsum combined with organic residues,
cow manure, and rice husk decreased the pH values of a saline-sodic soil relative to the gypsum-only
treatment. This change is mainly because of the acids formed during the decomposition of the organic
matter. Combining gypsum with manure accelerated the recovery of sodic soils compared to either
5.2 g gypsum kg−1 soil or 50 g manure kg−1 soil alone [8]. In northwest India, the combined application
of organic and inorganic fertilizers increased the concentrations of nutrients available to plants [12].
Cow manure (20–40 t ha−1) increased soil organic matter, nitrogen (N), phosphorus (P), and soil
permeability [13–15]. The advantages of combining gypsum and organic matter have been documented
worldwide. They include the stimulation of soil microbiological activity in Chile [16], the enhancement
of the infiltration rate in arid soils in Iran [17], decreasing the soil electrical conductivity (EC) and
exchangeable sodium percentage (ESP) in South Korea [4], and improvement of the physical-hydric
properties of Fluvisols in northeastern Brazil [18].

Despite extensive international research, there is little information in semi-arid tropical regions,
which have large areas affected by saline-sodic soils [19]. Tropical semi-arid soils often have significantly
different characteristics, including compared to other arid regions, especially in Latin America. These
differences include different World Reference Base soil types [20] (e.g., Luvisols and Lixisols) compared
to other arid soil types that have been more frequently studied (e.g., Calcisols, Gypsisols, and Durisols).
Understanding saline soil reclamation in these lesser-studied soil types will become increasingly
important. This importance is due to the likely altered locations and extent of semi-arid areas [21–23]
under climate change and the shift of semi-arid climates over soil types that are not historically
associated with semi-arid soil development. With specific respect to South America, land use changes
are expected to increase the aridity of many regions, including regions that are already water stressed,
such as the northeast of Brazil [24,25].

When soils have more organic matter in semi-arid areas, the negative effects of sodium are often
reduced, and the water infiltration rate can be improved. Because cow manure and gypsum are widely
available and affordable for small, near-subsistence farmers, this study aimed to evaluate if gypsum,
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applied alone or combined with cow manure, is efficient in the recovery of chemical and physical
properties of a saline-sodic soil.

2. Materials and Methods

This experiment was conducted at the Hydraulic Engineering Laboratory of the Federal Rural
University of the Semi-Arid Region (UFERSA), Mossoró, Rio Norte (RN), Brazil, in percolation columns
from March to April 2013. Each column was made using polyvinyl chloride (PVC) pipes 50 cm in
height and 10 cm in diameter (internal diameter = 9.72 cm). These columns were set on a wooden
workbench and capped on the bottom. To facilitate drainage, we used a sponge in both ends of the
columns and collected the leachate in 2-L plastic soda bottles connected on each cap (Figure 1).
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Figure 1. Schematic drawing of the soil columns inside polyvinyl chloride (PVC) pipes.

We used an alluvial soil collected from a local irrigation district (Perímetro Irrigado de Paus dos
Ferros, RN, Brazil). This soil was classified as a Chromic Luvisol according to the World Reference
Base for soils [26]. We collected soil from the field in two layers ranging from 0 to 20 cm and 20 to
40 cm in depth [27]. During the collection, we observed that the soil exhibited signs of salt crusts on
the surface. The soils were sandy and eutrophic, with both low cation exchange capacity (CEC) and
high concentrations of sodium (Table 1). After collection, the soil material was pounded to break up
clods, sieved, and air-dried for physical and chemical characterization. Then, the percolation columns
were filled with the soil material, already mixed and uniformly moist to avoid high bulk density [28],
up to a depth of 40 cm. There was 10 cm of headspace left in each column to facilitate drainage.

The dose of gypsum necessary for the recovery of the soil, sufficient to reduce the initial ESP of
the soil by 20%, was calculated using the following equation [29]:

D = (ESPi − 0.8 ESPf) × CEC × E × h × ρ, (1)

where: D = dose of gypsum, g cm−3; (ESPi − 0.8 ESPf) = difference between the desired initial and
final ESP (established as 20%); CEC = cation exchange capacity; E = equivalent mass of gypsum (86 g);
h = soil depth to be recovered (cm); and ρ = soil density (g cm−3).

The composition of the manure used in the experiment is shown in Table 2. The amount of manure
followed the recommendation of 20 to 40 t ha−1 of fresh manure by [30]. Doses of manure were chosen
to provide 43.8, 30, and 15 g kg−1 of N with an 8, 11.7, and 23 C/N ratio, respectively. Lower C/N ratios
of less than 20 can cause higher N loss [31].
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Table 1. Chemical characteristics of the experimental soil, in layers from 0 to 20 cm and 20 to 40 cm.

Soil Characteristics
Layers (cm)

0–20 20–40

pH1:2.5 9.7 8.5
P (Mehlich) (mg kg−1) 18 23
Exchangeable cations (cmolc kg−1)
Ca2+ (KCl 1 N) 1.50 1.10
Mg2+ (KCl 1 N) 0.50 0.40
K (Mehlich-1) 0.32 0.25
Na+ (Mehlich-1) 0.71 2.44
Exchangeable acidity (H+ and Al3+) 0.17 0.66
ESP (%) 22.2 47.0
Base saturation (V %) 94.7 85.5
Ion composition in the saturated extract 1:5 (cmolc dm−3)

Ca2+ 0.60 0.60
Mg2+ 0.20 0.20
K+ 0.19 0.15
Na+ 1.88 2.61
CO3

2− 0.40 0.00
HCO3

− 2.40 1.70
Cl− 1.40 2.00

Table 2. Chemical composition and pH of cow manure.

PH and Minerals

pH1:2.5 7.5
C (g kg−1) 334
N (g kg−1) 14.0
P (g kg−1) 8.68

K+ (g kg−1) 9.45
Ca2+ (g kg−1) 8.43
Mg2+ (g kg−1) 2.50

S (g kg−1) 4.20
Cu (mg kg−1) 63.1
Mn (mg kg−1) 466
Zn (mg kg−1) 198.41

The experiment had a completely randomized design with five treatments and three replicates.
The treatments included: T0 = without gypsum or manure (control); T1 = 38.7 and 116.8 t ha−1 of
gypsum in the field soil layers of 0 to 20 cm and 20 to 40 cm, respectively; T2 = 80 t ha−1 of cow manure;
T3 = T1 + 40 t ha−1 of cow manure; and T4 = T1 + 80 t ha−1 of cow manure. We incorporated the
amendments in the first 10 cm of the soil layer in the column. We applied water to the upper part of
the columns with a constant depth of 55 mm for eight days to leach salts. The water came from a local
well, with the ionic composition presented in Table 3.

Table 3. Composition of irrigation water used in the percolation leaching experiments.

pH EC Na+ Ca2+ Mg2+ Cl− K+ CO32− HCO3− SAR (Richards, 1969)
dS m−1 mmolc L−1

8.5 0.57 3.90 0.90 0.30 2.40 0.26 0.89 2.70 5.06 C2 S1

After the first four days, the percolation was interrupted for nine days to allow the chemical
reactions with the soil amendments to occur, and then resumed for four additional days. A constant
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water depth was maintained in each column individually through narrow siphons from a 100-L plastic
reservoir, a constantly replenished tank, with the water level controlled by a fixed float valve (Figure 2).
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The following soil parameters were measured: pH, Ca, Mg, K, Na, P, ESP, ECe, SAR, hydraulic
conductivity, and water infiltration rate in the soil. The water infiltration rate (Ti) was modeled as
a response to the five treatments to the recovery of the sodic soil, according to the Green–Ampt
equation [32]:

Ti = K0

(
1 +

Ψ f (θs − θi)

I

)
, (2)

where Ti = infiltration rate (mm h−1), K0 = saturated soil hydraulic conductivity (mm h−1), Ψf = matric
potential in the moisture front (mm), θs = saturated soil water content (m3 m−3), θi = initial soil water
content (m3 m−3), and I = water infiltration stemflow (mm). The variables measured in each treatment
were evaluated considering two layer depths in each column (0–20 cm and 20–40 cm). Statistical tests
included a comparison of means by the Tukey test at the 0.05 probability level, and analyses were
conducted using the program ‘Sistema para Análises Estatísticas (System for Statistical Analyses)’ [33].

3. Results and Discussion

3.1. Effect on Soil Exchangeable Sodium Percentage (ESP)

Data analysis confirmed the efficacy of both gypsum and cow manure, combined or individually,
in reducing soil sodicity. The reductions observed in SAR reiterate the positive effect obtained by
the combined use of gypsum and manure as the manure treatments containing gypsum were more
efficient than the manure-only treatments (Tables 4 and 5). The substitution of sodium by calcium can
explain this reduction in sodicity in the soil exchange complex and due to gypsum being a rich source
of soluble calcium.

We also observed that the combination of gypsum with cow manure was more efficient at 40 Mg
than at 80 Mg per hectare. This effect is probably because cow manure also contains Na+, and its
excessive use may go against the desired effect of improving soil chemistry. Although cow manure
also contains Ca2+, this cation is not as available due to its adsorption to organic compounds, such as
citric acid and humic acid, that are also present in the cow manure [34,35]. Thus, the addition of cow
manure as a source of organic matter can improve the physical characteristics of the soil, facilitating
the release of salts present in the soil solution. The low ESP values in the top layer (0–20 cm) of the
percolation column for T2, T3, and T4 illustrate the importance of organic matter in the redistribution
of Na in the soil profile (Tables 4 and 5).
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Table 4. Physical and chemical analysis of sodic soils (collected at the 0–20 cm depth in the field) following laboratory column leaching in the district of Perímetro
Irrigado de Paus dos Ferros, Rio Grande do Norte, Brazil.

Treatments
Column

Layer
(cm)

pH1:2.5

Soil Sorption Complex Saturated Soil Extract

Ca2+ Mg2+ K+ Na+ H+ T V ESP 2 P pH EC
dS m−1 SAR 1

cmolc kg−1 % mg kg−1

T0

0–20 8.3 a 2.33 a 0.53 a 0.24 a 0.29 a 0.20 a 3.59 a 94.5 a 8.02 a 13.7 a 7.3 a 0.10 a 2.20 a
20–40 8.3 a 1.90 a 0.60 a 0.22 a 0.26 a 0.38 b 3.37 a 88.64 b 7.74 a 21.3 a 7.3 a 0.24 b 2.39 a
Mean 8.3 A 2.11 B 0.56 AB 0.23 B 0.27 B 0.29 B 3.48 B 91.57 C 7.88 AB 17.5 B 7.3 B 0.17 C 2.29 A

T1

0–20 8.1 a 2.67 a 0.53 a 0.24 a 0.29 a 0.11 a 3.84 a 97.23 a 7.48 a 15.3 a 7.5 a 0.53 a 2.17 a
20–40 8.3 a 2.30 b 0.40 a 0.21 a 0.28 a 0.08 a 3.26 b 97.65 a 8.48 a 24.6 a 7.5 a 0.33 b 1.85 a
Mean 8.2 A 2.48 B 0.46 B 0.22 B 0.28 B 0.09 C 3.55 B 97.44 A 7.98 A 20.0 B 7.5 A 0.43 B 2.01 A

T2

0–20 8.3 a 4.13 a 1.17 a 0.30 a 0.38 a 0.21 a 6.19 a 96.68 a 6.22 a 113.3 a 7.6 a 0.75 a 2.12 a
20–40 8.2 a 1.90 b 0.73 a 0.83 b 0.27 b 0.20 a 3.33 b 93.99 a 8.11 b 23.3 b 7.3 a 0.43 b 2.35 a
Mean 8.2 A 3.01 A 0.95 A 0.26 AB 0.32 A 0.20 BC 4.76 A 95.35 AB 7.16 ABC 68.3 A 7.4 B 0.59 A 2.24 A

T3

0–20 8.0 a 3.40 a 0.93 a 0.30 a 0.35 a 0.17 a 5.15 a 96.70 a 6.82 a 138 a 7.3 a 0.62 a 1.96 a
20–40 8.3 a 2.80 b 0.37 b 0.21 b 0.26 b 0.22 a 3.86 b 94.22 a 6.66 a 25.8 b 7.4 a 0.32 b 1.8 a
Mean 8.1 A 3.10 A 0.65 B 1.75 AB 0.30 B 0.19 BC 4.50 A 95.46 AB 6.74 BC 81.8 A 7.3 B 0.47 B 1.88 A

T4

0–20 8.1 a 3.87 a 0.87 a 0.34 a 0.34 a 0.22 a 5.64 a 96.07 a 6.08 a 116.3 a 7.2 a 0.54 a 1.92 a
20–40 8.4 a 2.47 b 0.47 a 0.22 b 0.27 b 0.42 b 3.83 a 89.16 b 6.96 a 24.3 b 7.6 b 0.32 b 2.19 a
Mean 8.2 A 3.17 A 0.67 B 0.28 A 0.30 B 0.32 A 4.73 A 92.61 BC 6.52 C 70.3 A 7.4 AB 0.43 AB 2.05 A

HSD
Column 0.41 0.45 0.43 0.047 0.034 0.109 0.56 2.82 1.198 13.58 0.19 0.09 0.53

Treatment 0.42 0.46 0.44 0.048 0.035 0.111 0.57 2.87 1.22 13.86 0.19 0.09 0.55
CV (%) 2.91 9.35 37.85 10.98 6.71 28.64 7.67 1.72 9.53 15.2 1.49 2.41 14.85

1 SAR = Sodium Adsorption Ratio (mmolc L−1)0.5. 2 ESP = Exchangeable Sodium Percentage. Lower case letters are for comparison of means between soil layers in each column, while
upper case letters show comparison of means inside each treatment. T0 = Control without gypsum or manure (control), T1 = 38.7 e 116.8 t ha−1 of gypsum applied to soil layers ranging
from 0 to 20 cm and 20 to 40 cm, respectively; T2 = 80 t ha−1 of cow manure; T3 = T1 + 40 t ha−1 of cow manure; T4 = T1 + 80 t ha−1 of cow manure. HSD = honestly significant difference.
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Table 5. Physical and chemical analysis of sodic soils (collected at the 20–40 cm depth in the field) following laboratory column leaching in the district of Perímetro
Irrigado de Paus dos Ferros, Rio Grande do Norte, Brazil.

Treatments
Column

Layer
(cm)

pH1:2.5

Soil Sorption Complex Saturated Soil Extract

Ca2+ Mg2+ K+ Na+ H+ T V ESP 2 P pH EC
dS m−1 SAR 1

cmolc kg−1 % mg kg−1

Soil Samples Collected from 20 to 40 cm

T0

0–20 7.8 a 1.50 a 0.33 a 0.22 a 0.29 a 0.41 a 2.76 a 85.43 a 10.82 a 13.3 a 7.1 a 0.03 a 2.42 a
20–40 8.4 a 0.83 a 0.47 a 0.23 a 0.42 ab 0.28 a 2.23 a 87.71 a 19.02 a 23.00 b 6.8 a 0.12 a 3.41 a
Mean 8.1 A 1.16 C 0.40 B 0.22 AB 0.35 A 0.34 A 2.49 C 86.57 B 14.92 A 18.16 C 6.9 B 0.07 A 2.91 A

T1

0–20 7.6 a 16.4 a 1.50 a 0.18 a 0.26 a 0.22 a 18.65 a 98.37 a 1.51 a 13.00 a 7.4 a 1.66 a 1.20 a
20–40 7.7 a 2.47 b 0.30 b 0.16 a 0.21 a 0.57 b 3.72 b 84.78 b 5.83 b 10.66 a 7.3 a 0.31 b 1.32 b
Mean 7.6 C 9.45 B 0.9 AB 0.17 C 0.23 AB 0.42 A 11.16 B 91.57 AB 3.67 B 11.83 C 7.3 A 0.99 B 1.76 C

T2

0–20 7.8 a 4.13 a 1.87 a 0.27 a 0.36 a 0.49 a 7.13 a 92.93 a 5.10 a 261 a 7.2 a 1.65 a 2.25 a
20–40 8.0 a 1.16 a 1.10 a 0.24 a 0.20 a 0.49 a 3.21 a 84.74 b 6.57 a 24.0 b 7.2 a 0.26 a 2.28 a
Mean 7.9 AB 2.64 C 1.48 A 0.25 A 0.28 A 0.49 A 5.17 C 88.83 AB 5.83 B 142.5 A 7.2 AB 0.95 B 2.26 B

T3

0–20 7.6 a 17.6 a 2.10 a 0.22 a 0.36 a 0.41 a 20.73 a 98.02 a 1.74 a 129.6 a 7.5 a 3.21 a 1.44 a
20–40 7.8 a 2.3 b 0.43 b 0.17 b 0.18 b 0.52 a 3.66 b 85.34 b 4.88 a 22.33 b 7.3 a 0.86 b 1.81 b
Mean 7.7 BC 9.98 B 1.26 B 0.19 BC 0.27 A 0.48 A 12.19 B 91.53 A 3.31 B 76.00 B 7.4 A 2.03 B 1.63 CD

T4

0–20 7.6 a 27.7 a 1.03 a 0.22 a 0.31 a 0.22 a 29.61 a 99.02 a 1.04 a 224.0 a 7.4 a 3.57 a 1.39 a
20–40 7.8 ab 2.53 a 0.37 a 0.17 b 0.29 a 0.46 a 3.82 b 87.91 b 7.15 b 33.0 b 7.3 a 0.78 b 1.66 b
Mean 7.7 BC 15.1 A 0.70 AB 0.18 C 0.30 A 0.37 A 16.71 A 93.46 A 4.09 B 128.5 A 7.3 AB 2.17 B 1.53 D

HSD
Column 0.2 3.82 0.88 0.03 0.14 0.26 4.16 4.94 4.24 37.64 0.39 1.75 0.19

Treatment 0.21 3.88 0.89 0.03 0.14 0.27 4.25 5.04 4.33 38.4 0.4 1.74 0.19
CV (%) 1.5 28.72 53.52 9.06 27.88 36.29 25.19 15.15 38.48 28.82 3.16 34.91 5.45

1 SAR = Sodium Adsorption Ratio (mmolc L−1)0.5. 2 ESP = Exchangeable Sodium Percentage. Lower case letters are for comparison of means between soil layers in each column while
upper case letters show comparison of means inside each treatment. T0 = Control without gypsum or manure (control), T1 = 38.7 e 116.8 t ha−1 of gypsum applied to soil layers ranging
from 0 to 20 cm and 20 to 40 cm, respectively; T2 = 80 t ha−1 of cow manure; T3 = T1 + 40 t ha−1 of cow manure; T4 = T1 + 80 t ha−1 of cow manure. HSD = honestly significant difference.
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3.2. Effect of Treatments on Soil Reaction (PH)

In both layers, soil pH (pHe and pH1:2.5) decreased compared to values before the application of
treatments (Table 2). After leaching with well water, soil pH1:2.5 from the 20 to 40 cm layer decreased
from 9.7 to 7.6 in T1 (116.80 t ha−1 of gypsum), 7.9 in T2 (80 t ha−1 of manure), 7.7 in T3 (combination of
gypsum + 40 t ha−1 of manure), and 7.7 in T4 (combination of gypsum + 80 t ha−1 of manure) (Table 5).

We observed the lowest significant pH values (p < 0.05) in T4, followed by T2 and T3. These
values represented reductions of 6%, 4.9%, and 4.9%, respectively, compared to the control. Even
with the most effective gypsum plus manure treatments (T3 and T4), the pH values are still above
what would be considered ideal for crop development and yield [36]. Additional acidifiers may be
required for optimal growth. The main advantage of gypsum and cow manure is that gypsum supplies
Ca2+ to substitute the adsorbed Na+ while manure increases the content of CaCO2 in the soil, also
releasing more Ca2+ for the substitution of Na+ [37]. Our results are similar to those of Tiwari and
Jain [38] and Izhar-ul-Haq et al. [39]. These studies found that the best results came from the combined
use of gypsum and manure to reduce soil pH. Islam et al. [40] mentioned that gypsum and organic
manure should be the right choices for managing silty-loam soils in Bangladesh. However, Buckley
and Wolkowski [41] did not find any improvement after gypsum application in soil properties in an
experiment in Wisconsin, USA.

Furthermore, the pHe increased with increased depth of the layer in the soil column
(Tables 5 and 6). This is due to the movement of bases inside the column, caused by the constant
inundation from the water. Also, the applied CaSO4 may have translocated, being positively correlated
with pHe (Tables 5 and 6). Compared to the control, the pH reduction caused by the combined
treatment (gypsum + manure) was due to the acidifying effect of the organic acids produced during the
decomposition of organic matter. Prapagar et al. [11] compared gypsum alone with the application of
gypsum combined with cow manure and rice husk and reported that the application of the combined
treatment decreased the pH values of a saline-sodic soil. Our results disagree with those of Rani and
Khetarpaul [42], who grew tomatoes under a sodic condition with gypsum and farmyard manure.
They found that treatment with gypsum and 20 t ha−1 of manure was enough to raise the pH and
neutralize 100% of the sodium in sodic soils of India.

Table 6. Infiltration rate of percolating water, according to treatment, from soil collected at 0 to 20 cm
and 20 to 40 cm.

Treatment

Days after Treatment (Days) Average

1 2 3 4 14 15 16 17

Infiltration Velocity (mm h−1)

(Soil from the 0 to 20 cm Layer)

T0 19.7 13.0 14.6 21.1 22.5 21.7 17.6 6.0 17.05 C
T1 40.4 33.2 27.4 38.2 42.1 29.7 19.0 88.8 29.85 B
T2 33.0 29.6 24.0 33.6 32.3 26.0 22.6 32.5 29.21 B
T3 35.0 43.7 52.0 53.2 44.3 12.1 8.7 85.4 41.80 A
T4 52.0 44.6 47.8 105.4 45.3 47.3 37.9 25.7 50.76 A

HSD - - - - - - - - 11.45
CV (%) - - - - - - - - 42.1

(Soil from the 20 to 40 cm Layer)

T0 10.5 5.3 3.4 1.8 0.8 0.2 0.4 0.3 2.84 B
T1 27.4 49.4 28.4 10.7 33.6 19.0 11.7 20.4 25.09 A
T2 13.6 9.0 7.0 5.6 5.3 5.3 3.4 3.0 6.52 B
T3 33.0 26.9 26.0 24.4 34.5 29.9 19.9 18.1 26.62 A
T4 32.7 16.5 27.4 22.5 20.5 16.3 19.8 25.7 22.70 A

HSD - - - - - - - - 4.45
CV (%) - - - - - - - - 32.87

T0 = Control without gypsum or manure (control), T1 = 38.7 and 116.8 t ha−1 of gypsum applied to soil layers
ranging from 0–20 cm and from 20–40 cm, respectively; T2 = 80 t ha−1 of cow manure; T3 = T1 + 40 t ha−1 of
cow manure; T4 = T1 + 80 t ha−1 of cow manure. HSD = honestly significant difference. Upper case letters show
comparison of means inside each treatment.



Water 2020, 12, 57 9 of 13

3.3. Treatment Effect on Electrical Conductivity and Sodium Absorption Ratio (SAR)

In both soil layers, the ECe decreased in all treatment combinations and the control, compared with
the initial ECe of the soil (1.92 and 3.28 dS m−1 for the layers of 0 to 20 cm and 20 to 40 cm, respectively).
The control was more effective in the reduction of soil ECe, in comparison to the combination of
gypsum or gypsum + manure. The decrease in the original soil ECe may have resulted from the
beneficial action of the organic matter, which improved the physical properties of the soil, facilitating
the leaching of excess salts. Organic matter also decreased ECe, ESP, and accelerated the leaching of
Na+ [4]. Concerning the percolation column, there was a greater accumulation of salts in the layer of
15 to 30 cm, compared with the superficial layer in all treatments, except for the treatment without
gypsum or manure (control).

Compared to the control, SAR values decreased in all treatments that had amendments, with
significant decreases in the layer of 20 to 40 cm. The combination of manure in the high dose (80 t ha−1)
with gypsum (20% of ESP) showed a better result in comparison to gypsum only (difference of 0.23
SAR units—Table 5). The decrease in SAR in the control treatment was probably due to the weathering
and leaching of the soil [43] with the application of the leaching water depth. The reduction in SAR
occurs because of the increase of the divalent cations (Ca2+ and Mg2+) or decrease of the monovalent
cation (Na+), provided in the reaction of gypsum with the soil and the decomposition of the organic
residues. The mean values of the cations (Tables 5 and 6) indicated that Na+ decreased while Ca2+ +

Mg2+ increased in the sorption complex after the application of organic and inorganic amendments
followed by the application of the leaching water depth. These results agree with [13,44,45] in showing
that the combination of organic matter with gypsum was more effective in reducing soil ESP because
of the replacement of exchangeable sodium ions with calcium ions.

High pH, EC, and ESP values have a profound impact on the chemical and physical properties
of soils [46]. These results agree with Mahmoodabadi and Heydarpour [47]. This study observed a
decrease of EC and ESP following the addition of organic matter in an arid area of the Kerman province,
central Iran. In South Korea, Kim et al. [46] also observed that the combined application of gypsum
and organic matter was more effective in reducing soil salinity and sodicity. Combined application of
gypsum and organic matter resulted in lower pH values, resulting in good soil reclamation in Lucknow,
India [13].

3.4. Effect of Amendments on Soil Physical Properties

The water infiltration rates increased significantly with gypsum alone and gypsum plus manure
for both studied soil layers (Table 6). The treatments with organic and inorganic conditioners (gypsum
+ cow manure), regardless of the applied dose of manure, led to higher water infiltration rates in the soil
profile, with maximum values of 41.80 and 50.76 mm h−1 in the layer of 0 to 20 cm, for the combination
of 116.8 t ha−1 + 40 t ha−1 of manure and 116.8 t ha−1 + 80 t ha−1 of cow manure, respectively. In the
layer of 20 to 40 cm, the maximum water infiltration rates were equal to 26.6 and 22.7 mm h−1 for
the combination of 116.8 t ha−1 + 40 t ha−1 of manure and 116.8 t ha−1 + 80 t ha−1 of cow manure,
respectively. Gypsum was fundamental to improve the water flow in the soil since the treatment that
received only manure at the dose of 80 t ha−1 did not differ statistically from the control.

These observations indicate that the presence of gypsum was important to displace sodium from
the exchange complex, improving the physical conditions for water movement. Also, the treatments
may have induced an increase in aggregate stability, facilitating water infiltration and movement in the
soil, because gypsum provides Ca2+ to replace the adsorbed Na+, which might reduce the dispersion,
improving the soil physical properties [13,48].
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The application of organic matter and gypsum combined was more effective in reducing the soil
pH, ESP, and SAR as compared to the treatment using gypsum alone. This added efficacy may be
because organic matter from manure and other sources supports rich micro-flora and has a nutritional
quality by improving soil C storage [13,49]. However, soil application of organic matter would not
improve plant nutrition by itself. Therefore, the application of cow manure + gypsum is recommended
as an efficient soil amendment for reclaiming sodic soil in combination with chemical fertilizers.

From previous experiments performed in Brazil, we assumed that cow manure doses above
40 t ha−1 were needed to improve the chemical quality of sodic soils in combination with gypsum.
These experiments reported that manure doses below 40 t ha−1 were insufficient to reduce ESP in
alluvial saline-sodic soils [50]. Although a dose of 40 t ha−1 of cow manure reduced the ESP in a fluvial
soil, it did not reduce pH, EC, or Na+ [18].

4. Conclusions

Saline-sodic soils hinder agricultural production in many semi-arid regions of the world, including
regions with relatively lesser studied soil types. Nevertheless, many farmers in drylands cannot
afford the costly amendments that can be used to reclaim their soils. In this experiment, we used
gypsum and cow manure to evaluate how they affected both the physical and chemical properties of a
saline-sodic soil irrigated with local groundwater in the northeast of Brazil. We found that gypsum
combined with manure provided the greatest improvement, leading to the largest reductions in sodium
saturation percentage, sodium adsorption rate, and pH, and to the greatest increase in the infiltration
rate. The lower dose of manure (40 t ha−1) was equally effective at reducing the sodium adsorption
ratio (SAR) as a higher dose (80 tons/hectare). Applying enough gypsum to substitute 20% of the
exchangeable sodium percentage was enough for the reclamation of the soil under study. Despite the
clear benefit of combining gypsum and manure, the pH of the soil was still above the optimal range
(6.0–6.8) to make macro and micronutrients fully available to most plants. Future work should focus
on testing additional, low-cost acidifying agents to enhance soil reclamation of saline/sodic soils in
semi-arid regions.
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