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Abstract: The aim of this study is the deduction of an analytic representation of the optimal irrigation
flow depending on the border length, hydrodynamic properties, and soil moisture constants,
with high values of the coefficient of uniformity. In order not to be limited to the simplified models,
the linear relationship of the numerical simulation with the hydrodynamic model, formed by the
coupled equations of Barré de Saint-Venant and Richards, was established. Sample records for
10 soil types of contrasting texture were used and were applied to three water depths. On the
other hand, the analytical representation of the linear relationship using the Parlange theory of
infiltration proposed for integrating the differential equation of one-dimensional vertical infiltration
was established. The obtained formula for calculating the optimal unitary discharge is a function
of the border strip length, the net depth, the characteristic infiltration parameters (capillary forces,
sorptivity, and gravitational forces), the saturated hydraulic conductivity, and a shape parameter of
the hydrodynamic characteristics. The good accordance between the numerical and analytical results
allows us to recommend the formula for the design of gravity irrigation.

Keywords: Saint-Venant equations; Richards’ equation; Parlange equations; optimal irrigation flow;
soil parameters; analytical representation

1. Introduction

Gravity irrigation is the water supply at the head of a channel or inclined ditch built on a plot, as a
border or a furrow, in order to take advantage of the gravitational field to provide the necessary amount
of water for optimal development of cultivated plants. In continuous gravity irrigation, three phases
are distinguished in the surface water movement [1,2]. The first begins when water flow is provided
on the dry border until the water wave reaches the end part of the same; it is known as the advance
phase. The second starts from the arrival of the wave at the end of the border until the water supply
is cut off, known as the storage phase. Finally, the third phase, known as the recession, is composed
of two sub-phases, one is the vertical recession starting from cutting off the water supply until the
depth at the head of the border disappears, and the other is the horizontal recession starting from the
disappearance of the depth at the head and ends when the depth at the end of the border disappears.

According to the principles used in the modeling, studies reported in literature can be grouped
in the context of four approaches [2]: (1) The modeling of surface and underground movements
is addressed in a full empirical way [3]; (2) the surface movement is modeled with the Barré de
Saint-Venant equations and their simplifications, and the underground movement with empirical
equations as those of Kostiakov and Mezencev [4–11]; (3) surface movement is modeled by Saint-Venant
simplified equations (kinematic wave, diffusion wave or null inertia and hydrological model) and in
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the modeling of the underground movement there is the possibility of using rational equations [12–23];
(4) the surface movement is modeled with Barré de Saint-Venant equations and the underground
movement with Richards’ equation [24] in [2,25–28].

In the study to model the border irrigation developed by Schmitz et al. [29], the complete equations
of Barre de Saint-Venant are solved with the method of characteristics, and for the underground
movement, the analytical solution for infiltration obtained by Parlange et al. is used [30]. Other studies
use the Green and Ampt infiltration equation [31], which is a special case of Richard’s two-dimensional
equation [32], and other group coupled Saint-Venant and Richards equations in border irrigation.
The first ones are resolved with a Lagrangian method and the second one with the finite element
method [25–28]. In Saucedo et al. [27], using the full hydrodynamic model, the optimal irrigation
flow is obtained using numerical methods, with Saint-Venant equations coupled internally with
Richards’ equation.

The aim of this study is the deduction of an analytic representation of the optimal irrigation flow
depending on the border length, hydrodynamic properties, and soil moisture constants, with high
values of the coefficient of uniformity.

2. Materials and Methods

2.1. Water Surface Flow

The continuity and amount of movement equations in a border—considering that the effects of
the borders were negligible and that water was the shallow or hydraulic hypothesis—were known as
equations of Barre de Saint-Venant for border irrigation and written as follows:

∂h
∂t

+
∂q
∂x

+
∂I
∂t

= 0 (1)
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where q(x, t) = U(x, t) h(x, t) is the flow per width unit of border, x is the spatial coordinate in the main
direction of movement of water in the border; t is time; U is the mean velocity; h the water depth; Jo is
the topographic slope of the border; J is the friction slope; VI = ∂I/∂t is the infiltration flow, that is,
the volume of water infiltrated in the time unit per width unit and per length unit of the border, I is the
infiltrated depth; g is the gravitational acceleration; the dimensionless parameter λ = UIX/U, with UIX

the projection in the movement direction of the output speed of the water body due to infiltration.
The system of equations of Barré de Saint-Venant was not closed since the evolution in time and

space of infiltrated depth and friction slope, were unknown. The first was provided by the Richards
equation [24] and the second by a law of resistance to the flow that related the friction slope with the
hydraulic variables q and h, which were discussed below [2].

2.2. Water Flow in the Soil

If the hypothesis that the irrigation was carried out in flat parallels to the development of the
border was accepted, then it is possible to use the two-dimensional form of Richards’ equation [24],
which results from combining the continuity equation and Darcy’s law [33]:
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∂x

[
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∂ψ
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+
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[
K(ψ)

(
∂ψ
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)]
(3)

where ψ is the potential for water pressure in the soil expressed as the height of an equivalent water
column (positive in the saturated zone and negative in the unsaturated zone of soil); C(ψ) = dθ/dψ is
called the specific capacity of soil moisture; θ= θ(ψ) is the water volume per volume unit of soil or water
volume content and is a function of ψ, known as the moisture characteristic curve or water retention
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curve; K = K(ψ) is the hydraulic conductivity, which in a partially saturated soil is a function of the
potential of pressure; the gravitational potential is assimilated to the spatial coordinate z positively
oriented downwards, x is a spatial coordinate and t is the time.

For the description of the water flow during an irrigation test, the hydrodynamic characterization
of soil was necessary. As pointed out by Fuentes et al. [34] in experimental studies, it was more
convenient to use the combination of the retention curve proposed by van Genuchten [35], considering
the Burdine restriction [36], with the hydraulic conductivity curve proposed by Brooks and Corey [37],
due to the fact that they satisfy the integral properties of infiltration and to the ease of identification of
their parameters. The retention curve proposed by van Genuchten is written as:

θ(ψ) − θr

θs − θr
=

[
1 +

(
ψ

ψd

)n]−m

(4)

where θs is the volumetric water content at effective soil saturation, θr is the volumetric content of
residual water, ψd is a characteristic value of water pressure in the soil, m and n are two parameters of
empirical form related here by the Burdine restriction [36]: m = 1 − 2/n, with 0 < m < 1 and n > 2.

The hydraulic conductivity proposed by Brooks and Corey [37] is represented as:

K(θ) = Ks

(
θ− θr

θs − θr

)η
(5)

where η is a parameter of positive form whose value can be estimated with η = 2s (2/mn + 1), being s a
function of porosity (φ) defined implicitly by (1 − φ)s + φ2s = 1 [38].

2.3. Hydraulic Resistance Law

The phase of advance in gravity irrigation is represented by the following initial and boundary
conditions in the Barré de Saint-Venant equations:

q(x, 0) = 0 and h(x, 0) = 0 (6)

q(0, t) = qo, q(xf, t) = 0 and h(xf, t) = 0 (7)

where xf(t) is the position of the wave front for the time t and qo the flow of supply at the entrance of
the border.

An analysis of the singularity present in the advance phase in very short times has established
that the law of hydraulic resistance, which makes compatible the coupling of Barré de Saint-Venant
and Richards equations in this singularity, and it has the following structure [2]:

q = kν

h3gJ
ν2

d

(8)

where ν is the coefficient of kinematic viscosity, k is a dimensionless factor of friction, and d is an
exponent such that 1/2 ≤ d ≤ 1 in a way that d = 1/2 corresponds to the Chézy turbulent regime and
d = 1 to the Poiseuille depth regime.

3. Results and Discussion

3.1. Numerical Relationship between the Optimal Flow and Length

The solution of Barre de Saint-Venant and Richards equations to represent surface and subsurface
movement, respectively, has been solved numerically based on a Eulerian–Lagrangian scheme that
eliminates the traditional instabilities in short times and is available on Saucedo et al. [25].
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3.1.1. Optimal Flow in Border Irrigation

With the system of Barré de Saint-Venant and Richards equations, the irrigation design consists of
determining the flow of optimal supply and irrigation time to achieve the greatest uniformity along
the border, with high levels of application efficiency and irrigation requirement for an irrigation depth
and soil hydrodynamic predetermined properties. The optimal flow should be determined for a
border length, and its value should be updated in proportion to the new length, which was verified by
Rendón et al. [39]. In fact, the optimal flow design follows a linear proportion with the border length
that should be applied. The result is obtained using a model formed by the Lewis and Milne [40]
equations to describe the water flow on the soil surface and by the Green and Ampt equation [31] to
describe the water flow on the soil.

3.1.2. Irrigation Efficiencies

In irrigation, it is essential to distinguish at least three related efficiencies: Application efficiency,
irrigation requirement efficiency, and irrigation uniformity efficiency. Application efficiency (ηA) is
defined as [1,23]:

ηA =
Vn

Vb
=
`n
`b

(9)

where Vn is the water volume required in the root zone of the crop or net volume and Vb is the amount
of applied irrigation water. The first is obtained w.ith the expression: Vn = `nAr, where `n is the net
irrigation depth, defined according to the crop irrigation requirements, and Ar is the irrigated area
considered. The second is obtained as Vb = `bAr, where `b is the gross irrigation depth.

Irrigation requirement efficiency (ηR) is defined as [23]:

ηR =
Vd

Vn
(10)

where Vd is the available volume by the crop. This efficiency indicates how the water needs for the
crop are met.

The ideal situation regarding uniformity occurs when all plants receive the same amount of
water, a situation which is equivalent to applying the same water depth to the entire length of the
border. To evaluate the uniformity in distribution of the infiltrated depth, the Christiansen uniformity
coefficient is used. This coefficient (CUD) results from partitioning the length in N sections of size ∆xi,
not necessarily equal, namely [23]:

CUD(t) = 1−
1

I(t)L

N∑
i=1

∣∣∣Ii(t) − I(t)
∣∣∣∆xi, I(t) =

1
L

N∑
i=1

Ii(t)∆xi (11)

where Ii is the infiltrated depth at any section i of the border strip or furrow, I is the average infiltrated
depth, and N is the number of sections considered along the furrow or border strip.

Christiansen classic uniformity coefficient (CUC) results when sections are taken of the same size,
L = N∆x.

3.1.3. Optimal Flow-Length Relationship

The uniformity efficiency measured by the Christiansen uniformity coefficient can be obtained
for different combinations of length and supply flow at the head of the border. Saucedo et al. [27]
showed an example of four lengths of the border for the soil under study, where it was observed that
the uniformity efficiency varied considerably with the irrigation flow.

For each border length, it was possible to determine the value of the supply flow that produced
a maximum in the uniformity coefficient with high values of application efficiencies and irrigation
requirements. When the supply flow was modified, application efficiencies and irrigation requirements
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did not vary significantly, not in the case of the uniformity efficiency, which varied substantially with
the irrigation flow, i.e., application and irrigation requirement efficiencies can be considered that are
not decision variables in defining the optimal flow and, therefore, the uniformity efficiency is that
which allows defining the optimal irrigation flow.

The numerical simulation of the irrigation with the system of Barre de Saint-Venant and Richards
equations indicates that the relationship between optimal flow (qo) and length (L) is approximately
linear, for a soil type, topographic slope, friction coefficient, and irrigation depth, that is:

qo = qu L (12)

where qu has units of unitary flow per length unit. In addition, as qu is a constant, it follows that for
the application of a specific irrigation depth, there is an irrigation time, unique and independent of the
length, which allows obtaining a maximum value of the uniformity coefficient.

The relation (12) is illustrated by Saucedo et al. [27] in the loam soil of the experimental field
of the Colegio de Postgraduados, Montecillo, State of Mexico, for water depths of 8, 10, and 12 cm,
by making qu = αuKs, where αu is a dimensionless parameter (Figure 1). It is observed that there is
monotony in the sense that the slope of the relationship between the border length and optimal flow
decreases as the irrigation depth increases.
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Figure 1. Relationship between the border strip length and the optimum input discharge in the loam
soil of Montecillo for three irrigation depths: 8, 10, and 12 cm. Ks in m/s.

3.1.4. Irrigation Design Table

To generate the design table, it was necessary to obtain the relationships between optimal flow
and border length for various soil types. The moisture content of residual water (θr) was assumed to
be zero, according to Fuentes et al. [34]. The moisture content at saturation (θs) was assimilated to the
total soil porosity (φ) determined, as the hydraulic conductivity at saturation (Ks), starting from the
soil texture according to the relationships provided by Rawls and Brakensiek [41].

To estimate the value of the shape m parameter of the soil retention curve, one granulometric
curve was reconstructed for each soil based on the percentages of sand, silt, and clay present in the
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triangle of textures [34]; we have followed the procedure suggested by Fuentes [38] to determine the
values of m and η. The pressure scale (ψd) was determined from the suction of the wetting front of
Green and Ampt equation [31] according to the texture and porosity of soils [41], as this suction was
identified with the Bouwer scale [42] defined by:

λc =
1

Ks −K0

0∫
ψ0

K(ψ)dψ =
1

Ks −K0

θs∫
θ0

D(θ)dθ (13)

where K0 = K(ψ0) is the hydraulic conductivity corresponding to the initial pressure ψ0 = ψ(θ0) related
to the initial moisture content θ0, D(θ) = K(θ) dψ/dθ is the hydraulic diffusivity.

The parameter ψd is deduced by introducing the hydrodynamic characteristics defined by
Equations (4) and (5) in Equation (13), considering the initial moisture content equal to the residual
moisture content (ψ0→∞), as follows:

λc =
∣∣∣ψd

∣∣∣ 1
n

B
(
ηm−

1
n

,
1
n

)
(14)

where B(p,q) = Γ(p)Γ(q)/Γ(p + q) is the complete beta function, with p > 0 and q > 0, and Γ(x) the Euler
complete gamma function.

The parameter values of the hydrodynamic characteristics are shown in Table 1 for different types
of soil [27], where the residual moisture content is θr = 0 cm3/cm3.

Table 1. Hydrodynamic characteristics of soils for irrigation design by borders.

Soil Texture θs
(cm3/cm3)

λc
(cm)

Ks
(cm/h) η m |ψd|

(cm)

Clay 0.525 140.26 0.010 61.10 0.0229 132.50
Silty clay 0.500 100.16 0.015 31.55 0.0440 94.70

Silty-clay-loam 0.500 60.12 0.070 15.34 0.0905 57.80
Clay-loam 0.475 36.00 0.150 19.30 0.0714 34.15
Sandy clay 0.425 25.72 0.200 41.50 0.0327 23.70

Loam 0.500 30.52 0.500 5.61 0.2477 30.70
Silt 0.475 20.04 0.700 13.93 0.0989 19.20

Silty loam 0.525 30.07 0.600 12.01 0.1165 29.35
Sandy-clay-loam 0.425 35.61 1.500 18.44 0.0736 33.35

Sandy loam 0.450 10.00 5.000 13.62 0.1004 9.52

The initial moisture content is considered as that which corresponds when the available moisture
of each soil type has been consumed in a certain fraction. The available soil moisture is defined as the
difference between the moisture contents at field capacity (θCC) and permanent wilting point (θPMP),
whose values for each type of soil are estimated according to the soil texture triangle [41]. The initial
moisture content is calculated as:

θ0 = θPMP + Fap(θCC − θPMP) (15)

where Fap is the permissible depletion factor of the crop. The average value of 0.5 has been assumed.
The values of initial moisture content are reported in Table 2.
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Table 2. Moisture constants.

Soil Texture θPMP
(cm3/cm3)

θCC
(cm3/cm3)

θ0
(cm3/cm3)

Clay 0.350 0.450 0.400
Silty clay 0.275 0.425 0.350

Silty clay-loam 0.200 0.375 0.287
Clay-loam 0.190 0.340 0.265
Sandy clay 0.225 0.325 0.275

Loam 0.100 0.275 0.187
Silt 0.130 0.250 0.190

Silt loam 0.125 0.275 0.200
Sandy-clay-loam 0.150 0.250 0.200

Sandy loam 0.100 0.190 0.145

As for the parameters of the law of resistance defined by Equation (8), the values were taken from
a loam soil border in the Montecillo experimental field. Considering the Reynolds number, the regime
is depth, d = 1, the value k = 1/54 is obtained thus that the advance curve provided by the numerical
solution describes the advance curve observed in an irrigation test; the coefficient of kinematic viscosity
is taken as ν = 10−6 m2/s. The longitudinal topographical slope of the border is of J0 = 0.002 m/m, value
that is used to simulate irrigation in other borders with different soil types. With the hydrodynamic
characterization of soils and θ0, the constant involved in the relationship between the border length
and the optimal flow for a given irrigation depth is calculated.

The value of the constant is expressed in terms of flow per unit area, i.e., per unit width, and
per unit length of border, results are shown in Table 3. The same table shows the irrigation time (τb)
obtained at the moment the flow supply is cut off when the volume of irrigation per width unit is
already stored both on the surface as well as inside the soil. In Rendón et al. [39], a table of similar
design to Table 3 is shown containing some inconsistencies of monotony between the relationship that
the variables optimal flow, irrigation time, and applied depth since the used model has difficulties in
reproducing gravity irrigation in relatively long times. The coupling of Saint-Venant and Richards
equations allows obtaining results that keep the monotony in the design variables, as shown in Table 3.

Table 3. Table of the border irrigation design: flow in l/s/m2 for the optimal application of the
irrigation depth.

Soil Texture
`n = 8 cm `n = 10 cm `n = 12 cm

qu
(l/s/m2)

τb
(h)

qu
(l/s/m2)

τb
(h)

qu
(l/s/m2)

τb
(h)

Clay 0.00012 224.1 0.00010 338.2 0.00009 445.0
Silty clay 0.00014 201.6 0.00012 270.5 0.00011 362.5

Silty-clay-loam 0.00060 44.1 0.00050 66.6 0.00046 82.9
Clay-loam 0.00088 31.4 0.00078 44.0 0.00072 57.8
Sandy clay 0.00090 28.7 0.00080 42.4 0.00077 52.0

Loam 0.00399 6.9 0.00333 10.0 0.00296 13.7
Silt 0.00411 6.4 0.00354 9.6 0.00326 12.5

Silt-loam 0.00446 6.2 0.00388 8.8 0.00349 11.6
Sandy-Clay-loam 0.00490 5.8 0.00476 7.4 0.00464 9.0

Sandy-loam 0.02476 1.2 0.02223 1.6 0.02073 2.0

3.2. Analytical Representation of the Relationship between the Optimal Flow and Length

Equation (12) structure is deduced considering that the net water volume per width unit of the
border is equal to the product of the border length (L) by the net irrigation depth (`n) and is also equal to
the product of supply unitary flow (qo) by the time necessary to infiltrate the net depth (τn): qoτn = L`n.
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The relationship is also attested by involving the irrigation time to obtain the volume per width unit
provided by the gross depth: qo τb = L`b. Comparing both results to Equation (12), we have:

qu =
`n
τn

=
`b
τb

(16)

It should be noted that this relationship involves, considering Equation (9), the following expression
for application efficiency:

ηA =
`n
`b

=
τn

τb
(17)

From the continuity equation, it can be shown that the unitary flow of minimal irrigation thus that
the water wave arrives at the end of the channel is given by qm = Ks L; then it follows that the optimal
flow must meet the inequality qo ≥ qm. If qo = αu qm is written, αu is a dimensionless parameter that
must satisfy αu ≥ 1. Equations (12) and (16) should be written as follows:

qo = αuKsL, αu =
qu

Ks
=

`n
Ksτn

(18)

in which the dependence of αu should be investigated regarding the irrigation depth and soil properties.
The extreme behavior of αu is deduced from the extreme behavior of the infiltrated depth. In very

short times I = S
√

t [43], where S is sorptivity, and, therefore, τn = `2n/S2, that is αu = S2/(Ks `n). In long
times I~Io + Ks t, where Io is the ordinate at the origin depending on S and Ks, and on the Green and
Ampt model on the time logarithm, and, therefore, αu~`n/(`n − Io). From the above, it follows that
the limits:

lim
`n→0

αu = ∞, lim
`n→∞

αu = 1 (19)

must be satisfied by the general function αu (`n).
Irrigation time (τb) shown in Table 3 corresponds to the gross irrigation depth and is greater than

the infiltration time corresponding to the net depth calculated from Equation (16): τn = `n/qu. Figure 2
shows the relationship between the two times; one has τn ≈ 0.83 τb with r2 = 0.9995, which indicates
that, according to Equation (17), the average application efficiency with the optimal flow is ηA ≈ 83%
for analyzed soils.
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The design table can be represented algebraically if the infiltration function is provided analytically.
This is obtained from the Parlange et al. model [44] deduced from the Richards equation, assuming
that the hydraulic diffusivity tends to behave like a Dirac density and form a relationship between the
hydraulic diffusivity and hydraulic conductivity. The model with the effect of water depth on the soil
surface is as follows [30]:

I(t) −K0t =
Ksh∆θ

qs(t) −Ks
+

S2

2β(Ks −K0)
ln

[
1 + β

Ks −K0

qs(t) −Ks

]
, qs =

dI
dt

(20)

where ∆θ = θs − θ0 is the storage capacity of the soil, h is the water depth on the soil surface, S is the
sorptivity, and β is a shape parameter thus that 0 < β < 1, the lower limit corresponds to the Green
and Ampt model while the higher limit corresponds to the Talsma and Parlange model [45]. Time in
Equation (20) should be interpreted as the contact time that water has at a given point of the border.

Sorptivity S can be calculated with the expression proposed by Parlange [46]:

S2 =

0∫
ψ0

[θs + θ(ψ) − 2θ0]K(ψ)dψ (21)

and the parameter of β shape can be calculated with the expression proposed by Fuentes [47]:

1−
1
2
β =

θs∫
θ0

[
K(θ)−K0

Ks−K0

](
θs−θ0
θ−θ0

)
D(θ)dθ

θs∫
θ0

D(θ)dθ

(22)

Variation in time of water depth on the soil is provided by the system of Saint-Venant and Richards
equations, but their analytical representation is not known, the reason whereby it is assumed that it is
represented by an average value; the mean depth of water can be estimated as a fraction of the normal
depth: h = 4/5 hn. With the dimensionless variables:

t∗ =
2(Ks −K0)

2t

S2 + 2Ksh∆θ
, I∗(t∗) =

2(Ks −K0)[I(t) −K0t]

S2 + 2Ksh∆θ
(23)

q∗s(t
∗) =

dI∗

dt∗
=

qs(t) −K0

Ks −K0
, γ =

2Ksh∆θ

S2 + 2Ksh∆θ
(24)

Equation (20) is written as:

I∗ =
γ

q∗s − 1
+

1− γ
β

ln
[
1 +

β

q∗s − 1

]
(25)

The relationship dI*/dq∗s = q∗sdt*/dq∗s, considering constant the water depth on the surface, along
with the initial condition t* = 0, I* = 0, q∗s→∞, leads to find the time as a function of the infiltration flow:

t∗ =
γ

q∗s − 1
+

1− γ
β(1−β)

ln
[
1 +

β

q∗s − 1

]
−

1−βγ
1−β

ln
[
1 +

1
q∗s − 1

]
(26)

Thus, the function defining the infiltrated depth in the function of time is of a parametric nature:
I* = I* (q∗s) and t* = t* (q∗s), with the flow q∗s as a parameter.
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Due to the high nonlinearity of the function K(θ) it can be assumed that K0 << Ks. The dimensionless
version of αu defined in Equation (18) is as follows:

αu =
`∗n

(
q∗sn

)
τ∗n

(
q∗sn

) (27)

where the dimensionless net irrigation time and net irrigation depth are defined by Equation (23) and
the corresponding dimensionless infiltration flow by Equation (24). For a given border and initial
medium depth, the irrigation depth in a dimensionless form (`∗n) was calculated, and the dimensionless
flow (q∗sn) was calculated with Equation (25) iteratively. Finally, the dimensionless net time (τ∗n) was
calculated with Equation (26), and αu was calculated with Equation (27).

It should be noted that the process of calculating the optimal flow, for a given irrigation length,
was also iterative since the medium depth depended on the normal depth and this, in turn, of the
optimal flow, through Equation (8): hn = [ν2 (qo/kν)1/d/gJo]1/3.

When the water depth was small (h << S2/2Ks∆θ) from Equation (25) it was deduced an explicit
function of time with respect to the infiltrated water and corresponds to the Parlange et al. equation [44]:

t∗ = I∗ − (1−β)−1 ln
{
β−1[1− (1−β) exp(−βI∗)]

}
(28)

In Table 4, the values of sorptivity and the shape parameter for different soils are reported.
In Figure 3, the optimal infiltration time obtained with Saint-Venant and Richards equations is
compared with that obtained with Equation (28) of Parlange et al. [44]: r2 = 0.9866.

Table 4. Parameters of the Parlange et al. infiltration equation [44]: sorptivity (S) and the shape
parameter (β), calculated with Equations (21) and (29).

Soil Texture S
(cm/

√
h) β Soil Texture S

(cm/
√

h) β

Clay 0.583 0.820 Loam 2.958 0.584
Silty clay 0.655 0.800 Silt 2.761 0.744

Silty-clay-loam 1.296 0.750 Silty loam 3.338 0.721
Clay loam 1.469 0.773 Sandy-clay-loam 4.796 0.775
Sandy clay 1.223 0.820 Sandy loam 5.404 0.744
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Figure 3. Comparison between the optimal irrigation time numerically obtained with the Barré de
Saint-Venant/Richards equations and those calculated ones with the Parlange et al. equation (Equation (28)).
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The shape parameter β varies with respect to the initial moisture content; however, it does not
vary significantly when this moisture content approaches the residual moisture content. In this
case the introduction of the hydrodynamic characteristics defined by Equations (4) and (5) in
Equation (22) provides:

β = 2
{

1−
B[(2η− 1)m− 1/n, 1/n]

B(ηm− 1/n, 1/n)

}
(29)

where B(p,q) is the complete beta function.
Introduction of Equation (28) into Equation (27) gives the approximate formula for calculating the

optimal unitary flow in function of the border length, the net depth, and the characteristic parameters of
infiltration representing the capillary forces (sorptivity) and gravitational forces (hydraulic conductivity
at saturation) and a shape parameter of the hydrodynamic characteristics, namely:

αu =
`∗n

`∗n − (1−β)
−1 ln

{
β−1[1− (1−β) exp(−β`∗n)]

} , `∗n =
2Ks`n

S2 (30)

where `∗n is the net irrigation depth in dimensionless writing.
As can be seen, Equation (30) contains a shape parameter in the function of the soil type; however,

it does not have a great variation in the range of soils reported in Table 4, the mean value β ≈ 3/4 can
be taken. With this value in Figure 4, the graph of Equation (30) and its comparison with the numerical
results are presented. A good agreement is clearly demonstrated.
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Figure 4. The multiple factors of the minimum discharge as a function of the irrigation depth numerically
obtained with the Saint-Venant and Richards equations, and those calculated with the Parlange et al.
model [44], Equation (30).

3.3. Application of the Analytical Formula in Furrow Irrigation Systems

This analytical formula has been applied in field experiments realized by Chávez and Fuentes [1]
with good results. Irrigation tests (250) were performed in 1010 ha with the next crops: Zea mayz,
Sorghum vulgare, Medicago sativa, Phaseolus vulgaris, Pachyrhizus erosus, Hordeum vulgare, Triticum
aestivum, and Allium cepa.

The characteristics and properties that were measured in the plots were: Length, slope, texture,
bulk density, initial, and saturation moisture content. The results that were obtained from the evaluation
of the irrigation tests were: Discharge at the entrance of the plot, number of furrows by irrigation set,
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saturated hydraulic conductivity, the efficiency of the application, and the slope of the direction of
irrigation. The irrigation tests were performed in plots.

With the advanced and recession data and the characteristics of the soils from the locations where
the irrigation tests were carried out, the calibration of the test was performed using the kinematic wave
model. With the parameters found (Ks and hf) for the evaluation of the irrigation tests and the net
irrigation depth that is intended to be applied on the plot (water depth depending on each of the crops
established in the plots), Equations (18) and (30) were used to make the design. The obtained result is
the optimal flow that must go into each furrow; for this value, the discharge for the entrance of the plot
between that obtained with Equation (18) was divided, and then approached the nearest whole value.
As a result, the equation gives us the number of furrows that the user has to open by set and the time
that must pass before cutting off the water.

In this study, the evaluation of irrigation tests, the data of the plot, and the net irrigation depth
to be applied demonstrated that the optimal flow expense that can be put in each furrow during an
irrigation event can be calculated under the hypothesis that with this expense, the historical water
depths applied in the evaluated plots can be reduced. The average water depths decreased by 19 cm,
irrigation time decreased 12 h ha−1 on average, and the average volume saved was 2150 m3 ha−1,
which represented a total of 49% of the total volume used. In addition, the average efficiency rose from
51% to 86%.

4. Conclusions

A linear relationship has been validated between the length of the border and the optimal irrigation
flow, defined as the inflow rate that has to be applied to obtain a maximum value of Christiansen’s
uniformity coefficient with high values of application efficiency and irrigation requirement efficiency.
The linear form of the proportion between both variables was corroborated by [39] using a hydrological
model for the flow of surface water and the Green and Ampt infiltration equation.

The proportion between optimal flow and border length has been established by numerical
simulation with the hydrodynamic model, formed by the coupled equations of Barré de Saint-Venant
and Richards. In the numerical simulation, 10 types of soils of contrasting texture have been used and
three water depths applied, which has allowed us to form an irrigation design table, that is, 10 linear
relationships for each irrigation depth.

To establish an analytical representation of the optimal flow in function of the border length,
the Parlange infiltration theory proposed for integrating the differential equation of the vertical
one-dimensional infiltration has been used. In the formula obtained to relate the optimal irrigation
flow and length, the irrigation depth intervenes and as soil parameters sorptivity that comes from
the capillary forces and the saturated hydraulic conductivity that comes from gravitational forces.
The good accordance between the results of numerical simulation and analytical representation allows
us to obtain the formula for the design of gravity irrigation.
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