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Abstract: The illegal use and low biodegradability of psychoactive substances has led to their
introduction to the natural water environment, causing potential harm to ecosystems and human
health. This paper compared the reaction kinetics and degradation mechanisms of ketamine (KET)
and methamphetamine (METH) by UV/H2O2. Results indicated that the degradation of KET
and METH using UV or H2O2 alone was negligible. UV/H2O2 had a strong synergizing effect,
which could effectively remove 99% of KET and METH (100 µg/L) within 120 and 60 min, respectively.
Their degradation was fully consistent with pseudo-first-order reaction kinetics (R2 > 0.99). Based on
competition kinetics, the rate constants of the hydroxyl radical with KET and METH were calculated
to be 4.43 × 109 and 7.91 × 109 M−1

·s−1, respectively. The apparent rate constants of KET and METH
increased respectively from 0.001 to 0.027 and 0.049 min−1 with the initial H2O2 dosage ranging
from 0 to 1000 µM at pH 7. Their degradation was significantly inhibited by HCO3

−, Cl−, NO3
− and

humic acid, with Cl− having relatively little effect on the degradation of KET. Ultraperformance liquid
chromatography with tandem mass spectrometry was used to identify the reaction intermediates,
based on which the possible degradation pathways were proposed. These promising results clearly
demonstrated the potential of the UV/H2O2 process for the effective removal of KET and METH from
contaminated wastewater.
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1. Introduction

Illicit drugs are nonprescribed or psychostimulant substances which cannot be completely
removed by conventional wastewater treatment, resulting in their widespread occurrence in aquatic
environments [1,2]. Ketamine (KET) and methamphetamine (METH) were detected most frequently,
with concentration levels up to 275 ng/L for KET and 239 ng/L for METH, in surface waters in China [3].
METH removal at most wastewater treatment plants was more than 80%, while the elimination of KET
was less than 50% or even negative [4]. It was confirmed that chronic environmental concentrations
of METH can lead to health issues in aquatic organisms [5]. Liao et al. [6] also reported that blood
circulation and incubation time in medaka fish embryos could be significantly delayed at environmental
concentration levels (0.004–40 µM) of KET and METH, which altered the swimming behavior of medaka
fish larvae. Thus, there is an urgent need to explore new, efficient methods for eliminating these
emerging contaminants in water.
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Advanced oxidation processes (AOPs) have been employed to destroy illicit drugs due to their high
efficiency and lower environmental impact [7,8]. The UV/H2O2 process is one of the AOPs and generates
the strong, oxidizing hydroxyl radical (•OH, E0 = 2.72 V), which attacks the organic compounds with
rate constants ranging from 108 to 1010 M−1 s−1 [9]. Benzoylecgonine (BE), a metabolite of cocaine,
was effectively removed by UV/H2O2 from different matrices [10]. The degradation of KET and METH
was investigated using various AOPs, but no available report, so far, has addressed •OH assisted by
UV/H2O2 treatment. After 3 min, 100 µg/L of METH that had been added to deionized water was
completely eliminated by TiO2 photocatalysis under UV365nm irradiation [11]. Wei et al. [12] studied
the synthesis of a novel sonocatalyst Er3+:YAlO3/Nb2O5 and its application for METH degradation.
Gu et al. [13] observed that complete removal of KET was achieved by UV/persulfate, and possible
transformation pathways were proposed.

To the best of our knowledge, there is little information about the theoretical calculation of the
reactivity of KET and METH by radical attack using the UV/H2O2 process. Water constituents in actual
wastewater could affect the degradation efficacy; therefore, a comprehensive understanding of the
degradation of KET and METH using the UV/H2O2 system is needed. The aim of this study was to
investigate the degradation kinetics and mechanisms of KET and METH during the UV/H2O2 process.
The influence of various parameters on KET and METH removal was evaluated, including initial
H2O2 dosage, pH and water background components. The degradation products were analyzed by
ultraperformance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS), and possible
transformation paths were proposed.

2. Materials and Methods

2.1. Materials

The KET and METH were obtained from Cerilliant Corporation (Round Rock, TX); detailed
information is listed in Table 1. HPLC grade acetonitrile (ACN) and methanol (MeOH) were purchased
from Fisher Scientific (Poole, UK). Formic acid (FA, ≥98%) and benzoic acid (BA) were purchased from
Sigma-Aldrich (Bellefonte, USA). Analytical grade H2O2 (30%, v/v), NaHCO3 (≥99.7%), NaCl (≥99.0%),
NaNO3 (≥99.5%), NaOH (≥99.5%), humic acid (HA) and H2SO4 (≥98%) were obtained from Sinopharm
Chemical Reagent Co., Ltd. (Beijing, China). All reaction solutions were configured with Milli-Q water
produced by an ultrapure water system (Millipore, MA, USA).

Table 1. Chemical structures and properties of ketamine and methamphetamine.

Compound Chemical Formula Structure CAS Number pKa Log Kow

Ketamine C13H16ClNO
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2.2. Experimental Section 

The experiments were operated in the quartz tubes (25 mm in diameter and 175 mm in length), 
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2.2. Experimental Section

The experiments were operated in the quartz tubes (25 mm in diameter and 175 mm in length),
which were placed in a photochemical reactor (Figure 1, XPA-7, Xujiang Machinery Factory, Nanjing,
China). A low-pressure mercury lamp (11 W, emission at 254 nm, Philips Co., Zhuhai, China) was placed
in the quartz sleeve. The UV lamp was preheated for 30 min to ensure irradiation stability. The UV
fluence rate of 0.1 mW cm−2 was determined using three different methods [14]. The newly configured
KET/METH and H2O2 stock solutions were supplemented with appropriate volumes to achieve a
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50 mL reaction solution, which was then stirred thoroughly at 300 rpm with electromagnetic stirrers.
Upon UV irradiation, the reaction started at pH 7.0 and room temperature. Specific samples were
immediately quenched using a catalase and passed through 0.22 µm nylon filter before further analysis.
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Figure 1. The schematic diagram of the experiment setup: (1) low-pressure Hg UV lamp, (2) quartz tube,
(3) cooling water, (4) photoreactor, (5) magnetic stirrer, (6) magnetic stirrer apparatus, (7) thermostat.

2.3. Analytical Methods

The concentrations of KET and METH were quantified by UPLC-MS/MS equipped with a Waters
Acquity liquid chromatography system and an Xevo T_QS triple quadrupole mass spectrometer
(Waters Co., Milford, MA, USA). The analytes were separated by a reverse phase column (Acquity
UPLC BEH C18, 1.7 µm, 50 × 2.1 mm, Waters, MA, USA). The mobile phases A and B, with a flow rate
of 450 µL min−1, were 0.1% FA in Milli-Q water and ACN, respectively. Ten percent of phase B was
kept for 0.5 min at the initial proportion, linearly increased to 45% at 1.8 min, then increased to 95%
within 0.1 min, held for 1.0 min, reverted to 10% at 3.0 min and held for 1.5 min. The injection volume
was 5 µL with the column temperature at 40 ◦C. The chromatograms were recorded in the positive ion
multiple reaction monitoring (MRM) mode. Nitrogen was used as the desolvation and nebulizing
gas. The capillary voltage was set at 0.5 kV, and the desolvation temperature was 400 ◦C. Optimized
UPLC-MS/MS parameters are given in Table 2.

Table 2. Detailed ultraperformance liquid chromatography with tandem mass spectrometry
(UPLC-MS/MS) parameters for ketamine and methamphetamine.

Compound Parent Ion
(m/z) Retention Time (min) Production

(m/z)
Cone

Voltage (V)
Collision

Voltage (V)

Ketamine 238 1.31
125 16 24
179 16 16

Methamphetamine 150 1.11
91 22 16

119 22 10

3. Results and Discussion

3.1. Degradation Kinetics of KET and METH

Figure 2 shows the degradation of KET and METH under different treatment processes. UV or
H2O2 alone exhibited negligible effects on their degradation, suggesting that treatment by UV or
H2O2 alone was unable to destroy KET and METH. However, nearly complete removal of KET and
METH was achieved within 120 and 60 min, respectively, when treated with the combination of
UV/H2O2. Similar results were reported regarding ofloxacin degradation, which was drastically
increased due to the large amount of hydroxyl radicals (•OH) generated via the breakage of the H2O2
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bond (Equation (1)) [15]. The degradation of KET and METH was consistent with the pseudo-first-order
reaction kinetics. The apparent degradation rate constants (kobs) of KET and METH by UV/H2O2 were
0.027 and 0.049 min−1, respectively.

H−O−O−H + hv→ 2•OH (1)
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3.2. Determination of Bimolecular Reaction Rate 

The generation of OH in the UV/H2O2 system was proved by the photoluminescence (PL) 
technique using a probe molecule with terephthalic acid, which tends to react with OH to form 
2-hydroxyterephthalic acid, a highly fluorescent product [16]. The PL intensity of 
2-hydroxyterephtalic acid is proportional to the amount of OH radicals produced in water [17]. 
Figure 3 shows the PL spectral changes in the 5 × 10−4 M terephthalic acid solution with a 
concentration of 2 × 10−3 M NaOH (excitation at 315 nm), as described by Yu et al. [17]. Similar 
fluorescence intensity was found in the reaction systems with initial concentrations of 100 and 1000 
μM of H2O2, suggesting a constant concentration of OH with the initial H2O2 dosage ranging from 
100 to 1000 μM. The PL signal at 425 nm increased with the irradiation time, which was attributed to 
the reaction of terephthalic acid with OH generated in the UV/H2O2 system.
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Figure 2. Degradation kinetics of ketamine (KET) (a) and methamphetamine (METH) (b) by different
treatments. Conditions: Initial concentrations of KET and METH = 100 µg/L, Initial concentration of
hydrogen peroxide (H2O2)0 = 500 µM, pH0 = 7.0, Temperature (T) = 25 ± 1 ◦C.

3.2. Determination of Bimolecular Reaction Rate

The generation of •OH in the UV/H2O2 system was proved by the photoluminescence (PL)
technique using a probe molecule with terephthalic acid, which tends to react with •OH to form
2-hydroxyterephthalic acid, a highly fluorescent product [16]. The PL intensity of 2-hydroxyterephtalic
acid is proportional to the amount of •OH radicals produced in water [17]. Figure 3 shows the PL
spectral changes in the 5 × 10−4 M terephthalic acid solution with a concentration of 2 × 10−3 M NaOH
(excitation at 315 nm), as described by Yu et al. [17]. Similar fluorescence intensity was found in
the reaction systems with initial concentrations of 100 and 1000 µM of H2O2, suggesting a constant
concentration of •OH with the initial H2O2 dosage ranging from 100 to 1000 µM. The PL signal at
425 nm increased with the irradiation time, which was attributed to the reaction of terephthalic acid
with •OH generated in the UV/H2O2 system.
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Figure 3. Photoluminescence (PL) spectral changes observed in the UV/H2O2 system in a 5 × 10−4 M
basic solution of terephthalic acid (excitation at 315 nm).
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The bimolecular reaction rates of KET and METH reacting with •OH were determined through
the competition experiments at pH 7 (phosphate buffer solution, 5 mM). BA was used as the reference
compound, with which the constant reaction rate of •OH is known to be 5.9 × 109 M−1 s−1 [18]. It is
important to note that the degradation of KET, METH and BA using UV alone was negligible at less
than 9%. Equations (2) and (3) describe the competing kinetics of KET and METH with •OH in the
UV/H2O2 oxidation process, through which the bimolecular reaction rates of KET and METH reacting
with •OH were 4.43 × 109 and 7.91 × 109 M−1 s−1, respectively (Figure 4).

ln
(KET)0

(KET)t
=

k•OH−KET

k•OH−BA

ln
(BA)0

(BA)t
(2)

ln
(METH)0

(METH)t
=

k•OH−METH

k•OH−BA

ln
(BA)0

(BA)t
(3)

where (KET)0, (METH)0 and (BA)0 are the initial concentrations (µmol/L) of target compounds. (KET)t,
(METH)t and (BA)t are the concentrations (µmol/L) at time t (min). k•OH-KET, k•OH-METH and k•OH-BA

are the bimolecular reaction rates of KET, METH and BA reacting with •OH, respectively.
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Figure 4. (a) The reaction rate constant of KET with •OH. Conditions: (KET)0 = (BA)0 = 0.42 µM,
(H2O2)0 = 1 mM, pH = 7, T = 25 ± 1 ◦C. (b) The reaction rate constant of METH with •OH. Conditions:
(METH)0 = (BA)0 = 0.67 µM, (H2O2)0 = 1 mM, pH = 7, temperature = 25 ± 1 ◦C.

3.3. Effect of H2O2 Dosage

The KET and METH degradation under different initial H2O2 dosages were consistent with
the pseudo-first-order reaction model (R2 > 0.99, Figure 5). The kobs of KET and METH increased
dramatically from 0.001 min−1 to 0.027 and 0.049 min−1 with the initial H2O2 dosage ranging from 0 to
1000 µM. The reason for this phenomenon is that the production of •OH increased with the initial H2O2

dosage ranging from 0 to 1000 µM, thus accelerating the degradation rate of target compounds [19].
However, the kobs of METH decreased slightly with the initial concentration of H2O2 increased to
2000 µM. A similar phenomenon was observed in a previous report that indicated that the degradation
rates of cyclophosphamide and 5-fluorouracil were proportional to the H2O2 dosage and slightly
decreased with excess H2O2 [20]. An excessive amount of H2O2 would cause the self-scavenging effect
of •OH to form HO2• and O2

−
• (Equations (4) and (5)) [21], the low reactivity of which could reduce

the degradation rate. Similar results were obtained concerning the degradation of ofloxacin [15] and
chloramphenicol [22]. Moreover, large amounts of •OH were dimerized to H2O2, and the generated
HO2• and O2

−
• subsequently participated in other reactions (Equations (6)–(9)) [23]. This negative

effect was not observed in this study, probably because the maximum H2O2 dosage (2000 µM) was not
high enough to inhibit the KET degradation.

H2O2 +
• OH→ HO•2 + H2O (4)
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H2O2 +
• OH→ O−•2 + H+ + H2O (5)

•OH +• OH→ H2O2 (6)

HO•2 + H2O2 →
•OH + H2O + O2 (7)

HO•2 +
• OH→ H2O + O2 (8)

O−•2 + H2O2 →
•OH + OH− + O2 (9)
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Figure 5. Effect of H2O2 dosage on KET (a) and METH (b) degradation in the UV/H2O2 system. 
Conditions: (KET)0 = (METH)0 = 100 μg/L, (H2O2)0 = 0–2000 μM, pH0 = 7.0, T = 25 ± 1 °C. 
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3.4. Effect of Initial pH 

Figure 6 illustrates the KET and METH destruction at different initial pHs, which were adjusted 
with an H2SO4 or NaOH solution (0.1 M). No buffer was used due to its inhibiting effect on the 
decomposition of organics [24]. The KET and METH degradation at different initial pHs followed 
the pseudo-first-order reaction model well. The kobs of KET and METH reached the highest levels in a 
neutral environment at 0.027 and 0.085 min−1, respectively. Due to the greater stability of H2O2 at pH 
5 and 7, the degradation rates of KET and METH under acidic and neutral conditions were 
obviously better than those under alkaline conditions. Under alkaline conditions, OH could be 
quenched by the HO2− produced by H2O2 dissociation, thus reducing the yield of OH in the system. 

Figure 5. Effect of H2O2 dosage on KET (a) and METH (b) degradation in the UV/H2O2 system.
Conditions: (KET)0 = (METH)0 = 100 µg/L, (H2O2)0 = 0–2000 µM, pH0 = 7.0, T = 25 ± 1 ◦C.

3.4. Effect of Initial pH

Figure 6 illustrates the KET and METH destruction at different initial pHs, which were adjusted
with an H2SO4 or NaOH solution (0.1 M). No buffer was used due to its inhibiting effect on the
decomposition of organics [24]. The KET and METH degradation at different initial pHs followed the
pseudo-first-order reaction model well. The kobs of KET and METH reached the highest levels in a
neutral environment at 0.027 and 0.085 min−1, respectively. Due to the greater stability of H2O2 at pH
5 and 7, the degradation rates of KET and METH under acidic and neutral conditions were obviously
better than those under alkaline conditions. Under alkaline conditions, •OH could be quenched by the
HO2

− produced by H2O2 dissociation, thus reducing the yield of •OH in the system.Water 2020, 12, x FOR PEER REVIEW 7 of 15 
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Figure 6. Effects of different initial pHs on the degradation of KET (a) and METH (b) in the UV/H2O2 
system. Conditions: (KET)0 = (METH)0 = 100 μg/L, (H2O2)0 = 500 μM, pH0 = 3–11, T = 25 ± 1 °C. 
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Figure 6. Effects of different initial pHs on the degradation of KET (a) and METH (b) in the UV/H2O2

system. Conditions: (KET)0 = (METH)0 = 100 µg/L, (H2O2)0 = 500 µM, pH0 = 3–11, T = 25 ± 1 ◦C.

3.5. Effect of Water Background Components on Degradation Efficiency of Target Compounds

There are many different substrates in natural water, including different kinds of anions, cations
and organic matter. These ions could react with free radicals in advanced oxidation processes,
thus inhibiting or promoting the reaction and affecting the overall oxidation effect. Therefore, it is of
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great significance to study the influence of different ion types and contents on the practical application
of advanced oxidation technology.

3.5.1. Effect of HCO3
−

The decomposition of KET and METH was significantly inhibited with the addition of HCO3
−

at different initial dosages in the UV/H2O2 oxidation process (Figure 7). When the initial dosage
of HCO3

− ranged from 0 to 10 mM, the reaction rate of KET and METH decreased from 0.027 and
0.049 min−1 to 0.008 and 0.011 min−1, respectively. The reason for this experimental phenomenon was
that HCO3

− was the quenching agent for •OH which was also consumed by the competing reaction of
ionized CO3

2− (Equations (10)–(13)). Therefore, the inhibitory effect of KET and METH degradation
was more obvious with the increase of the HCO3

− concentration.

CO2−
3 + •OH→ CO−•3 + OH− (10)

HCO−3 + •OH→ HCO•3 + OH− (11)

HCO•3 → CO•3 + H+ (12)

CO−•3 + H2O2 → HCO−3 + HO•2 (13)
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Figure 7. Effect of HCO3
− on KET (a) and METH (b) degradation in UV/H2O2 system. Conditions:

(KET)0 = (METH)0 = 100 µg/L, (H2O2)0 = 500 µM, pH0 = 7.0, T = 25 ± 1 ◦C.

3.5.2. Effect of Cl−

With the initial concentration of Cl− ranging from 0 to 10 mM, the destruction of KET was
dramatically inhibited with the rate constant of KET decreased from 0.027 to 0.018 min−1 (Figure 8),
which could be due to the elimination of •OH by Cl− according to Equations (14)–(16) [25].
The degradation reaction rate changed slightly as more Cl− was added. However, the METH
degradation was less affected by Cl−, with the reaction rate remaining basically unchanged
(0.0446–0.0485 min−1).Water 2020, 12, x FOR PEER REVIEW 9 of 15 
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Figure 8. Effect of Cl− on KET (a) and METH (b) degradation in the UV/H2O2 system. Conditions:
(KET)0 = (METH)0 = 100 µg/L, (H2O2)0 = 500 µM, pH0 = 7.0, T = 25 ± 1 ◦C.
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3.5.3. Effect of NO3
−

•OH + Cl− → Cl• + OH− (14)

Cl• + Cl− → Cl−•2 (15)

Cl• + Cl• → Cl2 (16)

The influence of NO3
− on the decomposition of KET and METH is illustrated in Figure 9. With the

initial concentration of NO3
− ranging from 0 to 10 mM, the degradation of both target compounds was

obviously inhibited. The reaction rate of KET and METH decreased from 0.027 and 0.049 min−1 to 0.007
and 0.012 min−1, respectively. The above experimental phenomena were attributed to the following:
First, a large amount of •OH could be produced from NO3

− under UV irradiation (Equations (17)–(18)),
which is an important source of •OH in natural water [26]. Second, as a photosensitizer, NO3

−

has a strong absorption in the ultraviolet range, which results in the formation of an internal filter
that prevents the effective light transmittance and leads to the decline of •OH production in the
UV/H2O2 system [27]. The latter was found to be dominant after the degradation effect of the reaction
was analyzed.

NO−3 + hv→ NO−•2 + O−• (17)

O−• + H2O→ •OH + OH− (18)
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Figure 9. Effect of NO3
− on KET (a) and METH (b) degradation in the UV/H2O2 system. Conditions:

(KET)0 = (METH)0 = 100 µg/L, (H2O2)0 = 500 µM, pH0 = 7.0, T = 25 ± 1 ◦C.

3.5.4. Effect of HA

Due to its complex structure, HA may have uncontrollable effects on the destruction of target
compounds. As illustrated in Figure 10, KET and METH degradation was dramatically inhibited once
HA was added with different dosages in the UV/H2O2 system. As more HA (0–0.1 mM) was added,
the reaction rate of KET and METH declined from 0.027 and 0.049 min−1 to 0.001 and 0.008 min−1,
respectively, while the degradation reaction rate changed slightly with the continued addition of the
HA. UV irradiation was absorbed by HA, creating an inner filter (Figure 11) and significantly inhibiting
the UV transmittance for UV photons, thus limiting the generation of •OH in the UV/H2O2 process [28].
Moreover, the degradation of target compounds can be inhibited by the competing reaction of HA
with the active radicals [29].
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3.6. Degradation Products and Mechanism

Degradation intermediates and products of METH produced in the UV/H2O2 oxidation process
were determined by using UPLC/MS/MS under full scans and product ion scans. During the whole
METH degradation process, the mass spectra were compared to identify the intermediates. The structure
of the transformation products was analyzed with the specific molecular ions and fragmentation patterns
rather than direct comparison with corresponding standards. Figure 12 illustrates the mass spectra
and possible structures of the degradation intermediates, based on which the possible transformation
pathways of METH during UV/H2O2 are shown in Figure 13. The proposed degradation mechanisms
of METH degradation involved in the UV/H2O2 system include hydrogenation, hydroxylation and
electrophilic substitution.

With the molecular weight of 149, intermediate product 2 (P2, m/z = 150) was formed as a result
of hydrogenation of METH. P1 (m/z = 91) with a stable structure was generated from the fracture of
the C-C bond of the branched chain. Intermediates P3 (m/z = 110) and P4 (m/z = 73) were formed
by electrophilic substitution of hydroxyl. METH was hydroxylated to form ephedrine (m/z = 165),
of which the C-C bond of branched chain was fractured to form intermediate product P5 (m/z = 57).
The hydroxylation of ephedrine induced the formation of intermediate P6 (m/z = 181) which was then
achieved to form intermediate P7 (m/z = 89) after further hydroxylation. The mineralization of KET
and METH was characterized by removal of total organic carbon (TOC), which achieved 41% and
57% within 60 min under UV/H2O2 treatment (Figure 14). The intermediate products were further
degraded as the reaction continued.
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4. Conclusions

The degradation kinetics and mechanisms of KET and METH using the UV/H2O2 process were
investigated in this study. Their degradation in UV photolysis or H2O2 oxidation alone was negligible.
However, 99% of KET and METH (100 µg/L) were effectively eliminated by the combination of
UV and H2O2 within 120 and 60 min, respectively. According to the competition kinetics, the rate
constants of •OH with KET and METH at pH 7 were calculated to be 4.43 × 109 and 7.91 × 109 M−1·s−1,
respectively. The apparent rate constants of KET and METH reached the highest levels in a neutral
environment. The degradation of KET and METH was significantly inhibited by HCO3
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and HA; however, Cl− had little influence on the METH degradation. Seven reaction intermediates of
METH in the UV/H2O2 system were identified by UPLC-MS/MS. Possible transformation mechanisms
involved in the KET and METH degradation by UV/H2O2 oxidation system included hydrogenation,
hydroxylation and electrophilic substitution. Results demonstrated that UV/H2O2 was an effective
technique to remove KET and METH, providing a promising application for the decomposition of
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