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Supplementary material 3: Further explanation for Table 6.
1. General notes
The units of values are expressed in the Table 6 and depend on type of data, quantitative or qualitative. For simplification reasons, the technical and environmental indicators were grouped in one category, but these could be separated depending on the user's preference. For economic indicators, the costs found in literature were converted to Euro (considering 1 Brazilian real equal to 0.17 euros). For institutional and political indicator, it was analysed the existence of current legislation or if it needs to be changed for each scenario implementation. The logistics parameter was assessed considering the logistics challenges definition mentioned by Cordell [29]. The acceptance scale was created inspired by Laura et al. [22] and it varied from no accepted (1) to highly accepted (5).
2. Scenario A (Struvite recovery)
2.1. Technical and Environmental indicators
-Recovery potential rate: considering the processes such as Ostara pearl®, Crystallactor® and ANPHOS® based on Desmidt et al. [102]; Egle et al. [103]. Estimate of phosphorus recovery by struvite production for the studied plant was based on data from Jansen et al. [104], Münch and Barr [105], Zhou et al. [106] and monitoring data from the plant, as explained in section 3.1.7.
-Technology maturity: based on data about status/scale of P recovery technologies from Chrispim et al. [15] and Xavier et al. [107].
-Resource utilization (energy and chemical consumption): Based on Egle et al. [103], considering the process Ostara Pearl®.
-Need for additional skilled labour: data from Stratful et al. [108]; Sikosana et al. [109].
-Quality of effluent and sludge (removal of pollutants and environmental concern): precipitation of struvite can remove 80-90% of soluble phosphate and 20-30% of soluble ammonia [110]. P concentration in final effluent was estimated based on the raw influent data; reduced NH4 back-flow results in a lower energy demand for aeration [103]; no need of reduction of heavy metals and no organic micropollutants in the product [111].
2.2. Economic indicators
-Investment costs: rec = recovered. Data based on Egle et al. [103] and Desmidt et al. [102] considering processes Ostara®, DHV®, PRISA®, P-RoC®, and Nuresys® treating 60 m3.hr−1 wastewater containing 120 mg.L−1 PO4-P. Egle et al. [103] calculated the annual costs (including investment + operational costs).
-Operation and maintenance costs: The data considers Nuresys® process treating 60 m3.hr−1 wastewater containing 120 mg.L−1 PO4-P [102]. The processes from side-streams are economically feasible [192], it should include the cost of magnesium (reactants).
-Revenue from recovery: market price of struvite [101], profit from struvite production [113]; savings due to the avoidance of unwanted struvite encrustations [103].
-Logistics (necessary changes): easy transportation from Ahmed et al. [114]. Other cited necessary changes were author’s assumption based on site visit and observation.
2.3. Societal indicator
-Acceptance: Estimated by authors based on Oyama [115] and Bena-Filho [116], considering struvite fertilizer from human urine, acceptance value estimated in 4: more acceptable than composted sewage sludge [117].
2.4. Institutional and political indicator
-Accordance to policies and legal requirements: based on consulted legislations and regulations valid in the study region (authors’ assumption).
3. Scenario B (Sewage sludge co-composting for organic matter and nutrient recovery)
3.1. Technical and Environmental indicators
-Recovery potential rate: Nutrient content in sewage sludge from Fytili and Zabaniotou [118]; Tyagi and Lo [119]; Samolada and Zabaniotou [120]. Data about compost produced from SABESP considering a WWTP with sewage sludge composting in Franca (Sao Paulo State, Brazil) [121]. The estimate value is an average and was calculated based on P removal efficiency of the WWTP ABC, P concentration in the dewatered sludge from Nascimento et al. [51] for the same plant (16.4 g/kg), and the produced amount of dewatered sludge per day (112.9 ton) of this plant.
-Technology maturity: Based on authors experience. There are many full-scale composting processes reported in the literature, few of them in Brazil.
-Resource utilization (energy and chemical consumption): No associated energy consumption and 10-50% additional requirement of reagents needed for composting [22].
-Need for additional skilled labour: Based on data from Laura et al. [22] in Guatemala, 10-20% additional personnel for operation of composting. Based on authors estimation, medium level of need of skilled labour. Simple operation mentioned by Leite [201].
-Quality of effluent and sludge (removal of pollutants) and environmental concern: mitigation of excess nutrients entering the environment in comparison with fossil fuel based fertilizers [12], as the sludge is used as replacements of fertilizers, significant reduction of global warming impact (from 32.4 to -18.8 kg CO2 eq) [122]. Concern about pollutants in the sludge [123]; low production of gas emissions [22]; leachate generation [124]. 
3.2. Economic indicators
-Investment costs: capital cost from Visentin [125] in Botucatu, Brazil; data cost from Tarpani and Azapagic [94], considering an aerated composting facility in UK. The third data corresponds to total cost based on Kacprzak et al. [126] in relation to the amount of dry matter and considering European countries. Leite [201] states that investment costs of windrow composting are low.
-Operation and maintenance costs: from Visentin [125] based on a study in Botucatu, Brazil; standard operating costs from Wei et al. [127]; annual operating costs from Wei et al. [127], considering data for a windrow composting and moisture content of 70%, this cost includes cost for maintenance and operation, labour, bulking agents, energy and contingency. 
-Revenue from recovery: price of organic fertilizer refers to December 2017 from a WWTP that produces organic fertilizer by composting in Jundiaí city, Brazil [125].
-Logistics (necessary changes): moisture values above 65% interfere with the process, calling for sludge dewatering (>35% dry solids) prior to composting [93].
3.3. Societal indicator
-Acceptance: acceptance based on Bena-Filho [116]; bad odours concern [129].
3.4. Institutional and political indicator
-Accordance to policies and legal requirements: based on the information gathered in Step 5 about related legislations.
4. Scenario C biogas (Co-digestion of sewage sludge and organic food waste)
4.1. Technical and Environmental indicatorsVolume of treated wastewater (m³/month).
-Recovery potential rate: VS = volatile solids. The increase on methane production was calculated based on data from La Cour Jansen et al. [130] and Bolzonella et al. [95]. La Cour Jansen et al. [130] evaluated co-digestion of sewage sludge with food waste. Their main result was that an increase of 17% of OLR (Organic Loading Rate, in Kg.VS/m³.day) caused an increase of 21.2% of methane yield. Bolzonella et al. [95] concluded that an increase of 20% in OLR resulted in an increase of 50% of biogas yield. The estimates of current methane production and production with co-digestion, and electric power considered the following data. The methane production is around 2118.8 Nm³/day. With co-digestion this value could be increased to 2565.9 Nm³/day (increase of 21%) or 3178.2 (increase of 50%, assuming 69.79% of methane in biogas). Considering it, the lower calorific value of methane (9.97 kWh.Nm-3CH4) [139] and assuming an electric conversion efficiency of 38% [135] the electrical power would be 405.05 – 501.71 kW. In addition, assuming 30 days off per year for system repair and maintenance, the working hours of the biogas plant was considered as 8,000 h/year [135, 162], the electric power would be around 3,240,385.0 – 4,013,689.1 kWh/year or 8,877.7 – 10,996.4 kWh/day.
-Technology maturity: Energy recovery from biogas to supply internal demand is an option very spread over the world [208]. There are some examples in Brazil, WWTP Arrudas, in Belo Horizonte and WWTP in Ribeirão Preto city [135] most of them are biogas recovery from mono-digestion. There is an experience of co-digestion at one WWTP in Paraná State (full scale) [131] and some studies at experimental scale [202, 205]. Authors estimated TRL as 9 for Brazilian situation.
-Resource utilization (energy and chemical consumption): Data about electricity consumption in pre-treatment are from Edelmann et al. [132], considering a WWTP in Switzerland, the pre-treatment with mixporter, macerator, pumps, pasteurization, stirring of the storage tank and stirring and pumping while digesting. Data of electricity by Otto cycle engine are based on Döhler et al. [133]. Water consumption data from Edwards et al. [134].
-Need for additional skilled labour: Based on data from Brazil [135] and Wiese [136]. Based on authors estimation, medium level of need of skilled labour.
-Quality of effluent and sludge (removal of pollutants) and environmental concern: data of reduction of greenhouse gases emission calculated based on Edwards et al. [134], considering co-digestion of sewage sludge (with 16.5 and 20% of food waste) in Australia. This reduction is compared to the reference scenario (destination of food waste to landfill with energy use, and anaerobic digestion of sludge, followed by energy recovery and destination of biosolid to agriculture). Data of emissions of a similar plant are from Forbes et al. [137].
4.2. Economic indicators
-Investment costs: cost of pre-treatment is from Bolzonella et al. [95], including waste crushing, removing ferrous materials, mixing and removal of floating part and bottom. Cost of equipment are from Brazil [135] and Felca et al. [138] and refers to a WWTP with population equivalent of 100,000- 130,000 inhabitants. The equipment considered were: Otto cycle engine with 176 kW power, biogas treatment system (bio-desulfurizer and refrigerator with activated filter - to remove H2S, moisture and siloxanes), gas compressor, 400 m³ gasometer, biogas transport system (conductor tubes, valves blocking, condensate removers and pressure gauges), electrical installations for the generator engine, biogas flow measurement, biogas composition measurement, flaring system (in case of excess biogas production). The cited studies [135, 138] did not consider co-digestion.
-Operation and maintenance costs: 50 EUR for pre-treatment of organic fraction of municipal solid waste is from Bolzonella et al. [95]; repair and maintenance costs and biogas treatment maintenance costs are from Brazil [135]. The repair and maintenance costs included the control of the starting sequence, tightness control, oil and coolant change, back pressure measurement and exhaust gas quality, verification and replacement of spark plugs, replacement of spare parts and others. The maintenance cost of the biogas treatment system included: replacement of activated carbon, preventive maintenance of the bio-sulfurization and the refrigerator [135]. Other maintenance costs are from Brazil [135] and include maintenance of electric installations, and maintenance of equipment.
-Revenue from recovery: price of electricity based on Brazil [135], considering the electricity produced by co-digestion (4,013,689.1 kWh/year). Avoidance of transport and disposal costs of organic waste to landfill, considering 705 ton of organic waste per month [139].
-Logistics (necessary changes): need of storage, pre-treatment and transport of food waste reported by Krupp et al. [140]. Biogas collection, transport and treatment system, energy recovery unit and monitoring [135].
4.3. Societal indicator
-Acceptance: Not found. Authors assumption. There is an interest in biogas recovery as reported in local planning documents. In addition, acceptance is not considered relevant for this scenario since it does not affect directly the local population.
4.4. Institutional and political indicator
-Accordance to policies and legal requirements: based on the information gathered in Step 5 about related legislations.
5. Scenario D (Co-processing of sewage sludge in cement industries)
5.1. Technical and Environmental indicators
-Recovery potential rate: Heating value of dewatered sludge (dry basis) considered the data from Syed-Hassan et al. [141], which is an average based on 32 values reported in 18 literatures, and other references also have reported values in this range [199]. The WWTP ABC generates 112.9 tonnes/day, with a mean moisture 66.9% (37.37 tonnes/day of dry solids of sludge). Considering the calorific power 16.05 MJ/Kg of dry solids - from Syed-Hassan et al. [141], it results in 599,786.90 MJ/day. Considering 1 kWh=3,6 MJ, the recovered energy would be 166,607.47 kWh/day.
-Technology maturity: TRL 9. There are many full-scale co-processing experiences with sewage sludge in cement industry in China, Japan, USA [99, 148, and 196]. Data for Brazilian situation in cement industries refer to 2017 and is from ABCP [142] -fossil fuels represent 82% of calorific value in cement industries; sewage sludge corresponds to 0.4% of the total amount of co-processed wastes by cement companies. In Brazil, about 70% of the installed capacity of cement industries with kilns for clinker production are licensed for co-processing (referring to 2017) [142].
-Resource utilization (energy and chemical consumption): Drying processes have the following requirements of energy consumption: convective dryer varies from 700 kWh to 1400 kWh per ton of evaporated water, conductive dryer (disc, paddle and thin film) 800 kWh to 955 kWh, and solar drying between 30 kWh and 200 kWh [143,144].
-Need for additional skilled labour: Not found. But based on authors assumption there is no need of additional skilled personnel for sludge co-processing, especially in industries which already perform co-processing (with other wastes). The consulted literature did not mention the demand for skilled labour. So, we classified as low.
-Quality of effluent and sludge (removal of pollutants) and environmental concern: examples of released contaminants during sewage sludge combustion: organo-metallic compounds and volatile heavy metals [141] and SO2 emissions [203]; the fly and bottom ashes from sewage sludge combustion can be incorporated into cement clinker or to return to kiln system again as raw material [99]; reduction in sewage sludge volume, reduction in fossil fuels consumption and raw-material consumption: Rodríguez et al. [145]; reduction of CO2 and NOX emissions [204].
5.2. Economic indicators
-Investment costs: data from Xu et al. [148] in China, depending on the processing route adopted. In the first route (11,704 EUR), the sludge is added in the wet form (with humidity <80%) directly in the oven from a transition chamber, with the aid of special pumps. In the second route (15,305 EUR), the sludge is dried by direct thermal drying (humidity <30%, using the residual heat from the factory) and added to the precalciner with the aid of a plate chain conveyor. In the third route, (more expensive), the sludge entries into the process with humidity range <35% or <10%, passing through indirect thermal drying and is added to the precalciner by means of plate chain conveyor [148]. Rulkens [149] states that for co-processing of biosolids, no major modifications are needed, which eliminates the need for large investments.
-Operation and maintenance costs: first data includes CAPEX and OPEX cost for cement kiln use of dried sludge, based on Bertanza et al. [150]; the second data refer to costs for management of cement co-incineration from Kacprzak et al. [126] in Germany; unit refers to euro per ton of sludge (considering dry greater than 85%).
-Revenue from recovery: data about reduction in operation costs are from Andreoli et al. [93]; data about savings are from Zabaniotou and Theofilou [151]; the cost related to fuel for cement manufacturing varies from 20-25%, so the replacement of conventional fuels (e.g. co-processing with alternative fuels) can reduce significantly production costs [198]; reduction in 66% of fossil fuels consumption in cement production, and the use of ashes provided a reduction of up to 14% of raw-materials consumption (e.g. limestone and iron ore) for clinker production [145]. 
-Logistics (necessary changes): adaptions to kiln exhauster [152]; transport of biosolids, dosing, and feed adaptions [99, 100]. Sludge drying facility could be located inside the WWTP.
5.3. Societal indicator
-Acceptance: high, based on Pries [100] who interviewed cement industries in Brazil about the use of sewage sludge for co-processing, and all of them considered sewage sludge adequate for their production process. The only concern reported was with pathogens due to the health of their employees. Acceptance is not considered relevant for this scenario since it does not affect directly the local population.

5.4.Institutional and political indicator
-Accordance to policies and legal requirements: Related legislations about co-processing at national level in Brazil (CONAMA n.499, resolutions 316 and 436) determine standards for emissions (e.g., persistent organic pollutants and other atmospheric pollutants) in co-processing in cement factories, and other criteria; and at state level (standard P4.263-CETESB and resolution SMA n. 38) [193, 194, 195, 197, 206]. They do not contain specifications for sewage sludge in co-processing.
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