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Abstract: Flow forecasting is an essential topic for flood prevention and mitigation. This study
utilizes a data-driven approach, the Long Short-Term Memory neural network (LSTM), to simulate
rainfall–runoff relationships for catchments with different climate conditions. The LSTM method
presented was tested in three catchments with distinct climate zones in China. The recurrent neural
network (RNN) was adopted for comparison to verify the superiority of the LSTM model in terms
of time series prediction problems. The results of LSTM were also compared with a widely used
process-based model, the Xinanjiang model (XAJ), as a benchmark to test the applicability of this
novel method. The results suggest that LSTM could provide comparable quality predictions as the
XAJ model and can be considered an efficient hydrology modeling approach. A real-time forecasting
approach coupled with the k-nearest neighbor (KNN) algorithm as an updating method was proposed
in this study to generalize the plausibility of the LSTM method for flood forecasting in a decision
support system. We compared the simulation results of the LSTM and the LSTM-KNN model, which
demonstrated the effectiveness of the LSTM-KNN model in the study areas and underscored the
potential of the proposed model for real-time flood forecasting.

Keywords: data-driven model; LSTM; Xinanjiang model; KNN; real-time hydrological forecasting

1. Introduction

Streamflow simulation and flood forecasting are the main tasks in hydrological sciences and thus
constitute the primary nonstructural flood prevention measures to avoid flood damages. Currently,
the forecasting models can be categorized into two types, process-based and data-driven models [1].
Process-based models describe, in a detailed manner, the different components and processes of the
hydrological cycle. These models attempt to derive physical parameters that are useful for simulation
or prediction tasks [2]. In contrast, data-driven models acquire the relationship between input and
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output directly from hydrological data such as meteorological inputs or discharge rather than explore
the process representations to simulate hydrological behavior.

Process-based or conceptual models are usually preferred in operational rainfall–runoff forecasting
in many countries due to their high computational efficiency [3]. However, there are still some problems
related to hydrological forecasting in ungauged basins, semi-humid, or semi-arid regions because
of lack of data [4]. Additionally, the inherent complexity in the hydrological process and the impact
of human activities make it challenging for process-based or conceptual models to capture highly
nonlinear relationships in the hydrological processes for these areas. In contrast, data-driven models
such as artificial neural networks (ANNs) gain an advantage in mimicking highly non-linear and
complex systems as well as building models without a priori information [5]. Therefore, efforts to
incorporate these models into real applications in the field of hydrology have been made.

ANNs are a group of classical data-driven methods that have wide applications in many regions
and have gained considerable attention due to their capability to uncover nonlinear relationships
in time series predictions with reasonably reliable accuracy. For example, ANNs have been used in
daily runoff forecasting [6], water level prediction [7], water quality simulation [8], monthly flow
prediction [9], and precipitation forecasting [10]. There are many variants of neural network models,
including the feed-forward neural network (FNN), the recurrent neural network (RNN), and the
convolutional neural network (CNN). Among these, RNN has captured much attention in the field of
time series prediction, because the structural design of its hidden state is parallel to the time series data
characteristics or any sequence data. Furthermore, it has been developed further in the field of deep
learning, which also advances the research in hydrology [11–13].

The Long Short-Term Memory neural network (LSTM) method is an improved version of a
typical RNN equipped with the capacity to retain long time dependencies. It originates from artificial
intelligence and has extensive usage in subjects such as natural language processing, pattern recognition,
and automatic image captioning. In recent years, this method is increasingly topical in geosciences.
Zhang [14] used the LSTM to predict the daily water level in agricultural areas. In another study,
Hu [15] showed that LSTM is a practical approach for rainfall-runoff modeling when compared to a
feed-forward neural network. Zhang [16] established an LSTM, a gated recurrent unit (GRU), and an
RNN model to predict outflows for the Xiluodu Reservoir, and the main factors that affect reservoir
operation were analyzed. Fang [17] suggested that the LSTM model has better generalization in
simulating soil moisture across regions with varying climates using Soil Moisture Active Passive
(SMAP) level-3 soil moisture products with meteorological forcing data and model-simulated moisture.
Kratzert [5] demonstrated the potential of LSTM for large-scale regional modeling using the catchment
attributes and meteorology for large-sample studies (CAMLES) dataset in 241 basins in the United
States of America (USA). These research efforts show the potential of the LSTM model in illustrating
the characteristics of the runoff time series. However, LSTM research applications are still at their
initial phase, with only a few studies conducted in China. Therefore, it is important to investigate the
applicability of the LSTM model in the catchments with distinct climatic conditions within China.

In addition, only a few coupled LSTM-based methods have been proposed to enhance the
model prediction capability in complex hydrology scenarios, usually focusing on obtaining efficient
parameterization or improvement of the model structure. At present, coupled methods mainly focus on
two aspects for improved performance, i.e., parameter optimization and feature extraction. For example,
Yuan [18] showed that a coupled model using both LSTM and an ant lion optimizer, i.e., LSTM-ALO, was
more efficient than other baseline models. In another study, Wu [19] applied a context-aware attention
LSTM network to extract more information from the input data for flood prediction. The context-aware
attention LSTM network provided an improved weight scheme compared to the original LSTM model.
Kratzert [2] proposed an entity-aware-LSTM model by embedding a feature layer and applied it to
study similarities between catchments in 531 basins using meteorological forcing-data and catchment
attributes data from the CAMELS dataset. It is clear from these studies that the first approach tends
to obtain parameters effectively, and the second approach modifies the structure of the model; thus,
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it is more effective. Feature extraction and learning from historical data are usually regarded as the
basis for ensuring forecasting accuracy [20] because data representation plays a significant role in the
success of data-driven models [21,22]. Meanwhile, the hybrid approach for data-driven models can
improve the performance of existing approaches, and it is essential for accounting for the uncertainties
emanating from hydrological systems. Maier [23] divided hybrid modeling frameworks that included
ANN models into three classes: data intensive, model intensive, and technique intensive. A technique
intensive approach combines a neural network with another technique to improve model predictive
ability in the field of hydrology. Specifically, the pre-processing techniques are utilized to select useful
features that are representative of the basin processes [24,25] or decreases the influence of non-stationary
features [26]. Data assimilation aims at state updating, parameter estimation, and error updating given
noisy and unevenly distributed observations and a dynamic model [27,28]. Among these three aspects
for data assimilation, error updating can describe the difference between the observations and the model
predictions to produce reliable forecasts; thus, it is a frequently used technique in operational flood
forecasting [29,30]. Furthermore, inaccurate input data, model parameters, and output variables from
the real-time flood forecasting hydrological models necessitate a hybrid approach, such as coupling the
hydrological model with an error correction model [31]. Therefore, inspired by the significant power
of LSTM networks in modeling dynamics and dependencies of sequential data, we combined LSTM
neural networks and the k-nearest neighbor (KNN) algorithm [32] as a way of learning from historical
data to predict sequential discharge using an updating technique that learns from the errors of the
LSTM simulation results. The proposed hybrid model (LSTM–KNN) is able to provide high accuracy
simulation results based on error estimation calculated by the most similar samples of meteorological
inputs and the simulation results of LSTM from a historical database derived by KNN.

To the best of our knowledge, this is the first time an investigation of the application of the
combined KNN algorithm with the LSTM model has been shared. KNN, a non-parametric regression
method used to estimate the unknown variables by applying nearest neighbor data, is popular in
hydrological research. Its popularity can be attributed to its efficiency and simplicity because it does
not require regression equations or correlation coefficient calculation [33–35]. KNN has been used as
the error prediction model in real-time flood forecasting. In the application of the KNN algorithm
in flood prediction, the distance between feature vectors (e.g., meteorological inputs) is compared to
selected k-nearest neighbors similar to the present hydrological process; then, the error is estimated
at the forecast time to update the flood forecasts of hydrological models [31]. Kan [36] adopted the
ensemble feed-forward neural network (ENN) incorporating partial mutual information for input
variable selection, and KNN was employed for discharge error forecasting. Their results suggest that
the ENN-based hybrid data-driven model has better forecasting capability than other baseline models.
Liu [31] suggested that KNN is more robust than the Kalman filter (KF) algorithm, creating a combined
model incorporating both KF and KNN procedures for forecasts with a longer lead time.

The objective of this study was to investigate the applicability of the LSTM model in China’s
humid, semi-humid, and semi-arid climates. Specifically, we compared the model performance of
the LSTM with that of a simple RNN model and a widely-used conceptual model, i.e., the Xinanjiang
model (XAJ), to examine the predictive capability of these models in different climatic conditions.
Furthermore, KNN was coupled with the LSTM model to conduct error estimation. The following
numerical experiments were performed in this study:

(1) The traditional RNN model and the LSTM model were compared based on the test dataset
from humid, semi-humid, and semi-arid catchments to demonstrate the capacity for long-term storage.
LSTM-based models were built to learn catchment characteristics directly from meteorological forcing
data and hydrological data for three catchments with different climatic conditions.

(2) The LSTM and the XAJ models were compared for their applicability in different climatic
conditions and to provide hydrological interpretations to LSTM. In addition, we found that similar
structural designs are controlling these two methods, which could explain why LSTM could apply
well in the three selected watersheds.
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(3) Concretely, an adapted LSTM by coupling it with the KNN algorithm was applied over the
three given basins to assess its capability in predicting floods.

This paper is organized in the following way: Section 2 gives a detailed description of the study
area as well as the data preprocesses. Section 3 depicts the LSTM model, the benchmark XAJ model,
the coupled LSTM-KNN model, the experimental design, and the selection of parameters for training.
Section 4 presents our model results and the benchmark results, followed by Section 5, which discusses
the implications of the results. The conclusions of this study are presented in Section 6.

2. Study Area and Observational Data

2.1. Study Area

The study area for this research consisted of three catchments, i.e., Tunxi, Chenhe, and Xianbeigou,
characterized as humid, semi-humid, and semi-arid regions, respectively (Figure 1).
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Figure 1. Locations, elevations and river networks of the study areas: (a) their locations in China,
(b) Tunxi Catchment, (c) Chenhe Catchment, and (d) Xianbeigou Catchment.
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The Tunxi Catchment is located in the southern part of Anhui Province in Eastern China (Figure 1b).
Tunxi has typical mountainous terrain, i.e., high in the west and low in the east, with maximum,
minimum, and average elevation of 1398 m, 116 m, and 380 m, respectively. It is a mesoscale catchment
with a drainage area of 2670 km2 [37]. The average annual rainfall is approximately 1600 mm/year, of
which more than 60% occurs between May and August due to the dominance of the monsoon climate.
There is high annual and inter-annual variation in river runoff. Long-term rainfall data recorded per
hour from 18 rain gauge stations as well as runoff data recorded at the outlet are available from the
Hydrological Bureau of Anhui Province, China.

The Chenhe Catchment is situated in Shaanxi Province, and it is part of the Heihe River Basin,
which has an area of 1350 km2 (Figure 1c). The annual precipitation is approximately 800 mm/year [38],
and it varies significantly throughout the year, with massive rainstorms from July to October accounting
for more than 60% of the mean annual precipitation. The average runoff depth ranges from 100 mm to
500 mm, and the runoff coefficient varies between 0.2 and 0.5. The watershed has one hydrological
station and nine rainfall gauges. The recorded maximum flood discharge at Chenhe station was
1750 m3/s in 2005, and the minimum was 196 m3/s in 2004. The long-term hourly rainfall and runoff

data were obtained from the Hydrological Bureau of Shaanxi Province, China.
The Xianbeigou Catchment is located in the arid area of Baoding City in Hebei Province (Figure 1d).

The catchment has an area of 34.4 km2, and it is part of the Daqinghe River network in the Haihe River
Basin. Long-term average precipitation is approximately 630 mm/year with maximum and minimum
values of 1150 and 280 mm/year, respectively. The mean annual flow is approximately 226 million m3,
with maximum and minimum values of 1390 and 200 million m3, respectively. The recorded maximum
peak flow is 52.3 m3/s. The hydrograph is featured by steep rising and falling limbs. It should be
emphasized that small watersheds in the northern and the northwestern mountainous areas of China
have inadequate capacity for flood control and water retention and thus have high surface runoff and
rapid hydrological response to rainfall events [39]. Flooding occurs between June and September as a
result of uneven distribution and inter-annual variation in precipitation [40]. The long-term rainfall
data from five rain gauges recorded at 20 min interval and runoff data recorded at the outlet are
available from the Hydrological Bureau of Hebei Province, China.

The river networks of the three catchments (Figure 1) were derived from a digital elevation model
(DEM) with a spatial resolution of 90 m. The DEM was provided by International Scientific and
Technical Data Mirror Site, Computer Network Information Center, Chinese Academy of Sciences
(http://datamirror.csdb.cn).

2.2. Data Preprocessing

The input variables were scaled to accelerate the convergence speed and make the training process
faster [41] and were normalized using the following equation:

Qt =
Qt −Qmin

Qmax −Qmin
(1)

where Qt and Qt are the observed and the normalized runoff at time t, respectively.
Additionally, it should be noted that modeling boundary conditions were kept as similar as

possible to allow comparison of different models. This means that input data, number of layers, number
of neurons, dropout rate, and number of training epochs were kept identical. Therefore, each model
acquired a different set of parameters with the same model structure, which showed the information
from different catchments that could be analyzed based on simulation results. After training, the value
was denormalized for comparison with observed data.

http://datamirror.csdb.cn


Water 2020, 12, 440 6 of 21

3. Methodology

3.1. LSTM Model

LSTM, proposed by Hochreiter and Schmidhuber [42], was an adapted version of RNN to address
problems of exploding or vanishing gradient and later were refined or simplified [43]. This method
can preserve information over long periods through its unique structure, cell state, and gates to control
how the information flows in the different layers. The structure of the LSTM is shown in Figure 2.
Equations are as follows:

it = σ(Wixi + Uiht−1 + bi) (2)

ft = σ
(
W f xt + U f ht−1 + b f

)
(3)

ot = σ(Woxt + Uoht−1 + bo) (4)

C̃t = tanh(Wcxt + Ucht−1 + bc) (5)

Ct = ft ⊗Ct−1 + it−1 ⊗ C̃t (6)

ht = ot ⊗ tanh(Ct−1) (7)

where it, ft, and ot are the input gate, the forget gate, and the output gate, respectively; Wi, W f , and Wo

represent the weights connecting input, forget, and output gates with the input, respectively; Ui, U f ,
and Uo denote the weights from input, forget, and output gates to the hidden states, respectively;
bi, b f , and bo are input, forget, and output gate bias vectors, respectively; C̃t is the cell input; Ct

is the current cell state; ht refers to current hidden state; σ is the logistic sigmoidal function; ⊗ is
element-wise multiplication; and tanh is the hyperbolic tangent function. The intuition behind this
structure design is that the cell state acts as the memory unit to remember useful information through
the different operations of each gate. The input gate filter is the information added to the cell with the
assistance of current input and historical information, while the forget gate discards certain previous
information, which allows the cell to clear the value it contains; subsequently, the output gate outputs
the information selectively.
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3.2. Xinanjiang Model

The XAJ model [44,45] is a conceptual rainfall–runoff model that has been successfully and
widely used in humid and semi-humid regions of China. The flowchart of the XAJ model is shown in
Figure 3 [46].
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inputs for the XAJ model are rainfall and evaporation. The model transforms the input into surface,
interflow, and groundwater components through runoff production calculation according to
tension water storage and free water storage. In the second stage, the unit hydrograph or the lag
routing technique are usually applied to conduct flow routing in the sub-basin. Finally, the runoff
concentration of the channel system is represented by the Muskingum method [48], and then it
outputs runoff at the target hydrological station. The dynamics of the water storage of the basin are
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similarity of flood events, similar underlying surface and weather conditions tend to generate
parallel hydrographs [50]. Considering that KNN aims to learn from historical information similar
to the current situation, it could be inferred that certain features from similar flood events could be
used for error estimation when implementing this method.

In this study, KNN was applied to select the simulation error in each time step of the flood
events; the Euclidean distance was chosen as the measurement of the proximity of input vectors to
identify the most similar k hydrographs for estimating the simulation error using the k-nearest
samples with the inverse-distance weighting method.

Figure 4 illustrates the flow chart for the implementation of the KNN algorithm in the hybrid
model. The detailed description is as follows:
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This model introduces the concept of runoff formation on the repletion of storage capacity in
rainfall–runoff modeling and uses a parabola curve to depict the uneven storage distribution within
the basin in a statistical manner [47]. The depth of the vadose zone is adopted to represent the
water-holding capacity of the basin. The XAJ model mainly considers surface runoff and groundwater
at first, and later it incorporates the concept of interflow introduced by hillslope hydrology as a
sophisticated version that has been successfully and widely used for humid and semi-humid basins in
China. The detailed description of the model can be found in Zhao [45]. The inputs for the XAJ model
are rainfall and evaporation. The model transforms the input into surface, interflow, and groundwater
components through runoff production calculation according to tension water storage and free water
storage. In the second stage, the unit hydrograph or the lag routing technique are usually applied
to conduct flow routing in the sub-basin. Finally, the runoff concentration of the channel system is
represented by the Muskingum method [48], and then it outputs runoff at the target hydrological
station. The dynamics of the water storage of the basin are reflected in the change of tension water
variable W.

3.3. LSTM-KNN Model

The LSTM-KNN model incorporates the KNN algorithm into the model as an updating method
for real-time forecasting. The KNN algorithm [49] is one of the non-parametric methods used for
real-time updating in hydrological forecasting. Due to the temporal and the spatial similarity of flood
events, similar underlying surface and weather conditions tend to generate parallel hydrographs [50].
Considering that KNN aims to learn from historical information similar to the current situation, it
could be inferred that certain features from similar flood events could be used for error estimation
when implementing this method.

In this study, KNN was applied to select the simulation error in each time step of the flood events;
the Euclidean distance was chosen as the measurement of the proximity of input vectors to identify the
most similar k hydrographs for estimating the simulation error using the k-nearest samples with the
inverse-distance weighting method.

Figure 4 illustrates the flow chart for the implementation of the KNN algorithm in the hybrid
model. The detailed description is as follows:

(1) Construction of a historical database. This was achieved by calculating simulation errors.
After training of the LSTM model, we calculated the errors between the observed values and the LSTM
simulation for the training set. In the KNN model, the relationship between the errors and the inputs
is expressed by the equation below:

et = f
(
QLSTM,t−1, p1,t−i, p2,t−i, . . . , pl,t−i

)
(8)

where ei denotes the simulation error at time t, which is the difference between the LSTM results
and the observed data. QLSTM,t-i is the result of the LSTM model at time t− i, (p1,t−i, . . . , p2,t−i, pl,t−i) is
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the vector that influences the discharge (such as precipitation) at time t-i, and l is the dimension of
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(2) Identification of the optimal number of k-nearest neighbors. The Euclidean distance was
adopted to measure the distance between the inputs; all the vectors were sorted by the distance L j in
ascending order to search k vectors that were the most similar to the inputs at time t.

(3) Estimation of errors. The weights of each historical error were calculated using the inverse
distance weighted method as in Equation (9), and the errors at time t were determined by the weighted
average of the number of k simulation errors.

et =
∑k

j=1

(
e j/L j

)
/
∑k

j=1

(
1/L j

)
(9)

(4) Updating the results. The error calculated by KNN was added to the results calculated
by LSTM.

Qsim,t = QLSTM,t + et (10)

where Qsim,t is the result of the LSTM model updated by KNN at time t.
The K value was the only parameter that needed to be adjusted in the KNN algorithm and was

optimized by the leave-one-out cross-validation method within the range [1,50]. The results of the
LSTM model and the precipitation data were treated as the input for the KNN algorithm. The difference
between the simulation error and the error calculated by KNN for each K was minimized to find
the optimal K value, as depicted by Figure 4. Additionally, an LSTM-KNN model uses data more
efficiently and thus may achieve a more stable performance, even with insufficient data, by leveraging
from KNN’s capability to estimate errors from historical and newly collected information.
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3.4. Model Framework

Our research is closely related to open-source software libraries. We developed the LSTM model
described in Section 3.1 based on TensorFlow [51], an open-source software library provided by
Google. The LSTM model constructed in this study includes one LSTM layer followed by a single
fully connected layer, as recommended by some studies [14,52]. The results of the models mentioned
above treat precipitation from the participating gauge stations as the only input in all three study
regions. For Tunxi, eighteen flood events recorded from eighteen rain gauges between 2008−2016
were selected for training and testing processes, while fourteen flood events recorded from nine rain
gauges between 2003−2012 for Chenhe catchment were selected. For the Xianbeigou catchment, the
frequency of flooding was lower due to the semi-arid climate relative to the other two study regions.
Therefore, ten flood events from five rain gauges from 1983 to 2007 were used. The LSTMs were run in
sequence-to-sequence mode to predict the whole flood events with the precipitation data.

The main parameters of the LSTM neural network model were the weights and the biases,
which were updated through the backpropagation through time algorithm (BPTT) [53]. Furthermore,
the hyperparameters needed to be selected for the training procedure design. The proportion allocated
to the training set was 70%, and the remainder was used as the testing set. The loss function was the
mean squared error function. The number of hidden neurons of the LSTM layer was ten. The network
was trained for 1000 epochs (where in one epoch, all the training samples were utilized for model
optimization) to minimize the mean squared error using the adaptive moment estimation (Adam)
optimization method [54] with an initial learning rate of 2e-3. Note that the models for different areas
use the same hyperparameters.

Regularization was also used in training to avoid over-fitting and was achieved by adding penalty
terms to the layer parameters (such as the weights) because large weights are often regarded as an
indication of over-fitting. The penalty terms together with the loss function were the optimization
objectives of the built neural network; the penalty coefficient was 1e-4. Equation (11) shows the loss
function with L2 regularization.

L = L0 +
λ

2N

∑N

j=1
ω2

j (11)

where L0 and L are the original loss function and the loss function after regularization, respectively.
The last term is the L2 regularization term, which is the squared sum of all the weights divided by
N, i.e., the number of training samples; λ is the regularization term (positive value) to weight the
proportion of L0 and the last term; 1/2 is for the convenience of differential calculation.

3.5. Model Evaluation Criteria

The rooted mean square error (RMSE), the Nash-Sutcliffe efficiency (NSE) coefficient, the R-squared
score (R2), and the volume error (VE) were adopted to evaluate the model accuracy.

RMSE evaluates the proximity of the predicted values to the observed values based on the relative
range of the data. In general, a lower RMSE suggests higher accuracy.

RMSE =

√√√√ n∑
i=1

(
Qi −Q′i

)2

n
(12)

The NSE is a frequently used index to evaluate the performance of hydrological models. It gives a
measurement of model ability to predict variables different from the mean and gives the proportion
of the initial variance accounted for by the model [55], ranging from minus infinity to 1; a value
approximating to 1 means that the simulated process is close to observed values.
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NSE = 1−

n∑
i=1

(
Qi −Q′i

)2

n∑
i=1

(
Qi −Q

)2
(13)

R2 is the square of the sample correlation coefficient ranging from 0 to 1, and it evaluates the
amount of model variance.

R2 =

(
n∑

i=1

(
Qi −Q

)(
Q′i −Q

′) 2

n∑
i=1

(
Qi −Q

)2 n∑
i=1

(
Q′i −Q

′)2
(14)

The VE shows the accuracy of the flood volume, which is an index to evaluate the model
performance for measuring water balance, where a value close to 0 suggests the simulation is close to
the observed data.

VE =

n∑
i=1

Q′i −
n∑

i=1
Qi

n∑
i=1

Qi

× 100 (15)

where Qi and Q′i represent the discharge of observed and simulated hydrographs, and Q and Q
′

denote
the average of the observed and the simulated discharge.

4. Results

First, the performance of LSTM and RNN models are evaluated in Section 4.1. In Section 4.2,
the LSTM model is compared with the XAJ model to explore the similarities of these two models.
Finally, in Section 4.3, we discuss the effectiveness of the proposed LSTM-KNN model relative to the
LSTM model. Results in terms of the four evaluation metrics in all study areas for the testing and the
training set are summarized in Table 1. The boxplots of the statistics of RMSE, NSE, R2, and VE for
each flood event in the three study catchments for training and testing are displayed in Figure 5.

Table 1. Statistics of flood simulations.

Area Model No. of Inputs
RMSE (m3/s) NSE R2 VE (%)

Train Test Train Test Train Test Train Test

Tunxi

RNN

18

2761.95 3077.53 0.78 0.88 0.97 0.98 −7.63 −19.18
XAJ 1644.94 1618.08 0.94 0.96 0.98 0.99 3.69 1.38

LSTM 1862.67 1786.19 0.93 0.96 0.98 0.99 −7.09 −6.81
LSTM-KNN 1507.04 1499.97 0.96 0.98 0.98 0.99 1.53 0.21

Chenhe

RNN

9

636.12 1429.85 0.59 0.53 0.94 0.94 17.92 3.22
XAJ 514.94 896.13 0.80 0.85 0.94 0.94 −3.38 4.11

LSTM 260.07 778.09 0.93 0.90 0.97 0.97 0.87 2.00
LSTM-KNN 218.75 752.15 0.96 0.91 0.98 0.97 0.89 −1.31

Xianbeigou

RNN

5

12.45 25.38 0.68 −3.62 0.84 0.75 0.78 99.93
XAJ 23.22 43.72 0.40 −14.63 0.85 0.80 33.36 298.35

LSTM 6.36 9.24 0.85 0.33 0.92 0.76 2.68 24.81
LSTM-KNN 5.66 9.73 0.90 0.36 0.95 0.78 2.26 28.76

*RMSE: rooted mean square error; NSE: Nash-Sutcliffe efficiency; VE: volume error; RNN: recurrent neural network;
XAJ: Xinanjiang model.
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Figure 5. Boxplots for four models (XAJ, LSTM, LSTM-KNN, and RNN) of RMSE, NSE, R2, and VE
in Tunxi, Chenhe, and Xianbeigou Catchment. (a) Tunxi; (b) Chenhe; (c) Xianbeigou.

4.1. Comparison between RNN and LSTM Models

As seen in Table 1, the values of each LSTM metric were improved compared to those of the
RNN model in each basin for both training and testing data. The NSE values of LSTM for training
generally ranged between 0.85 and 0.93, and for the testing period, they varied from 0.33 to 0.96. In
addition, the RMSE of LSTM was much smaller than that of RNN with the RMSE ranging from 9.24
m3/s from 1786 m3/s for validation. Both models showed relatively high R2 values, while LSTM
showed higher values than RNN for training and testing samples. The improvements for VE were
also evident in these study regions. The mean VE values of LSTM were smaller than those of RNN,
which implies that the simulated flood volume of LSTM was close to observed values. This finding
suggests that LSTM could produce the hydrograph with a reasonably high water balance accuracy.

The boxplots indicate NSE, RMSE, RR, and VE of each modeled flood event for both training
and testing samples and each of the three catchments. Similar conclusions as in Table 1 could be
drawn from Figure 5. It can be observed that the box for RNN had a broader distribution than that
of the LSTM model. The graphical results (Figure 5) reveal that the discharge simulations from the
LSTM model were close to the observations; thus, it is capable of computing both the hydrograph
and the peak flow.

For the model performance in individual catchments, the results varied significantly. The
LSTM model could give more accurate simulation in Tunxi, but the results given by RNN suggest
inevitable fluctuations (Figure6). In Chenhe Catchment, the LSTM model tended to underestimate
the discharge relative to the observations, as precipitation was derived by interpolation to
compensate for missing hourly rainfall in specific periods. This led to smaller inputs in flood peak
periods for certain flood events. All the model performances were not entirely satisfactory owing to
the limited flood sample size compared with the other two catchments. RNN often overestimated
or underestimated the flood volume in Xianbeigou. The simulations from the testing sample using
the LSTM model showed much lower flood peak errors than the RNN model, while the LSTM did
not perform satisfactorily; i.e., the value of NSE was 0.33 in the testing stage. The unsatisfactory
performance was due to limited sample size, i.e., seven flood events for training and three flood

Figure 5. Boxplots for four models (XAJ, LSTM, LSTM-KNN, and RNN) of RMSE, NSE, R2, and VE in
Tunxi, Chenhe, and Xianbeigou Catchment. (a) Tunxi; (b) Chenhe; (c) Xianbeigou.

4.1. Comparison between RNN and LSTM Models

As seen in Table 1, the values of each LSTM metric were improved compared to those of the RNN
model in each basin for both training and testing data. The NSE values of LSTM for training generally
ranged between 0.85 and 0.93, and for the testing period, they varied from 0.33 to 0.96. In addition,
the RMSE of LSTM was much smaller than that of RNN with the RMSE ranging from 9.24 m3/s from
1786 m3/s for validation. Both models showed relatively high R2 values, while LSTM showed higher
values than RNN for training and testing samples. The improvements for VE were also evident in
these study regions. The mean VE values of LSTM were smaller than those of RNN, which implies
that the simulated flood volume of LSTM was close to observed values. This finding suggests that
LSTM could produce the hydrograph with a reasonably high water balance accuracy.

The boxplots indicate NSE, RMSE, RR, and VE of each modeled flood event for both training and
testing samples and each of the three catchments. Similar conclusions as in Table 1 could be drawn
from Figure 5. It can be observed that the box for RNN had a broader distribution than that of the
LSTM model. The graphical results (Figure 5) reveal that the discharge simulations from the LSTM
model were close to the observations; thus, it is capable of computing both the hydrograph and the
peak flow.

For the model performance in individual catchments, the results varied significantly. The LSTM
model could give more accurate simulation in Tunxi, but the results given by RNN suggest inevitable
fluctuations (Figure 6). In Chenhe Catchment, the LSTM model tended to underestimate the discharge
relative to the observations, as precipitation was derived by interpolation to compensate for missing
hourly rainfall in specific periods. This led to smaller inputs in flood peak periods for certain flood
events. All the model performances were not entirely satisfactory owing to the limited flood sample
size compared with the other two catchments. RNN often overestimated or underestimated the flood
volume in Xianbeigou. The simulations from the testing sample using the LSTM model showed much
lower flood peak errors than the RNN model, while the LSTM did not perform satisfactorily; i.e.,
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the value of NSE was 0.33 in the testing stage. The unsatisfactory performance was due to limited
sample size, i.e., seven flood events for training and three flood events for testing were used for
Xianbeigou catchment. The NSE value of 0.85 in the training stage implies some degree of over-fitting.
Furthermore, the data quality adds more difficulties for accurate simulation. Figure 7 shows the
hydrographs of the flood events #198607181500 (a training sample) and #199008011520 (a testing
sample), indicating that data quality may be a problem. Xianbeigou has a relatively small drainage area,
i.e., 34.4 km2. It is generally acknowledged that such a catchment should be sensitive to high-intensity
rainfall and the discharge will quickly respond to rainfall. However, in Figure 7, it is clear that the
LSTM model calculated fit this description, while there was no rising limb after the first peak of the
precipitation in the observed discharge series.
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RNN) in Xianbeigou Catchment.

It is clear that the predicted hydrograph using the LSTM model showed a smoother pattern
and fit well with the general trend of the hydrograph (Figure 6), while the RNN model showed
some oscillations in the simulated results. Considering that the RNN and the LSTM input were the
same, the results might imply the impact of the structural difference on the simulation. The results
suggest that the structure of LSTM enables a better illustration of the hydrological processes
because the additional cell state of the LSTM model provides a way to mimic the storage ability of
the catchments.

4.2. Comparison between XAJ and LSTM Models

The simulations from both XAJ and LSTM models showed better goodness-of-fit in Tunxi. The
NSE performance of the LSTM model in the training stage was 0.93 compared to 0.94 achieved by
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RNN) in Xianbeigou Catchment.

It is clear that the predicted hydrograph using the LSTM model showed a smoother pattern and
fit well with the general trend of the hydrograph (Figure 6), while the RNN model showed some
oscillations in the simulated results. Considering that the RNN and the LSTM input were the same,
the results might imply the impact of the structural difference on the simulation. The results suggest
that the structure of LSTM enables a better illustration of the hydrological processes because the
additional cell state of the LSTM model provides a way to mimic the storage ability of the catchments.
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4.2. Comparison between XAJ and LSTM Models

The simulations from both XAJ and LSTM models showed better goodness-of-fit in Tunxi. The NSE
performance of the LSTM model in the training stage was 0.93 compared to 0.94 achieved by the XAJ
model; on the other hand, they attained an equal value of 0.96 during the testing stage. The same values
were obtained for R2. The other two evaluation criteria differed markedly. The performance of the
LSTM model was not as good as the XAJ model in this catchment. Overall, the XAJ model had much
better performance relative to the LSTM model in Tunxi because the XAJ model was first developed in
the Xinanjiang Basin, of which Tunxi is part of, and it is a typical humid basin with a highly linear
rainfall–runoff relationship as flood events with high peak flows regularly occur. The structure was
well designed, and the parameterization was fully investigated according to the characteristics in
that basin [47]. On the other hand, the LSTM model did not achieve better results than the XAJ
model; both XAJ and LSTM models produced satisfactory results. Thus, we could conclude that LSTM
demonstrates a relatively strong capability to capture the rainfall–runoff relationship for flood events
in humid regions.

In the Chenhe Catchment, the results were entirely different from those in Tunxi. As it can be seen
in Figure 5, the performance of each evaluation index decreased compared with the application in
Tunxi using the XAJ model. The LSTM model had a narrower range of RMSE between 267 m3/s and
778 m3/s relative to the XAJ model. The value of NSE was also improved from 0.80 (XAJ) to 0.90 (LSTM)
in the training stage, while for validation, it rose from 0.85 to 0.95 accordingly. The R2 value increased
from 0.94 to 0.97 for both training and testing sets. The volume error decreased from 17.32% for XAJ to
0.87% for LSTM in the training stage and dropped from 3.22% for XAJ to 2.00% for LSTM in the testing
stage. The LSTM model yielded better results compared with the XAJ model in Chenhe because the
catchment possesses a semi-humid climate, and the water resources are less abundant compared with
Tunxi. Furthermore, the infiltration–excess runoff mechanism may exist in this area [38]. Therefore,
the XAJ model, which is based on a saturation–excess runoff generation mechanism, might not be
able to generate comparable results in Chenhe compared to Tunxi, while LSTM could better learn the
characteristics of this catchment.

In Xianbeigou, the volume error of LSTM was less than that of XAJ, and the shape of the simulated
hydrograph of LSTM closely matched the observed data. However, the LSTM performance of the
other three metrics in the training stage was better than in the testing stage. To some extent, this
might be a sign of over-fitting or could have been due to the small magnitude of the discharge in this
catchment that exaggerated the error. Overall, the small flood events imparted significant uncertainty
to the parameterization of the XAJ model, which may have been partially responsible for the deficits in
the model simulation. Furthermore, infiltration–excess runoff was the dominant runoff generation
mechanism leading to rainfall-triggered floods with short duration and fast recession. It is, therefore,
not suitable to apply the XAJ model with saturation–excess runoff generation mechanisms in this
watershed characterized by sharply rising and falling flows. However, the LSTM model yielded better
results than the XAJ model for both training and testing. This finding indicates LSTM’s robustness to
small data samples and its potential applicability in other similar types of catchments. However, poor
testing stage performance is concerning.

Frederik [56] proposed that the correlation between the LSTM model and the conceptual model
could be calculated to see if there is a strong relationship between the cell values of LSTM and states
variables of other hydrological models. Similarly, we extracted the cell states of LSTM and the tension
water W representing the soil moisture in the XAJ model. Considering that the input in the LSTM
model was normalized to be fed into the model, the absolute value did not contain physical meaning.
Therefore, the correlation of these two variables could be examined to ascertain if the cell states had
the same function as the state variable W from the XAJ model.

Figure 8 shows the average correlation of every memory cell with the hydrological states considered
in this experiment. The positive correlation values for Tunxi, Chenhe, and Xianbeigou were six, seven,
and six, respectively. Tunxi Catchment contained the most cells that correlated the W of XAJ model
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with more significant values, followed by Chenhe. Both catchments had more cells with a relatively
higher correlation than Xianbeigou. This finding is consistent with the above simulation results, since
the complexity of simulating the rainfall–runoff relationship in these three basins is also arranged in
that order. Additionally, the sample size might have contributed to this phenomenon. It should be
noted that Tunxi had the most considerable quantity of training samples among these study regions,
while the flood sample size of Xianbeigou was the smallest. As a result, the larger sample size enabled
a more objective training procedure because various conditions were fully considered during the
optimization. Additionally, the XAJ model did not achieve the desired results in Xianbeigou; thus,
the relatively weak correlation for the Xianbeigou watershed was also reasonable. Furthermore, in the
semi-arid and the arid regions in China, the runoff generation is dominated by the infiltration runoff

process. This mechanism has a high relation to precipitation intensity. Thus, we inferred that this
relationship is complicated for the cell to learn since this process is represented by the comparison of
the precipitation intensity and the infiltration capacity of the soil. While this kind of information is not
included in the current model input, it may be challenging for the model to extract the information.
Therefore, as both the data quantity and the runoff generation mechanism are intertwined, poor model
performance was seen in semi-arid regions.
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4.3. Comparison of LSTM, LSTM-KNN Model

The leave-one-out cross-validation method for optimization resulted in K of 14, eight, and
three for Tunxi, Chenhe, and Xianbeigou, respectively. The difference in K for each basin is related
to the differences in sample size, as more samples provided KNN with more references to calculate
the error. Tunxi had the largest sample size, followed by Chenhe, while Xianbeigou catchment had
the smallest sample size.

Table 1 lists the evaluation metrics of the updated results for the coupled model. The
performance of the LSTM-KNN was better than that of the single LSTM model for the four
evaluation metrics, which means that the updated simulations were superior to the original
simulation. The RMSE decreased from 260 m3/s to 218 m3/s for the training sample. The value of
NSE obtained from the LSTM-KNN model was higher than 0.93 and 0.96 for the training and the
testing stages, respectively, for Tunxi. Similar results could be witnessed in the other two
catchments. R2 values remained the same for Tunxi, while a slight increase from 0.97 to 0.98 was
witnessed in the training sets for Chenhe catchment. This improvement was evident in Xianbeigou
catchment. The volume error had a trend close to zero when applying the KNN method in all the
basins. In Figure 5, the four indexes of LSTM were distributed in a marginally more extensive range
than that of the coupled model, especially for Tunxi and Chenhe. Therefore, the LSTM-KNN model
promoted the LSTM model performance in all three watersheds. Our results show that the
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Overall, in all three catchments, some of the memory cells had a particularly high correlation with
the provided hydrological states, which shows that the cell might have acted as a reservoir with a
certain amount of storage to adjust the runoff process in the catchment.

4.3. Comparison of LSTM, LSTM-KNN Model

The leave-one-out cross-validation method for optimization resulted in K of 14, eight, and three
for Tunxi, Chenhe, and Xianbeigou, respectively. The difference in K for each basin is related to the
differences in sample size, as more samples provided KNN with more references to calculate the error.
Tunxi had the largest sample size, followed by Chenhe, while Xianbeigou catchment had the smallest
sample size.

Table 1 lists the evaluation metrics of the updated results for the coupled model. The performance
of the LSTM-KNN was better than that of the single LSTM model for the four evaluation metrics, which
means that the updated simulations were superior to the original simulation. The RMSE decreased
from 260 m3/s to 218 m3/s for the training sample. The value of NSE obtained from the LSTM-KNN
model was higher than 0.93 and 0.96 for the training and the testing stages, respectively, for Tunxi.
Similar results could be witnessed in the other two catchments. R2 values remained the same for Tunxi,
while a slight increase from 0.97 to 0.98 was witnessed in the training sets for Chenhe catchment. This
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improvement was evident in Xianbeigou catchment. The volume error had a trend close to zero when
applying the KNN method in all the basins. In Figure 5, the four indexes of LSTM were distributed in
a marginally more extensive range than that of the coupled model, especially for Tunxi and Chenhe.
Therefore, the LSTM-KNN model promoted the LSTM model performance in all three watersheds. Our
results show that the LSTM-KNN model yielded relatively better performance in all three catchments,
which demonstrates that the KNN algorithm, acting as an error updating model, could select useful
historical data points that effectively reduced the error accumulation.

5. Discussion

We compared and discussed the performance of the four models in selected catchments.
In comparison to previous studies in the humid catchment, i.e., Tunxi, Yao [37] found NSE of
0.94 (i.e., for training sample) and 0.95 (i.e., for testing sample) from XAJ and improved Xinanjiang
coupled with geomorphologic instantaneous unit hydrograph (XAJ-GIUH) models using time series
data from 1983 to 2003. However, we found higher accuracy with NSE of 0.96 (i.e., for training sample)
and 0.98 (i.e., for testing sample) from the LSTM-KNN model using data spanning from 2008 to 2016.
Huo [38] classified the flood events in Chenhe catchment in the same period as this study into low-flow,
medium-flow, and high-flow events and utilized six hydrological models to simulate the flood events
while applying the Bayesian model averaging (BMA) approach to improve flood prediction. The NSE
value of the selected flood events for testing sample was 0.86. In comparison, our LSTM model showed
better model prediction ability in Chenhe with an NSE of 0.93 for the testing stage, which suggests the
superiority of the LSTM model. In another study, Chao [39] established the CASCade Two Dimensional
SEDiment (CASC2D-SED) model in Xianbeigou Catchment; the coefficient of determination (i.e., a
similar metric with NSE) of eight flood events was greater than 0.7 with an average of 0.85, and the
accuracy of simulation results was higher than that of LSTM found in this study. This is because the
CASC2D-SED model utilizes the Greet-Ampt formula to simulate surface flow, which is suitable for
this area with steep hydrographs that show the infiltration–excess mechanism.

However, it is noteworthy that the LSTM model achieves better results in semi-arid regions, which
suggests that the data-driven model can acquire a more reliable system pattern than the XAJ model. On
the contrary, the structure design of the XAJ model is based on the saturation–excess runoff generation
mechanism, while the runoff generation mechanism in semi-arid or arid basins is dominated by
infiltration–excess runoff. Therefore, it is challenging to produce a simulation with high accuracy using
the conceptual XAJ model due to the lack of sufficient description of the mechanisms in semi-arid or arid
basins. The XAJ model utilizes water balance mechanisms in its design structure, while the extensive
impact of human activity on natural basins and intensified groundwater resources dependence in most
semi-arid basins in China might render this hypothesis inapplicable [57]. As suggested in Section 4.3,
poor data quality and quantity are the main issues. The accuracy of flood forecasting relies heavily
on data availability in the relative dry watersheds. In these areas, the rainfall has an uneven spatial
distribution, and the time interval is sparse, occasionally capturing the peaks in flash floods with the
rapid rise and fast recession. As a result, high-density precipitation data are the primary requirement for
producing reliable simulation. In reality, this requirement is often difficult to meet in some watersheds
due to spatial and temporal variability of rainfall and the lack of observations. Therefore, more research
needs to be done in the future to tackle these problems, possibly with the incorporation of radar or
satellite precipitation products [58]. On the other hand, probabilistic forecasting, such as the Bayesian
inference method, is also an alternative considering that more uncertainties could be taken into account
during the modeling [59].

Furthermore, using confined forcing such as meteorological forcing data to derive LSTM models
shows good potential for further integration of LSTM-based models into the operational settings driven
by precipitation data obtained from weather radar. However, other static catchment characteristics
could also be introduced in the LSTM model as inputs, such as the topography and the vegetation [2,60],
due to their vital role in the runoff generation and the routing process in rainfall–runoff modeling.
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Therefore, incorporating more catchment attributes in the LSTM model would further enhance its
capability for streamflow forecasting.

In regions with intense human activity, the regulation and the management of dams, reservoirs,
and other hydraulic projects are crucial to reducing the loss of life and property caused by flood
disasters. These hydraulic projects are generally treated as internal nodes in conventional hydrological
models for better use and planning. Although LSTM could provide high accuracy forecasting, it could
only give the simulation or the forecast at the target hydrological station or specific cross-section of the
river channel. Moreover, the fact that the LSTM internal variables cannot be directly interpreted or
reflect the internal dynamics of the catchment is a challenge that impedes its full application. Therefore,
combining LSTM with other hydrological or hydraulic models for flood warning or other water use
purposes is another viable option for future research, such as incorporating other hydraulic models for
river channel flow routing to obtain detailed information at each important cross-section.

Real-time flood forecasting is a critical tool in the operational flood emergency management
system. The updating or the data assimilation techniques could account for the inaccuracy of input
data, state variables, model parameters, and output variables [31]. The most widely used procedure in
operational flood forecasting is output variable updates, such as the autoregressive model [61]. Our
study mainly considers the errors of the output variables by utilizing the simulation results of LSTM
and the precipitation as the inputs of KNN regression methods. Other techniques that are not aiming
at the correction of the outputs could also be employed in real-time flood forecasting, such as utilizing
the Kalman filter to realize the optimal estimation of the system state variables [62].

6. Conclusions

This research investigated the application of the LSTM model in flood forecasting. Meanwhile,
the applicability of LSTM-KNN models for operational streamflow forecasting systems was explored.
Three study regions in China with different climate conditions (humid, semi-humid, and semi-arid)
were selected to test the efficiency of the proposed models. The model results were compared with
one of the artificial intelligence techniques, RNN. Additionally, the conceptual-based XAJ model was
constructed to detect the similarities between the conceptual model and the data-driven model. Finally,
a coupled LSTM-KNN model was proposed to see if it had the potential to be generalized in the
application of real-time forecasting.

The results prove that the LSTM with internal memory has the ability to learn and store long-term
dependencies of the input–output relationship in different climates. LSTM could produce comparable
results as the conceptual XAJ model, and the results exhibit that it obtains more robust results compared
with the simple RNN model. The comparisons between the coupled model and the LSTM model also
show that the KNN algorithm could increase the accuracy of the LSTM model in predicting runoff

in three catchments. Therefore, it would be a more suitable approach to improve the accuracy in the
context of real-time runoff forecasting.
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