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Abstract: Understanding the effects of land use change on evapotranspiration (ET) and its partitioning
to transpiration and evaporation is important for accurately evaluating the likely environmental
impacts on watershed water supply, climate moderation, and other ecosystem services (e.g., carbon
sequestration and biodiversity). This study used a distributed hydrologic model, MIKE SHE, to
partition evapotranspiration into soil evaporation, transpiration, ponded water evaporation, and
interception, and examined how the ET partitions affected the water balance in the Qinhuai River
Basin from 2000 to 2013. Simulated daily ET was compared to measurements at an eddy flux
research site during 2016–2017 (R2 = 0.72). Degradation in rice-wheat rotation fields and expansion
of impervious surfaces impacted not only total watershed evapotranspiration, which showed a
significant downward trend (p < 0.05), but also its partitioning. A significant (p < 0.01) decrease
in transpiration was detected. Ponded water evaporation was the only ET partition that exhibited
a significant positive trend (p < 0.05). We concluded that the reduced transpiration as a result of
land use and land cover change was the primary factor driving the variation of watershed scale
evapotranspiration. In addition, there was an increase in annual water yield (23%) as a response
to significant reduction in ET (7%) due to a 175% expansion of urban area in the study watershed.
Our study provided insights to the mechanisms of land surface–water cycle interaction and better
understanding of the effects of land use change on urban micro-climate such as “urban dry island”
and “urban heat island” effects.

Keywords: evapotranspiration partitioning; land use and land cover change; MIKE SHE model;
urbanization; hydrological modeling

1. Introduction

Urbanization-associated land use and land cover (LULC) change is a global phenomenon that
has negative impacts on local environment, society, and culture [1,2]. During the urbanization
processes, entire watershed water energy and balances are altered [3–5]. The elevated peak-flow rates
and exacerbated flood risks represent the most obvious direct consequences [6,7]. It is essential to
understand these fundamental processes to accurately evaluate the likely environmental impacts of
urbanization on watershed water supply, climate moderation, and other ecosystem services such
as carbon sequestration [8,9]. In particular, evapotranspiration (ET) is a critical process that links
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energy, water, and carbon cycles and is recognized as a key variable to understanding the effects of
urbanization on land surface processes [10–12].

Water shortage has become more acute and is expected to continue to expand due to population
rise and associated increased water demand [13]. A warming climate has further increased the need
for productive and rational use of traditionally marginal water and land resources [14]. ET partition
studies help improve estimating crop yield and local groundwater storage [15,16]. Thus, accurately
assessing ET components has been an area of interest to hydrologists in recent years [17]. Vegetation
transpiration (T), soil evaporation (Es), canopy interception evaporation (Ei), and ponded water
evaporation (Ep) are four components of terrestrial ET [18]. Vegetation transpiration has long been
acknowledged to be a biological process that is closely related with ecosystem productivity, whereas
evaporation (Ei, Es, and Ep) is physically controlled processes representing evaporation from wet
canopy or ground surfaces [12,19,20]. T represents the largest loss of water from vegetation and the
transpiration fraction (T/ET), as an indicator of ET partition, is a key to interpreting vegetation–climate
feedback [21,22], validating hydrological prediction, and improving agricultural water management
practices [19]. Along with the expansion in urban land use that is well known to increase storm flow
as a result of increase in impervious surface and decreased ET [2], T reduction during urbanization
is likely to cause large impacts on regional ecosystem productivity and water yield, because the T
process directly links plant growth and the carbon cycle [17,23]. Therefore, analyses of ET partitions
are more informative than ET alone for understanding how ecosystem water cycles change in varying
environments [10]. Particularly, in agricultural land, calculation of ET partitions is of great importance
for water resource management practices, irrigation systems and irrigation regimes planning, and crop
yield estimation [16].

Various approaches have been developed to separate ET at different time and spatial scales
(Table 1), including field experiment and physical based modeling methods. These methods suggest
that methods for quantifying T and Es are well developed, but separating T and Ei or separating Es

and Ep is difficult. For example, isotopes, partitioning ET into Es and T by fractionating the isotopic
composition of water, was widely used in determining plants ET but limited by its use range and
high cost [20,24,25]. With the development of remote sensing technology, a series of ecological models
has emerged to partition ET [26,27]. The first “two-source model”, Shuttleworth–Wallace model,
was put forward in 1985 [28] and is accurate enough for plantation management [20]. However,
questions remain related to the algorithm complexity when describing key parameters such as canopy
and ground resistance [29]. Another commonly used model, Dual-Kc [16], requires relatively fewer
parameters, but is only applicable to well-watered underlying surfaces [30]. The applicability of the
above three methods is limited and would tend to underestimate ET since they can only obtain Es and
T [20,25,29]. The Priestley–Taylor Jet Propulsion Laboratory Model (PT-JPL) takes Ei into consideration,
providing a more complete picture of ET research [31]. Nevertheless, given the difficulty of obtaining
high quality and cloud-free remote sensing images, the remote sensing-based methods may result in a
significant degree of uncertainty [26]. Therefore, hydrological models that describe ET partitions are
desirable. For example, MIKE SHE (MIKE Système Hydrologique Européen/European Hydrological
System), a distributed hydrological model based on water balance, offers the possibility to partition ET
into four main components, namely transpiration (T), soil evaporation (Es), interception evaporation
(Ei), and ponded water evaporation (Ep), and simultaneously to be applied to multiple spatiotemporal
scales in a rapid urbanization basin [32,33].

This study selected the Qinhuai River Basin (QRB), a rice paddy-dominated watershed in the
Yangtze River Delta region, to explore the response of the hydrological process to LULC change.
The Yangtze River Delta is the most developed and industrialized region in China that has experienced
dramatic urbanization and population growth during the last several decades [34]. Rice-wheat rotation
fields have been major sources of food production for thousands of years in this region [2]. Rice
paddy fields have similar ecosystem services as wetlands, including flood retention, groundwater
recharge [35,36], nutrient cycling, and sequestration of greenhouse gases [37]. However, rapid



Water 2020, 12, 645 3 of 23

rise in urban areas by converting paddy fields inevitably led to huge alterations in the watershed
hydrology [19,38–40]. Du et al. [6] quantified the effects of urbanization on flood events using the
Hydrologic Engineering Center’s Hydrologic Modeling System (HEC-HMS) for the same study area
and found that the stream peak-flow of eight selected floods increased from 2.3% to 13.9% when urban
built-up areas increased from 3% in 1988 to 31% in 2018.

Table 1. A comparison of evapotranspiration partitioning approaches.

Approaches Theory Scale Partitioning Advantages Disadvantages Publication

Measurement Isotope
Hydrogen and
oxygen isotopic

fractionation
Field Es, T Direct

measurements

Costly
Limited data

Complex operation
[20,25]

Model

Shuttleworth-Wallace P-M equation Field Es, T Flexible
Easy to apply

Over-parameterization
Limited application

condition
[20,29]

Dual-Kc ETo × KC Field Es, T Few parameters
needed Limited applications [30]

PT-JPL Priestley-Taylor
algorithm Region Es, T, Ei

Simple no
calculation of
aerodynamic
and surface
resistance

needed

Uncertainty in remote
sensing data [26,31]

MIKE SHE Water balance Region Es, T, Ei,
Ep

Accurate Numerous input
parameters [29,32,33]

As the only common term between surface energy balance and hydrological cycle, ET is a
critical process to understand the impacts of LULC change on the hydrology and local climate in the
QRB [2,41–43]. However, some of these previous regional studies during the past decade focused on
reference evapotranspiration rate (ETo), which only represented the atmospheric evaporating capability
of a hypothetical reference vegetated field [16]. A recent study detected opposite changing direction for
annual averaged ETo and ET trends across the QRB [2], indicating that more attention should be paid to
the ET research for the hydrological interest, although understanding ETo is important for quantifying
the change in ET. Studies on changes in the ET components in the QRB, i.e., vegetation transpiration
(T), soil evaporation (Es), vegetation interception evaporation (Ei), and ponded water evaporation (Ep),
are few and limited. How the partitions dominate the spatial and temporal variability of ET has not
been adequately addressed in previous research. Research is needed to link ET and water resources for
understanding ecosystem evolution, environmental dynamics and putting forward effective water
resource management measures under the background of rapid urbanization for the QRB.

The main aims of our research were: (1) to identify the variations in ET and its partitions (T, Ei,
Es and Ep) with different land use types in the Qinhuai River Basin from 2000 to 2013; (2) to explore
the dominant ET partitions contributing to ET changes at catchment scale; and (3) to evaluate the
potential effects of land conversion on local water recycling. This research helps enhance understanding
the ecohydrological responses to environmental changes in an urbanizing region, and thus assists
formulating policies to protect local natural resources and environment against potential harm from
rapid urbanization.

2. Methods

2.1. Study Area

The Qinhuai River Basin (31◦34′–32◦10′ N, 118◦39′–119◦19′ E) is in the Yangtze River Delta
region that includes Nanjing, Lishui, and Jurong cities and has a typical subtropical monsoon climate.
The mean annual precipitation is 1116 mm/year and has not changed significantly from 1986 to 2013.
Over 50% annual precipitation falls from June to August. The lone-term mean annual temperature
is about 15.4 ◦C. Annual air temperature has increased 0.44 ◦C per decade from 1990 to 2013 [2,43].
The QRB has an area of about 2631 km2 with an elevation below 300 m above sea level (Figure 1).
The dominant land use is rice-wheat rotation field, which accounts for more than 35% of the total
watershed area. Winter wheat and paddy rice crops grown in rotation are the most common cropping
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system in the QRB [2]. Rice-wheat rotation fields require flood irrigation during the entire rice growing
season from May to October [43]. However, rice-wheat rotation fields have reduced by 32.5% while
urban areas expanded 1.8 times, mainly due to rapid urbanization from 2000 to 2013 (Figure 2b). About
16.5% of rice-wheat rotation fields were converted into urban spaces (Figure 2a). The main soil types
are yellow-brown soil, purple soil, limestone soil, paddy soil, and gray fluvo-aquic soil [6]. The aquifer
is mainly made of fine sandstone, coarse sandstone, and conglomeratic sandstone, which are generally
fractured and highly permeable. The main supply source is precipitation infiltration [44].
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2.2. Hydrology Model

MIKE SHE is a physically-based watershed hydrological model created by DHI (Danish Hydraulic
Institute) [33]. It simulates entire hydrological processes occurring in watersheds, including streamflow,
soil and groundwater dynamics, and all ET processes [45,46]. MIKE SHE is particularly useful for
simulating the interactions between the unsaturated soil zone and the surficial aquifer [46,47]. Water
movement in the unsaturated zone affects water exchange between the unsaturated and saturated
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zones, as well as ET rates [48–50]. The one-dimensional Richards’ equation was used for calculating
flow in the unsaturated zone [51,52]. The ET module, based on empirical equations by Kristensen
and Jensen [53], is used whenever Richards equation is used [33,53]. The ET rates are calculated as a
function of reference evapotranspiration rate (ETo), maximum plant root depth, plant leaf area index
(LAI), and soil moisture content. ET is modeled by several components including: (1) evaporation
from the canopy interception; (2) evaporation from the soil surface; and (3) water uptake by plant roots
as transpiration modeled as a function of soil moisture in the unsaturated root zone [33]. Thus, the four
main ET partitions (i.e., T, Es, Ei, and Ep) can be estimated separately using the MIKE SHE model.

The MIKE SHE model considers the canopy as a reservoir that retains precipitation [33]. Water
loss from the canopy surface is simulated by the interception evaporation process. The maximum
amount of stored water, Imax (L), is conditional to vegetation type and growth stage as represented by
the leaf area index, LAI.

Therefore,
Imax= Cint × LAI (1)

where Cint is an interception coefficient (L), reflecting the interception storage capacity.

Ei= min (I max, ETref∆ t) (2)

where Ei is the canopy evaporation (L/T), ETref denotes the reference evapotranspiration (L/T), and ∆t
is time step.

If interception storage does not satisfy the maximum amount of ET, water is evaporated from the
ponded water until the ponded storage is exhausted.

Ep= ETref × kc × ∆t (3)

where Ep is ponded water evaporation (L/T). kc is crop coefficient that varies by season and crop type.
Transpiration (T) from the vegetation depends on vegetation characteristics, soil moisture content

in the root zone, and root density.

T = f1(LAI) × f2 (θ) × RDF× ETref × ∆t (4)

f1(LAI)= C2+C1LAI (5)

f2(θ)= 1−
[
θFC − θ

θFC − θW

] C3
ETref

(6)

logR(z) = logRo −AROOT× z (7)

RDF =

∫ Z2

Z1

R(z)dz/
∫ LR

0
R(z)dz (8)

where T is actual transpiration (L/T); C1, C2, and C3 are empirical parameters; θFC is the volumetric
moisture content at field capacity; θW is the volumetric moisture content at the wilting point; θr is the
residual soil moisture content; θ is the actual volumetric moisture content that varies over time; Ro is
the root extraction at the soil surface; AROOT is a parameter that describes the root mass distribution
(1/m); and z is the depth below ground surface (L). RDF is a root distribution function.

Soil evaporation from the upper layer of the unsaturated zone including Es is modeled as:

Es= ETref × f3(θ)+(ET ref − T− ETref × f3(θ)) × f4(θ) × (1 − f1(LAI)) × ∆t (9)

f3(θ) =


C2 θ ≥ θW

C2
θ
θw

θr ≤ θ ≤ θW

0 θ ≤ θW

(10)
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The hydraulic conductivity function K(θ) and the soil moisture retention curve θ(ϕ) are two
hydraulic functions governing the unsaturated flow. These functions were derived from common
soil properties (i.e., texture and structure) [33]. The Van Genuchten formula [54] describing soil
moisture–pressure relationship was used in this study:

θ(ϕ) = θr +
(θs − θr)[

1 + (α·ϕ)n
]m (11)

where θs is saturated soil moisture content; m is related to the empirical constant n by m = 1− 1
n ; and

α is an empirical constant. Those parameters were fitted using soil moisture release curve data.

2.3. Model Parameterization

2.3.1. Topography and Hydrogeology

Digital Elevation Model (DEM) data with a 30 m resolution (Figure 1) provided by the National
Geomatics Center of China (http://www.ngcc.cn/) were rescaled from the original 30 × 30 m2 to 1000
× 1000 m2 (i.e., per unit area is 1 km2). The simulation domain had about 2600 horizontal meshes
that cover the entire QRB. Stream channel cross-section data were extracted from DEM data every
3 km and were used to simulate the complete terrestrial water cycle by coupling with the flow routing
model, MIKE 11 [33,51]. Streamflow was computed using a fully coupled MIKE SHE/MIKE 11 model.
Boundary conditions were set as zero flux at the watershed boundary.

2.3.2. Land Use and Land Cover

Land use/land cover data for four years (2000, 2004, 2007 and 2011) were derived from remote
sensing products from the Geospatial Data Cloud (http://www.gscloud.cn/) representing four different
periods (2000−2003, 2004−2006, 2007–2010, and 2011−2013). Five key land use types defined as forest,
rice-wheat rotation field, urban, water, and dry land were used in this study.

The leaf area index (LAI), crop coefficient (Kc), and root depth (RD) are key dynamic vegetation
properties that are directly related to precipitation canopy interception, vegetation transpiration, and
total ET in forest and agricultural lands [18]. For example, forest areas had a constant RD value of
2000 mm, where the LAI values changed from 0.8 (in January) to 6 (in July) and then returned to
0.8 (in December). Changing trends of forest Kc were similar with the seasonal LAI, ranging from
0.7 to 1.1. During the full leaf period, LAI of rice and wheat had a value of 5 and 4.8, respectively.
The mean Kc was set as 0.5 for rice and 0.48 for wheat at the initial stage. It was increased to 1.3
and 1.2 at the midseason stage, and was slightly decreased to 0.90 and 0.82 at the late season stage,
respectively. The temporal changes of the Kc, RD, and LAI for the vegetation areas were determined
by data from the literature [55–58]. In addition, irrigation management in rice paddy was taken into
account. Irrigation water depths recommended by Wang et al. [59] were used to represent different
growth stages of paddy rice crop (Table 2).

Table 2. Water depth meeting irrigation demand in rice-wheat rotation fields during the crop growing
season [59].

Growing Stage Irrigation Depth (mm·day−1)

Sowing 10
Tillering 20
Reviving 30

Jointing stage 30
Filling stage 40
Milky stage 30

Ripe 10

http://www.ngcc.cn/
http://www.gscloud.cn/
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2.3.3. Meteorological Data

Daily reference evapotranspiration (ETo) rates were calculated by daily humidity, daily radiation,
daily vapor pressure, daily air temperature, daily sunlight duration, and daily wind speed at a 2 m
height using the standard FAO 56 Penman–Monteith method [16]. These meteorological data for a
24-year period (1990–2013), from weather stations located within the QRB, were obtained from the
China Meteorological Data Sharing Service System (http://data.cma.cn/). To improve model accuracy, 23
virtual stations were selected and assigned time series of precipitation and reference evapotranspiration
for 1990–2013 using the ANUSPLIN meteorological interpolation method [60]; this was done because
there were only a few meteorological stations in the study area.

2.3.4. Soil Data

Soil data were from the Harmonized World Soil Database (HWSD) established by the Food and
Agriculture Organization of The United Nations (FAO) (http://www.fao.org/nr/land/soils/harmonized-
world-soil-database/en/). Fifteen different types of soil were identified in the study basin (see
Appendices A and B). Depth of soil layers used for unsaturated flow simulation was obtained from
HWSD’s database. Impervious surface parameters were set using reducing saturated hydraulic
conductivity (Ks) of the upper layer. Due to lack of spatially distributed data of geological layer,
single-valued hydrogeological parameters for the saturated zone were adopted within this basin.

2.3.5. Initial Conditions

Initial values, such as soil water content in the unsaturated zone and groundwater elevation in the
saturated zone, play an important role in model performances [61]. The hot-start function provided by
MIKE SHE was used to generate the initial conditions. This utility makes continuing simulation of
different period possible.

Calculating water dynamic in saturated zone requires initial groundwater level value, i.e., “Initial
Potential Head”. In MIKE SHE model, the “Initial Potential Head” is the starting head for transient
simulations and the initial guess for steady-state simulations [33]. In this study, this value was
repeatedly adjusted until the model stabilized and produced convincing results.

2.3.6. Model Calibration and Validation

Two types of hydrological fluxes were used for model calibration and validation including
monthly observed discharge data from the Wudingmen gauging station at an outlet of the Qinhuai
River and daily observed ET rates data from eddy covariance technique in the rice field located at
Lishui Experimental Station (Figure 1). Eddy covariance (EC) measurements of latent (LE) and sensible
(H) heat were collected at 30 min intervals. It is inevitable that missing or rejected data occurred when
long-term data were recorded. Data gaps less than 3 h were generally filled using linear interpolation,
and gaps greater than 24 h were filled using multiple polynomial regressions [12]. We processed
eddy-covariance data in the free and open-source EC software EddyPro (www.licor.com/eddypro).
Energy balance closure was evaluated from 21 June 2018 to 31 July 2018. In this study, ordinary least
squares (OLSs) were used to derive linear regression coefficients between the half-hourly estimates of
the dependent flux variables against the independently derived available energy [62].

Hydraulic parameters were set using actual stream data in the MIKE SHE model. Calibration
relies on human judgements and does not require large amounts of hydrological and meteorological
data. Thirteen parameters (Table 3) were selected for model calibration according to previous
studies [32,43,63].

http://data.cma.cn/
http://www.fao.org/nr/land/soils/harmonized-world-soil-database/en/
http://www.fao.org/nr/land/soils/harmonized-world-soil-database/en/
www.licor.com/eddypro
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Table 3. Key parameters controlling evapotranspiration, overland flow, drainage flow, and base flow
were subject to calibration.

Water Movement Parameter Initial Value Final Value Unit

Evapotranspiration
(ET)

C1 0.30
Forest 0.30 -

Agricultural land 0.31

C2 0.20
Forest 0.20 -

Agricultural land 0.15
C3 20 - mm/day

Cint 0.05 - mm

Overland flow (OL)

Surface flow Manning
coefficient (m) 25

Forest 5

m
1
3 /s

Urban 50
Water 8.3

Agricultural land 12.5
Detention storage 10 0 mm
Initial water depth 0 - mm

Rivers and lakes (OC)
Channel flow Manning

coefficient (m) 30 44 m
1
3 /s

Leakage coefficient 1 × 10−7 8 × 10−8 /sec

Saturated flow (SZ)

Horizontal hydraulic
conductivity 1 × 10−7 5 × 10−6 m/s

Vertical hydraulic conductivity 1 × 10−7 1 × 10−6 m/s
Storage coefficient 0.0001 5 × 10−5 1/m

Time constant 1 × 10−6 1 × 10−7 /sec

This model was calibrated for four years (1991–1994) and validated for five years (1995–1999) with
a one-year warm up period (1990). Moreover, 31 December 1999 was chosen as the initial condition
for analyses. The calibration and validation processes were based on two statistical parameters,
the coefficient of determination (R2) and the Nash–Sutcliffe model efficiency coefficient (E) [45,51]:

R2 =

∑n
i=1

(
Oi −O

)(
Si − S

)
√∑n

i=1

(
Oi −O

)2
√∑n

i=1

(
Si − S

)2
(12)

E = 1−

∑n
i=1(Oi − Si)

2∑n
i=1

(
Oi −O

)2 (13)

where Oi and O are observed discharge and the mean observed discharge, respectively. Si and S are
simulation discharge and the mean simulation discharge, respectively. R2 is the degree of similarity
between the simulated and the observed runoff process. E is the accuracy of both the magnitude and
timing of predicted flows. During model calibration, hydraulic parameters are optimized to allow R2

and E to approach 1.0 [45].

2.4. Mann–Kendall Test

The Mann–Kendall (MK) test [64,65], highly recommended by the World Meteorological
Organization, is a rank-based nonparametric test to detect monotonic increasing or decreasing
trends in hydro-meteorological time series. This method offers many advantages, including the ability
to tolerate outlier data and that normally distributed time series are not required as input [66]. In this
study, we applied the MK trend test to analyze the spatial distribution of temporal trend of ET and
its partitions.

For a time series X ={x1, x2, · · · , xn}, the rank statistic T is given by:

T =
∑
i< j

pi j (14)
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where

pi j= sign
(
x j − xi

)
= sign

(
R j −Ri

)
=


1 xi < x j
0 xi= x j
−1 xi > x j

(15)

where xi and x j are observations of the time series and Ri and R j are their ranks, respectively. The mean
and variance of the T statistic in Equation (12) are given by:

E(T)= 0 (16)

var(T) =
n(n − 1)(2n + 5)

18
(17)

var∗(T) =
n(n − 1)(2n + 5)

18
−

m∑
j=1

ki(k i − 1)(2k i +5)
18

(18)

Z =


T−1√
var(T)

T > 0

0 T = 0
T+1√
var(T)

T > 0
(19)

where n denotes the number of observations, m denotes the number of tied ranks in groups, and ki
presents the number of data values in the ith group. Z is a standardized variable. If the Z value is
positive, the data exhibit an upward trend; if the Z value is negative, the data exhibit a downward trend.

In this study, the significance of trends was judged on a confidence level of α = 0.05, where Z α
2
=

1.96 [66]. Three types of ET and partitions trends at each pixel within this basin were determined based
on their Z values with “≥1.96”, “−1.96–1.96”, and “≤−1.96” corresponding to “Increase”, “Stable”, and
“Decrease”, respectively.

3. Results

3.1. Model Performance Evaluation

Monthly observed discharge data (1990–1999) from the Wudingmen gauging station were used
for model calibration and validation (Figure 3). The R2 for the regression model describing relation
between simulation and observation was 0.77 for the entire study period (Figure 3a). The R2 and
E were 0.89 and 0.79, respectively, for the calibration period. In the validation period, E (0.64) was
lower but R2 was still up to 0.74. Thus, the model performance was within the acceptable range for
simulating the hydrological processes in the QRB. We also simulated groundwater dynamic and found
R2 between modeled monthly groundwater level and measurements for Aiyuan well station in 2006 is
0.55 (p = 0.01).

The modeled ET was compared against ET measured from the flux towers (Figure 4a). Overall,
the model overestimated ET, but was able to capture the seasonal patterns (Figure 4b) with an optimal
R2 of 0.72 and a slope close to 1.0 (Figure 4a). Simulated actually daily ET was close to reference
evapotranspiration (ETo) most of the time for paddy rice field (Figure 4b). ET was higher than ETo in
the fall of 2016 and 2017.
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Figure 4. Comparisons between model simulated with observed daily evapotranspiration (ET) in
Lishui paddy rice fields during rice growing season (from 30 June 2016 to 2 November 2016 and
from 24 June 2017 to 30 October 2017): (a) scatter pot; and (b) time series comparisons of the daily
simulated paddy ET derived from the MIKE SHE model, ground observated paddy ET, and average
basin reference ET (ETo).

3.2. ET and Its Components under Different Land Use Types

Annual ETo presented a significant upward trend at the rate of 11.4 mm/year (p < 0.01) (Figure 5).
Nevertheless, annual watershed level ET exhibited an opposite trend. T, Ei, and Es exhibited a
downward trend, which were partially counteracted by water surface evaporation (Ep) increasing.
The total decrease rates for T, Ei, and Es were about 2.5 times as much as the total increase of Ep.

Watershed scale T was about 53% of ET, the highest proportion among all ET partitions. The ratio of
T to ET showed a negative trend, decreasing from 60% in 2000 to 53% in 2013 (Figure 6). The secondary
contributor was Es (140 mm/year), showing a slight decrease. In contrast, Ep significantly increased
from 66 mm/year in 2000 to 153 mm/year in 2013 (p < 0.05). In addition, the range of long-term variation
in Es and Ei was very similar, and was less than the range of T and Ep.
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Figure 6. Simulated mean annual proportion of evapotranspiration partitioning in the Qinhuai River
Basin from 2000 to 2013.

Land-cover types affect the hydrological cycle including ET partitions. On average, Ep accounted
for 20% of rice-wheat rotation field ET (ETr-w) during 2000–2013, becoming the second dominant source
of water loss exceeding the contribution of Es to ET (Figure 7). On the contrary, Es of non-irrigated
forest and dry land was much greater than Ep, making up 12.9% and 28.9% of ET, respectively. T was
the overwhelming contributor to forest, rice-wheat rotation field, and dry land ET, accounting for
71.5%, 53.4%, and 42.8%, respectively. Ei remained low compared to other partitions but cannot be
discounted. Mean Ei of forest, rice-wheat rotation field, and dry land was about 11.9%, 10.5%, and
15.2% of ET, respectively.
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Figure 7. Average proportion of evapotranspiration partitioning with three types of vegetation
(2000–2013).

For urban area, we were not able to discern the particular plant types. Therefore, we simplified
the model and did not take into account vegetation within urban area. The whole urban area was
assumed impervious surface with zero ET.

The averaged annual forest ET (ETf) was 950 mm over 14 years. Annual dry land ET (ETd) was
about half of rice-wheat ET (ETr-w) (Figure 8). The T rate (656 mm/year) of forest was the highest,
followed by that of rice-wheat rotation field and dry land. Mean annual rice-wheat rotation field Ep

(per unit area) was highest among different land use types (about 167 mm) due to irrigation. These
results imply that the conversion of forests or rice-wheat rotation field to urban had more impacts on
the change in ET and its partition than the conversion of other land-cover change scenarios. In addition,
annual ET and T of forest and rice-wheat rotation field were higher than the catchment scale, and Ep of
rice-wheat rotation field was twice that of the whole catchment, showing expansion in urban area had
unfavorable effects on catchment ET over this basin.

Water 2020, 12, 645 12 of 23 

 

Figure 7. Average proportion of evapotranspiration partitioning with three types of vegetation 

(2000–2013). 

For urban area, we were not able to discern the particular plant types. Therefore, we simplified 

the model and did not take into account vegetation within urban area. The whole urban area was 

assumed impervious surface with zero ET. 

The averaged annual forest ET (ETf) was 950 mm over 14 years. Annual dry land ET (ETd) was 

about half of rice-wheat ET (ETr-w) (Figure 8). The T rate (656 mm/year) of forest was the highest, 

followed by that of rice-wheat rotation field and dry land. Mean annual rice-wheat rotation field Ep 

(per unit area) was highest among different land use types (about 167 mm) due to irrigation. These 

results imply that the conversion of forests or rice-wheat rotation field to urban had more impacts on 

the change in ET and its partition than the conversion of other land-cover change scenarios. In 

addition, annual ET and T of forest and rice-wheat rotation field were higher than the catchment 

scale, and Ep of rice-wheat rotation field was twice that of the whole catchment, showing expansion 

in urban area had unfavorable effects on catchment ET over this basin. 

 

Figure 8. A comparison of mean annual evapotranspiration and its components at land use type and 

whole catchment scales (2000–2013) for the Qinhuai River Basin. 

Figure 8. A comparison of mean annual evapotranspiration and its components at land use type and
whole catchment scales (2000–2013) for the Qinhuai River Basin.
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The total catchment ET in volume significantly declined from 1654 × 106 m3 in 2000 to
1542 × 106 m3 in 2013 (Figure 9b). The total ETf and ETd increased, similar to the gird scale (Figure 9).
However, the total ETr-w exhibited a significant decrease (p < 0.01), opposite to the pattern at field scale
expressed in per unit area, which was associated with the loss of rice-wheat rotation fields. Although
forest generated more ET per unit area than rice-wheat rotation field (Figure 8), the decline in the total
ETr-w was one of the primary factors responsible for the significant decline trend of ET because of large
water volume per unit area (840 mm/year) and large area of rice-wheat rotation field.
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Figure 9. A comparison of the temporal trends from 2000 to 2013 for the Qinhuai River Basin: (a) mean
annual evapotranspiration at the pixel scale; and (b) total evapotranspiration volume by land use types.

3.3. Spatial Variability of ET Components and Annual Water Balance

About 27% of the QRB that was dominated by forest and agricultural land areas had a significant
positive ET trend (Figure 10), while ET of the area transformed into urban landscape exhibited a
significant downward trend. As for T, a clear increase trend occurred in the southeast part of the QRB
dominated by forests and croplands, while an opposite trend was seen in the northwest part of the
watershed covered by an urban area where Es also exhibited a significant reduction.

It was estimated that 60.4%, 40.2%, and 10.2% of forest, dry land, and rice-wheat rotation field
had a significant increasing trend in ET, respectively (Figure 10). For T, 38.8%, 24.9%, and 1.4% of
forest, dry land, and rice-wheat rotation field exhibited a significant upward trend, while 15.6%, 18.1%,
and 31% of forest, dry land, and rice-wheat rotation field exhibited a significant downward trend.
The watershed showed a significant increasing trend in Es in 50.7%, 34.3%, and 5.6% of forest, dry
land, and rice-wheat rotation field, respectively. Ei of all land cover types had about 10–12% the areas
classified as ”Decrease”. About 11% of the rice-wheat rotation field had a growing trend in Ep.
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Figure 10. Spatial trends from 2000 to 2013 in: evapotranspiration ET (a); transpiration T (b); soil
evaporation Es (c); interception evaporation Ei (d); and ponded water evaporation Ep (e). Three distinct
areas in ET and components trends are identified as “Increase”, “Stable”, and “Decrease”. The area
percentage bars of rice-wheat field (R-W), forest (FRST), and dry land (DRYL) are based on land use
in 2000.

Although not significant statistically, annual simulated runoff (Qs) was predicted to increase from
336 mm in 2000 to 412 mm in 2013 at the rate of 7 mm/year (Figure 11). The measured annual runoff

(Qm) (p = 0.05) and simulated annual runoff (Qs) (p = 0.57) both exhibited a positive trend while annual
ET decreased significantly. Large annual values of Qs were found in 2003 and 2009 with the values of
813 and 850 mm, respectively, corresponding to two wet years.
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4. Discussion

4.1. Effects of Land Use and Land Cover Changes on all ET Components

ET and its partitions in watershed with mixed land use are complex because heterogeneous
landscape is a patchwork of vegetation (i.e., trees, shrubs, and grass) and buildings [67]. In dry regions,
urban ET may be much higher than the surrounding natural landscape due to external water sources
such as groundwater or inter-basin water transfer [68]. However, many studies supported our result
that ET rates in urban area were small due to the loss of green areas in humid regions [69–71]. Nanjing,
Lishui, and Jurong cities from our study basin are highly urbanized [23,43], and the vegetation cover is
especially lacking [72]. Litvak et al. [67] found that ET was minor for bare soil and concrete land surface.

The consistent trends between ET with each land use type and ETo demonstrated that
meteorological factors were controlling factors for ET at the pixel scale. However, we showed
that watershed-level ET had a significant decreasing trend in the QRB, coincident with previous
studies [2,42]. This was in contrast to the global warming trend and ET was expected to increase
under increasing air temperature in the study region [73–75]. Declines in ET have also been reported
in the literature around the world, such as eastern China [76], Haihe River Basin [77], Liaohe River
Delta [78], and the southern hemisphere in Africa [79]. In our case, 16.5% of rice-wheat rotation
fields with high ET were converted into urban area characterized by low vegetation coverage with
low ET from 2000 to 2013. Thus, the watershed hydrological cycle has been altered [2,6,34,69]. An
early study by Hao et al. [2] confirmed that the remarkable impacts land use and land cover change
have overwhelmed the effects of climate in the QRB. Previous studies also suggested that converting
water stress-free rice-wheat rotation fields to relatively “dry” urban area has a much larger impact on
regional water balances than converting dry lands or forests to urban [2,7]. The present study extended
previous findings by offering new insights of ET partitions temporally and spatially in the QRB.

Rice-wheat rotation fields require large amounts of water to sustain productivity and are
rarely under water stress due to abundant irrigation inputs during the rice growing season [80,81].
The rice-wheat rotation fields dominated the QRB and were responsible for a large portion of basin
water loss by transpiration and soil evaporation. However, it suffered the most significant loss of
acreage when compared to other land uses (Figure 2a). Thus, owing to converting rice-wheat rotation
fields to urban areas, increasing paved areas with low T and Es caused the pronounced decrease in T
and Es, which inevitably affected the catchment ET (Figure 5).
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Urbanization influences ecosystems through altering water cycles [1,23,82]. The response of ET
and its partitions in the QRB is one of the strongest pieces of evidence for this. Our findings were
similar to result by Liu et al. [4] that the impacts of land use and land cover changes on the water cycle
were represented by Ei, Es, and T. Olchev et al. [83] found that the conversion of natural forests to
urban and residential uses reduced ET as a result of declines in T and Ei. Litvak et al. [67] showed that
annual ET from the whole Los Angeles city was three times smaller than ET from vegetated landscapes,
and they attributed it to the reduction in evapotranspiration from trees and well-irrigated turfgrass
due to urbanization.

4.2. Effects of Urbanization and ET on Mean Annual Runoff

The annual water balance for the QRB over 14 years has been altered as a result of rapid
urbanization (Figure 11). A 175% expansion of urban area throughout the QRB led to a 23% increase in
annual runoff depths. This finding is consistent with studies that reported urbanization promoted
quick runoff [6,46,84]. Im et al. [85] studied future land use scenarios impacted on the hydrology
of the Polecat Creek watershed, US, with a modeling approach and found that streamflow volume
increased 15.8% when an increases in impervious areas of up to 10.1%. Dietz and Clausen [84] revealed
that stormwater runoff increased by more than two orders of magnitude in the development zone
from 1997 to 2003. However, the impact of urbanization on annual runoff is extremely variable [2].
Franczyk and Chang [86] predicted that mean annual runoff had hardly changed in the Rock Creek
basin, Portland, with an increase of only 2.3–2.5% when the impervious ratio increased by 8–15%,
respectively. One possible explanation for this phenomenon is that the baseflow is reduced while the
direct runoff increases due to urban area expansion, and consequently the total runoff volume does not
change considerably [6].

The elevated watershed runoff volume due to urban expansion was not only related to an increase
in impervious surface but also to a decrease in ET rate. For example, Boggs and Sun [7] compared
seasonal flow and ET patterns between an urbanized watershed and a fully forested watershed in the
southeastern United States and found that the hydrology of the two watersheds was similar in the
dormant season with low tree transpiration but highly different in the peak growing season. In addition,
Im et al. [46] found that reducing groundwater recharge and ET rate caused a significant increase in
surface runoff with a rapid urban development. Thus, for an urbanizing watershed, maintaining ET
capacity of vegetation, the “biological drainage”, is a vital prerequisite for reducing stormflow [7,46].

4.3. Implications of ET Reduction to Regional Ecosystem Productivity and Environment

T in areas covered by vegetation in the QRB was a major contributor to ET (Figure 7), and thus
change in T was likely to affect total water loss from the study watershed. Our study showed that
forests had the highest T rate (656 mm/year), followed by rice-wheat rotation field (460 mm/year) and
dry land (190 mm/year) (Figure 8). T was sensitive to changes in plant types and temporal vegetation
dynamics [21]. Urbanization may result in the expansion of impervious surfaces with no vegetation,
resulting in reduction of T and ET. It is understandable that, when rice-wheat rotation fields were
removed, their water retention and ET functions (i.e., water pumps) were lost, leading to increase
in runoff

In addition, ET is a major factor affecting land surface energy balances and thus micro-climate [23].
Our results complement an earlier research in the same study area. Hao et al. [69] concluded that
reduction of ET caused by the loss of vegetation cover (i.e., natural wetlands and rice-wheat rotation
fields) was a vital factor contributing to the urban dry island (UDI) effects (i.e., reduction of air humidity
due to decrease in ET) and the well-known urban heat island (UHI) effects. Our data show that annual
T decreased sharply in the context of the massive conversion of rice-wheat rotation field to urban land
use. Thus, our new analysis suggested that significantly reduced T could be the dominant cause that
contributed to the changes of regional environment, including the UDI and UHI effects in the QRB.
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Changes in T may also affect local precipitation patterns. Lee et al. [87] compared results with
and without transpiration from the National Center for Atmospheric Research (NCAR) atmospheric
general circulation model and pointed out that the absence of transpiration led to decreased mean
precipitation and increased the variability of precipitation. An increasingly regional precipitation
variability due to decreasing T poses a risk to human health and has implications to agriculture [87,88].
T acts as an important source of moisture and plays a vital role in moisture recycling, which is expected
to be of great significance for water resources, agriculture, and ecosystems [89–91]. Thus, in the QRB,
significant reduction in T could attenuate the local moisture recycling, and thus enhance drought
vulnerability [89] and reduce crop yield [92].

4.4. Uncertainty

The strength of the MIKE SHE model is its capacity to model the spatial variability of hydrological
processes [32,45,93]. However, at the same time, the power of representation of spatial variability
of hydrological characteristics is its weakness [47]. For example, there are parameter uncertainties
about the soils and geology, as well as different vegetation on a fragmented landscape in QRB.
Because detailed geological layer information in QRB is not available, homogenous hydrogeological
parameters of one geological layer were implemented within the whole catchment, which may impact
the groundwater dynamics and in turn impact ET processes [45,50]. However, Sahoo et al. [94]
stated that the well-calibrated MIKE SHE model having the single-valued hydrogeological parameters
can produce convincing outcomes. Thus, to avoid over-parameterization and weaken the physical
meanings of the parameters, we simplified the parameterization of the groundwater system. Future
studies are needed to evaluate how this treatment affects spatial distributions of groundwater table
dynamics and ET rates. Such model validations are essential to take the full advantages of the capacity
of MIKE SHE in simulating surface water–groundwater interactions and the effects of urbanization on
ET and runoff at multiple scales.

Another major source of uncertainty about ET modeling results is a lack of validation data,
including ET measurements for different land cover types. More measurements on actual ET partitions
are necessary to further improve the MIKE SHE model. Furthermore, information of observed ET rates
at the flux site is only available in recent years. We were unable to validate paddy ET in previous
years that might have different precipitation patterns. This deficiency may introduce uncertainty in
quantifying actual ET patterns in paddy rice system. Moreover, because discerning particular plant
types in urban area at the 1000 m spatial resolution is challenging, we excluded vegetation in urban
land areas. This treatment may have caused errors to some extent, which could lead to the model
uncertainty in estimating urban ET. Future study should obtain spatially and temporally distributed
land cover data at a finer spatial resolution by coupling remotely sensed satellite products or field
investigations. Water and energy balances in urban areas are not well understood, and future studies
should be conducted in urban areas with a mixed land use, especially in humid regions.

5. Conclusions

This study used a distributed hydrologic model, MIKE SHE, to spatially explicitly estimate ET
partitions in the Qinhuai River Basin (QRB) from 2000 to 2013. Over the QRB, conversion of rice-wheat
rotation field to urban had more impacts on ET and its partition than other land covers. Vegetation
transpiration (T), canopy interception (Ei), and soil evaporation (Es) showed a downward trend, while
ponded water evaporation (Ep) increased. T reduced most sharply due to urbanization, resulting in a
significant decline of watershed-level ET. Urbanization elevated runoff by decreasing the ET rates.

Our research combines technology of advanced hydrological modeling and remote sensing
products. This approach allows better estimates of changes of watershed ET and its partitions due to
changes in climate and urbanization. However, parameterizing a complex hydrological model at the
basin scale is still challenging and validating the spatial distribution of ET and runoff is still lacking.
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Our findings imply that a significant decrease in T due to urbanization is likely to cause large
impacts on water yield, regional ecosystem productivity, local moisture cycling, droughts, UDI and
UHI in the study basin. Urban planning and watershed restoration measures in the humid region
should consider all the benefits of vegetation to reduce risk to ecosystems and humans.
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Appendix A

Table A1. The key soil physical parameters of upper soil layer.

Soil Profile ID Field Capacity Wilting Point Saturated Hydraulic Conductivity (m/s)

11368 0.41 0.28 1.8 × 10−6

11373 0.36 0.17 1.3 × 10−5

11376 0.28 0.14 1.4 × 10−6

11389 0.28 0.14 1.2 × 10−6

11489 0.42 0.29 2.1 × 10−6

11613 0.30 0.17 1.3 × 10−6

11617 0.39 0.26 1.6 × 10−6

11649 0.30 0.06 6.0 × 10−5

11656 0.30 0.17 1.3 × 10−6

11663 0.40 0.24 2.5 × 10−6

11823 0.30 0.17 1.3 × 10−6

11857 0.12 0.06 1.0 × 10−5

11859 0.27 0.14 9.3 × 10−7

11875 0.39 0.26 1.5 × 10−6

11876 0.27 0.13 1.2 × 10−6

Appendix B

Table A2. The key soil physical parameters of subsoil layer.

Soil Profile ID Field Capacity Wilting Point Saturated Hydraulic Conductivity (m/s)

11368 0.43 0.32 2.0 × 10−6

11373 0.31 0.16 1.8 × 10−6

11376 0.25 0.14 1.0 × 10−6

11389 0.26 0.14 1.1 × 10−6

11489 0.41 0.28 1.7 × 10−6

http://data.cma.cn/en
www.geodata.cn


Water 2020, 12, 645 19 of 23

Table A2. Cont.

Soil Profile ID Field Capacity Wilting Point Saturated Hydraulic Conductivity (m/s)

11613 0.28 0.14 9.9 × 10−7

11617 0.39 0.24 1.5 × 10−6

11649 0.09 0.05 3.8 × 10−5

11656 0.28 0.14 9.9 × 10−7

11663 0.22 0.07 4.6 × 10−7

11823 0.35 0.22 8.1 × 10−7

11857 0.17 0.10 3.6 × 10−6

11859 0.31 0.18 6.5 × 10−7

11875 0.43 0.31 1.8 × 10−6

11876 0.35 0.22 8.1 × 10−7
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