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Abstract: In decision-making with interval numbers, there are problems such as how to reduce the 
loss of decision information to improve decision accuracy and the difficulty of using interval 
numbers for sorting. On the basis of fully considering the subjective and objective weights of 
indexes, the grey entropy method (GEM) is improved by taking advantage of the Mahalanobis-
Taguchi System (MTS) in which the orthogonal design has few tests but much obtained information, 
and the Mahalanobis distance can reflect the correlation between indexes. Then, the signal-to-noise 
ratio is integrated with the improved degree of balance and approach, and a multi-dimensional 
interval number decision model based on MTS and GEM is put forth. This model is applied to 
selecting the optimal scheme of controlling the Pankou reservoir’s water level in flood season. 
Compared with the decision results of other methods, the optimal scheme selected by the proposed 
model can achieve greater benefits within an acceptable risk range and thus better coordinate the 
balance between risk and benefit, which verifies the feasibility and validity of the model. 

Keywords: Mahalanobis-Taguchi System; grey entropy method; signal-to-noise ratio; degree of 
balance and approach; interval number 

 

1. Introduction 

Multi-attribute decision-making refers to the process of sorting and selecting among a group of 
alternatives by using the obtained information [1]. Multi-attribute decision-making methods include 
Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) [2], set pair analysis (SPA) 
[3], grey relation analysis (GRA) [4], grey target method (GTM) [5], etc. Under the influence of many 
factors, the objective things in nature are complex and changeable (e.g., runoff and flood in the 
hydrological and water resources system), which show great uncertainty like randomness, fuzziness 
and greyness [6], in addition to the fuzziness of human thinking. In recent years, the multi-attribute 
decision-making methods with uncertain decision information, especially uncertain attribute values 
and attribute weights, have become a hot research issue. In general, the priority and also difficulty in 
solving this kind of problem is to transform uncertain decision-making into definite decision-making. 
During this process, on the one hand, we should try to avoid or reduce the loss of decision 
information. The more information loss, the larger deviation caused in the selection of the optimal 
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scheme, which may fail to achieve the expected objectives in scheme implementation and incur risk 
events. On the other hand, the cumbersome calculation of interval numbers should be reduced, so 
that the technique is more operable in a practical application. For instance, when using the methods 
in references [7,8], the comparison of interval numbers only considers their upper and lower 
boundaries, which loses too much information even though the decision-making efficiency is 
enhanced. Moreover, the tedious calculation in rough set method [9] and Vlsekriterijumska 
Optimizacija I Kompromisno Resenje (VIKOR) method [10] makes interval number ranking more 
difficult. 

At present, grey analysis, set pair analysis, stochastic analysis and fuzzy analysis are the four 
main kinds of hydrologic uncertainty analysis methods. In information theory, a system with some 
known information and also some unknown information is a grey system, such as the hydrologic and 
water resources system. Grey relation analysis is a multi-factor analysis method in the grey system 
theories [11]. Its basic idea is to determine the closeness of relation between a comparison sequence 
and a reference sequence according to their geometric similarity. Grey relation analysis can overcome 
the shortcomings of regression analysis, variance analysis and other factor analysis methods in 
traditional mathematical statistics [12], and has the advantages of a small sample size and simple 
calculation procedure. Gao and Zhang [13] first used grey relation analysis for scheme selection. 
However, in the relation coefficient series obtained from the alternatives and the reference scheme, 
the larger relation coefficient often plays a decisive role in determining the relation degree, while the 
information implied by other relation coefficients tends to be neglected. As an improvement, Zhang 
[14] put forward the grey entropy method (GEM) based on the idea that an alternative scheme is 
better when it is evenly closer to the reference scheme. This method combines the relation degree in 
grey relation analysis with the balance degree defined in grey entropy by multiplication, and thus, 
develops the degree of balance and approach for scheme decision-making, which in some way 
remedies grey relation analysis. The GEM has been widely used in logistics [15], transportation [16], 
tourism [17] and other industries, with satisfactory results. Grey entropy is a concept that combines 
grey system theory and information entropy theory. As an effective statistical measurement for 
information uncertainty [18], it is consistent with the physical meaning of Shannon entropy. Wang et 
al. [19] defined the grey distance entropy of the real grey number and the interval grey number, 
respectively, took it as the measurement for the proximity degree of the two grey numbers, and 
discussed the multi-attribute decision-making methods based on grey distance entropy and TOPSIS. 
Liu et al. [20] deemed that in the grey entropy method the attribute value is a real number and the 
attribute weight is not considered, thus they extended the application scope to interval numbers. At 
present, grey entropy is mainly used to determine the objective weight of indexes in uncertain 
decision-making, and there are not many in-depth theoretical studies. The comparison of the above 
decision-making methods is shown in Table 1. 

Table 1. Comparison of the five multi-attribute decision-making methods. 

Method Advantage Shortage 

TOPSIS 

Alternative schemes are evaluated 
by both how close they are to the 

positive ideal scheme and how far 
away from the negative ideal 

scheme. 

The Euclidean distance does not consider the 
correlation between indexes, producing 

indistinct decision result, “reverse order” and 
other problems. 

SPA 

Alternative schemes are evaluated 
by their identical-discrepant-

contrary degree to the optimal 
scheme, preventing the "reverse 

order" problem of TOPSIS. 

The uncertainty of the discrepancy coefficient 
may lead to decision risk. 
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GRA 
Alternative schemes are evaluated 
by their geometric proximity to the 

optimal scheme. 

The Euclidean distance is used to calculate the 
correlation coefficient, which neglects the 

correlation between indexes; larger correlation 
coefficients determine the correlation degree, 

which causes information loss. 

GTM 
Alternative schemes are evaluated 
by their distance from the optimal 

scheme (off-target distance). 

The single bull’s-eye may cause the decision 
result to be indistinct; the off-target distance is 
calculated using the Euclidean distance, which 
neglects the correlation between indexes, and 

index weight is not considered. 

GEM 

Alternative schemes are evaluated 
by how evenly close they are to the 

optimal scheme, which remedies 
GRA in some way. 

The Euclidean distance is used to calculate the 
correlation coefficient, which neglects the 

correlation between indexes; the calculation of 
correlation degree does not consider index 

weight. 

The combination of the Mahalanobis-Taguchi System (MTS) theory and grey entropy can 
provide a new idea for uncertain multi-attribute decision-making. The Mahalanobis-Taguchi System 
[21,22], proposed by Japanese engineer Taguchi G. in the 1990s, is a pattern recognition method for 
unbalanced data. Scholars are becoming gradually more familiar with MTS and constantly try to 
explore its application or its combination with other theories in different fields. Buenviaje et al. [23] 
obtained medical patterns from historical data sets through MTS. Huang et al. [24] utilized the data 
mining function of MTS, combined it with the artificial neural network (ANN) and came up with the 
MTS-ANN algorithm. Zeng et al. [25] studied how to make the risk decision on power transformer 
maintenance by using MTS and the grey cumulative prospect theory. Chang et al. [26] employed the 
three key tools of MTS, namely, orthogonal table, Mahalanobis distance and signal-to-noise ratio, to 
tackle the problem of multi-attribute decision-making with interval numbers on the basis of TOPSIS. 
The orthogonal table [27] is a direct test method for multi-factor system optimization. It can be 
expressed in the form of La(bN), where a is the number of tests, b the number of levels of each factor 
and N the number of factors that can be arranged at most in the orthogonal table. The orthogonal 
table is a prepared set of standard tables, from which the suitable one is chosen in actual application 
according to the number of factors and the number of levels of each factor. The orthogonal table 
designs a small number of tests and obtains comprehensive information, which can effectively reduce 
the loss of information. The Mahalanobis distance [28], proposed by Indian statistician Mahalanobis, 
is a covariance distance that, compared with Euclidean distance, can better reflect the correlation 
between attributes. The concept of signal-to-noise ratio (SNR) [29] originates from signal transmission 
and is defined as the ratio of signal power to noise power. Taguchi G. redefined the SNR, regarding 
the square (μ2) and the variance (σ2) of the expected value of an index (non-negative and continuous) 
as the signal power and the noise power, respectively. The SNR can be divided into three types: 
nominal-the-better, smaller-the-better and larger-the-better. The first one means that the closer to the 
expected value when it is positive, the better; the second one means that the smaller the expected 
value when it is 0, the better; the third one means that the larger the expected value when it is +∞ , 
the better. The signal-to-noise ratio can be used to measure the volatility of indexes and thereby 
ensure the accuracy of decision results. 

Like other pattern recognition methods, MTS also uses distance to measure the similarity 
between samples; however, instead of using Euclidean distance, it uses Mahalanobis distance, which 
is more suitable to distinguish sample similarity. As the theory of MTS has only been developed for 
the past 20 years and there are few studies on its integration with grey analysis, more work needs to 
be done to deepen this field of theoretical research and expand its application. 
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To address the uncertain multi-attribute decision-making problem in which both attribute 
weight and attribute value are interval numbers, we improved the grey entropy method based on the 
treatment of interval numbers in reference [26], and put forward a multi-dimensional interval 
number decision model based on the Mahalanobis-Taguchi System with the grey entropy method 
(MTS-GEM). The model is applied to the selection of the optimal scheme of controlling the Pankou 
reservoir’s water level in flood season, which can facilitate reservoir operation research. 

2. Multi-Dimensional Interval Number and Mahalanobis-Taguchi System 

2.1. Orthogonal Test of Multi-Dimensional Interval Number 

Interval number generally refers to the normal interval number in the form of ,L Ua a a =  
 (aL, 

aU∈R and aU≥aL), where aL and aU are, respectively, the lower and upper bounds of the interval 
number. Real numbers can be regarded as interval numbers whose lower bounds are equal to their 
upper bounds. For the basic operation rules of any two interval numbers ,L Ua a a =  

 and 

,L Ub b b =  
 , see reference [30]. 

Suppose that there are n factors jx  (j=1,2,…,n, and n≤N) in a test, which are uniformly 

distributed within their variation range, and the number of levels of each factor is b. Because n factors 
can constitute a hypercube in an n-dimensional space, the result of one orthogonal test corresponds 
to a point on the hypercube. 

Take the orthogonal test of three factors as an example. Let the lower bound value of interval 
number be level 1 and the upper bound value of interval number be level 2, then the orthogonal table 
of 3

4L (2 )  shown in Table 2 can be used for the orthogonal test, and the results are shown in Figure 
1. 

Table 2. Orthogonal table of 3
4L (2 ) . 

Test 
Factor 

1x  2x  3x  

One 1 1 1 

Two 1 2 2 

Three 2 1 2 

Four 2 2 1 

. 

Figure 1. Orthogonal test results of three-dimensional interval numbers. 

  

x1

x2

x3

O

( )1 2 3, ,L U Ux x x

( )1 2 3, ,U U Lx x x

( )1 2 3, ,U L Ux x x

( )1 2 3, ,L L Lx x x
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2.2. Signal-to-Noise Ratio and Mahalanobis Distance 

Let D be the population of a non-negative continuous index, whose signal-to-noise ratio η* is 
calculated as follows [31]: 

* 2 2= /η µ σ , (1) 

where μ2 and σ2 are the mean square and the variance of population D, respectively. 

The three types of signal-to-noise ratio for measuring index volatility are calculated as follows. 

1 Nominal-the-better (NB) signal-to-noise ratio 

According to the knowledge of mathematical statistics, the unbiased estimators of variance σ2 
and mean square μ2 of population D are as follows: 

2 2
1

1ˆ ( )
1

a
gg

D D
a

σ
=

= −
− ∑ , 

2
2 2 ˆˆ D

a
σµ = − , (2) 

where 1

1 a
gg

D= D
a =∑  and a is the number of samples. 

Put 2σ̂  and 2µ̂  into Equation (1) and conduct the common logarithmic transformation on η*, 
then the NB signal-to-noise ratio ηNB can be obtained: 

2
NB

10 2

ˆ
= 10log

ˆ
µη
σ

, (3) 

2 Smaller-the-better (SB) signal-to-noise ratio 

For an SB index, the smaller μ2 and σ2 are, the better, meaning that the smaller 2 2 2+ = ( )E Dµ σ  

is, the better. The unbiased estimator of D2 is 2 2
1

1= a
gg

D̂ D
a =∑ . Take 2 1( )D̂ −  as the signal-to-noise 

ratio, and the SB SNR ηSB is calculated as follows: 

SB 2
10 1

1= 10log a
gg

D
a

η
=

 −  
 
∑ , (4) 

3 Larger-the-better (LB) signal-to-noise ratio 

If D stands for an LB index, then D–1 stands for an SB index. From the above derivation process 
of the ηSB formula, the LB SNR ηLB can be obtained: 

LB
10 21

1 1= 10log a

g
ga D

η
=

 
−   

 
∑ , (5) 

Let Z be a population of an n-dimensional real number space, T
1 2= (  )n  µ µ µµ  and 1−∑  be 

the mean vector and the inverse of covariance matrix of Z, respectively. If T
1 2= (  )nx x   xx   is one 

sample of the n-dimensional real number space, then the Mahalanobis distance d from sample x to 
population Z is: 

2 T 1( ) ( )d −= − −x xµ ∑ µ , (6) 
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In scheme decision-making, an alternative scheme is better if its Mahalanobis distance to the 
reference scheme is smaller, hence, we adopted the SB SNR. If the reference scheme’s sample x and 
population Z are taken as the input of MTS, then the Mahalanobis distance d between the alternative 
scheme and the reference scheme is the responding output. 

3. Improved Grey Entropy Method by Mahalanobis-Taguchi System 

3.1. Grey Entropy 

Grey entropy is the entropy of a grey number [32,33]. Grey number refers to a number set with 
incomplete and uncertain information, in which the numbers are possible values. For a discrete grey 

number { }1 2iq q i , , ,n= = 
, i J∈  (where J  is a finite set and 0iq ≥ , 1

1n
ii

q
=

=∑ ), 

1
( ) lnn

i ii
H q q q

=
= −∑  is called the corresponding grey entropy. When 0iq = , ln =0i iq q . The more 

equal 1 2, , , nq q q  are, the greater the grey entropy ( )H q  is, thereby, max( ) lnH q n= , and 

max( ) ( ) / ( )B q H q H q=  is defined as the balance degree of the grey number. 

3.2. The Comparison of Grey Entropy and Information Entropy 

Information entropy refers to the entropy of a signal source [34]. A discrete signal source can be 

expressed as 1 2

1 2

  
:

  
i n

i n

x x x x
X

p p p p
 
 
 

 

 

, i J∈  (where J  is an infinite set, the probability of 

random variable ix  is ip  and ( = = ) = 0i jP X x X x∩ , i j≠ , 
1

1n
ii

p
=

=∑ ). Then, 1
( ) lnn

i ii
H X p p

=
= −∑  

is called the information entropy of the signal source.  

Accordingly, grey entropy and information entropy have the following similarities and 
differences. 

• Similarities 

1 With the same form of calculation formula, grey entropy and information entropy share 
some characteristics, such as symmetry, non-negativity, additivity, convexity and extremum 
property. 

2 The physical meanings of grey entropy and information entropy are essentially the same. 
The former is to measure the fluctuation degree of a grey number, while the latter is to describe the 
uncertainty of a signal source. 

• Differences 

1 Grey entropy is defined in a finite information space, whereas information entropy is defined in 
an infinite information space. 

2 Grey entropy is a kind of non-probability entropy with greyness, that is, iq  is a possible value. 
On the contrary, information entropy is a type of probability entropy with certainty, that is, ip  is a 
certain value. 

3.3. Fundamentals of Grey Entropy Method 

GEM was originally used for scheme decision-making with multi-dimensional real numbers. 

Suppose an initial decision matrix = ij m n
x

×
  X  (I = 1,2,…,m; j=1,2,…,n) composed of m schemes and 

n indexes. Through weighted standardization, X is converted into = ij m n
c

×
  C , and the alternative 
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scheme is 1 2=( , , , )i i i inc c c c . Given the reference scheme 1 2=( , , , )k k k knp p p p  (k = 1,2,…,z), the 

correlation degree kiG  between the alternative scheme and the reference scheme is calculated as 
follows: 

( )
1

/n j
ki kij

G r n
=

= ∑ , (7) 

( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

min min max max

max max

j j j j
k i k ii j i jj

ki j j j j
k i k ii j

p c p c
r

p c p c

ζ

ζ

− + −
=

− + −
, 

(8) 

where ( )j
kir  is the correlation coefficient of index j between ic  and kp  and ζ  is the distinguishing 

coefficient and generally set at 0.5. 
The correlation coefficient sequence of ic  and kp  is { }( ) 1,2, ,j

ki kir = r j n= 

, whose balance 

degree kiJ  is calculated as follows: 

( ) ( )
1

1 ln
ln ki ki

n j j
ki j

J = q q
n =

− ∑
, 

(9) 

where 
( ) ( ) ( )

1

nj j j
ki ki kij

q r / r
=

= ∑ . 

The degree of balance and approach of ic  and kp is calculated as follows: 

ki ki kiG Jγ = × , (10) 

The greater the degree of balance and approach is, the similar the alternative scheme is to the 
reference scheme. 

It can be seen from Equation (8) that the correlation coefficient reflects the distance between two 
points. When using the Euclidean distance for calculation, the correlation between indexes, which 
usually exits in reality, is ignored, making the calculation results of the correlation degree and the 
balance degree unreasonable. Moreover, there is interaction between indexes, either controllable or 
uncontrollable. Additionally, the uncontrollable interaction affects the stability of the responding 
output. Consequently, although the balance degree is an indicator of the volatility of correlation 
coefficient series, it cannot embody the variability caused by the uncontrollable interaction between 
indexes. The merit of MTS is that it can not only use the orthogonal table to deal with multi-
dimensional real numbers or multi-dimensional interval numbers, taking the interaction among 
indexes into account, but also use the Mahalanobis distance considering the correlation between 
indexes to calculate the correlation coefficient. Therefore, using MTS to improve GEM can enhance 
the decision-making performance of GEM. 

4. Multi-Dimensional Interval Number Decision Model Based on MTS-GEM 

4.1. Development of the Weighted Standardized Decision Matrix 

Suppose that there are m alternative schemes and n indexes, and they constitute the initial 

interval number decision matrix = ij m n
x

×
  X   (i=1,2,…,m; j=1,2,…,n) where = ,L U

ij ij ijx x x  
. As the 

dimensions of the indexes are often different, we used Equations (11) and (12) to nondimensionalize 

different types of indexes, and get the standardized interval number decision matrix = ij m n
b

×
  B 

 , 

where = ,L U
ij ij ijb b b  
 . 
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For a benefit index: 

min min
= ,

max min max min

L U
ij ij ij iji i

ij
ij ij ij iji ii i

x x x x
b

x x x x

 − −
 

− −  



, 
(11) 

For a cost index: 

max max
= ,

max min max min

U L
ij ij ij iji i

ij
ij ij ij iji ii i

x x x x
b

x x x x

 − −
 

− −  



, 
(12) 

where min =min(min ,min )L U
ij ij iji i i

x x x  and max =max(max ,max )L U
ij ij iji i i

x x x . 

To make the weight distribution of each index reasonable, the integration of expert scoring 
(subjective weight) and entropy weight method [35] (objective weight) is used to determine the 
combined weight of each index. 

1 Subjective weight 
1

= j n
s

×
  S   where = ,L U

j j js s s  
 

Assuming that there are υ  experts who participate in the weight scoring of n indexes, the 

scoring matrix is lj n
y

ν ×
 =  Y   (l=1,2,…, υ ; j=1,2,…,n) where = ,L U

lj l j l jy y y  
, then 

= min ,maxL U
j l j l jl l

s y y 
 

 . 

2 Objective weight 1=[ ]j nt ×T 

, where = ,L U
j j jt t t  

 

First, the entropy of the interval number index is calculated based on the standardized interval 
number decision matrix B : 

1
1 1

1
1 1

1= ln
ln

1 ln
ln

L L
m ij ijL

j m mi L L
ij iji i

U U
m ij ijU

j m mi U U
ij iji i

b b
E

m b b

b b
E

m b b

=

= =

=

= =

    
    −
        
    
    = −
        

∑
∑ ∑

∑
∑ ∑

, (13) 

where L
jE  and U

jE  are the information entropy of the interval number index’s lower bound and 

upper bound, respectively; when 0L
ijb =  or 0U

ijb = , 
1 1

ln =0
L L
ij ij

m mL L
ij iji i

b b

b b
= =

   
   
   
   ∑ ∑

 or 

1 1

ln =0
U U
ij ij

m mU U
ij iji i

b b

b b
= =

   
   
   
   ∑ ∑

. 

Then, calculate the objective weight of the interval number index jt : 

1 1 1 1

1 1 1 1
= , min , ,max ,

(1 ) (1 ) (1 ) (1 )

L U L U
j j j jL U

j j j n n n nL U L U
j j j jj j j j

E E E E
t t t

E E E E
= = = =

    − − − −      =      − − − −    ∑ ∑ ∑ ∑


, 
(14) 

3 Combined weight 1=[ ]j nw ×W 

, where ,L U
j j jw w w =  
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Considering both the subjective weight S  and the objective weight T , we obtained the 
combined weight of the interval number index 1=[ ]j nw ×W   where 

( ) ( )= + 1 , + 1L L U U
j j j j jw s t s tβ β β β − − 

 and ( )0 1β β  is an empirical factor that reflects the 

preference of decision makers between subjective experience and objective data [36]. 

With the standardized decision matrix B  and the indexes’ combined weight W , we used the 
multiplication algorithm of interval number to obtain the weighted standardized decision matrix 

ij m n
c

×
 =  C  , where ij j ijc w b= ×   . Additionally, based on TOPSIS, the positive ideal scheme p+  and 

the negative ideal scheme p−  were determined: 

{ }
{ }

+ 1 1 2 2

1 1 2 2

max ,max , max ,max , , max ,max

min ,min , min ,min , , min ,min

L U L U L U
i i i i in ini i i i i i

L U L U L U
i i i i in ini i i i i i

p c c c c c c

p c c c c c c−

     =      

     =      





 , 

(15) 

4.2. Orthogonal Test of Schemes and Calculation of Derivative Indicators 

According to the number of indexes, a two-level orthogonal table with N≥n was selected, where 

n indexes can be arranged in any n columns. For the interval number ,L Ua a a =  
, take La  as level 

1 and Ua  as level 2. The layout matrix iC  of the alternative scheme ic  (i=1,2,…,m) is as follows: 

(1) (1) (1) (1)
1 2

(2) (2) (2) (2)
1 2

( ) ( ) ( )( )
1 2

=
 

i i i in

i i i in
i

a a aa
i i in a ni

c c c c
c c c c

c c cc ×

   
   
   =   
   
     

C





   


 , 

(16) 

where 
( )g
ic  (g=1,2,…,a) is the distribution point of scheme ic  and 

( )
1
g

ic , 
( )
2
g

ic , …, 
( )g
inc  are the 

components of 
( )g
ic . 

Similarly, the layout matrix of the positive ideal scheme +P  and the layout matrix of the 

negative ideal scheme −P  can be obtained. 
Here, we define derivative indicators as the signal-to-noise ratio and the degree of balance and 

approach based on square Mahalanobis distance obtained by the initial interval number indexes. 
According to Equation (6), calculate the square Mahalanobis distance between the alternative 
scheme’s distribution point ( )g

ic  and the positive/negative ideal scheme, and we obtain 2 ( ) ,g
id c +  P  

and 2 ( ) ,g
id c −  P . 

1 Signal-to-noise ratio 

The SB signal-to-noise of the scheme i to the positive (negative) ideal scheme is iη+  ( iη− ): 

{ }
{ }

2 ( )
10 1

2 ( )
10 1

= 10log , /

= 10log , /

a g
i ig

a g
i ig

d c a

d c a

η

η

+ +=

− −=

′  −  

′  −  

∑

∑

P

P , 
(17) 

where a is the number of orthogonal tests and 2 ( ) ,g
id c +′   P , 2 ( ) ,g

id c −′   P  is the square 

Mahalanobis distance standardized by Equation (18): 
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2 ( ) 2 ( )

2 ( )
2 ( ) 2 ( )

2 ( ) 2 ( )

2 ( )
2 ( ) 2 ( )

max , ,
, =

max , min ,

, min ,
, =

max , min ,

g g
i igg

i g g
i igg

g g
i igg

i g g
i igg

d c d c
d c

d c d c

d c d c
d c

d c d c

+ +

+
+ +

− −

−
− −

   −   
′       −   

   −   
′       −   

P P
P

P P

P P
P

P P







 , 

(18) 

2 Improved degree of balance and approach 

The correlation degree of the alternative scheme ic  and the positive (negative) ideal scheme is 

iG+  ( iG− ): 

( ) ( )
1 1

/ ,  /a ag g
i i i ig g

G r a G r a+ + − −= =
= =∑ ∑ , (19) 

where ( )g
ir+  ( ( )g

ir− ) is the correlation coefficient of the alternative scheme ic  and the positive 
(negative) ideal scheme at distribution point g. 

Based on the square Mahalanobis distance, the formula of correlation coefficient is revised as 
follows: 

2 ( ) 2 ( )

( )
2 ( ) 2 ( )

2 ( ) 2 ( )

( )
2 ( ) 2 ( )

min min , max max ,

, max max ,

min min , max max ,

, max max ,

g g
i ii g i gg

i g g
i ii g

g g
i ii g i gg

i g g
i ii g

d c d c
r

d c d c

d c d c
r

d c d c

ζ

ζ

ζ

ζ

+ +

+
+ +

− −

−
− −

   +   
=

   +   

   +   
=

   +   

P P

P P

P P

P P , 

(20) 

where the distinguishing coefficient ζ  is set at 0.5. 

The balance degree of the alternative scheme ic  and the positive (negative) ideal scheme is 

iJ+  ( iJ− ): 

( ) ( )
1

( ) ( )
1

1

1  

i i

i i

a g g
i g

a g g
i g

J q ln q
ln a

J q ln q
ln a

+ +

− −

+ =

− =

= −

= −

∑

∑ , 

(21) 

where 
( ) ( ) ( )

1
=

i i i

ag g g
g

q r / r
+ + +=∑  and 

( ) ( ) ( )
1

=
i i i

ag g g
g

q r / r
− − −=∑ . 

The degree of balance and approach of the alternative scheme ic  and the positive (negative) 

ideal scheme is iγ +  ( iγ − ): 

,  i i i i i iG J G Jγ γ+ + + − − −= × = × , (22) 

4.3. Scheme Decision-Making 

Based on the signal-to-noise ratio and the improved degree of balance and approach, the 
decision matrix Y is constructed as shown in Equation (23), in which the benefit indicator is iη−  and 

iγ + , while the cost indicator is iη+  and iγ − : 
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+1 1 1 1

+2 2 2 2

4

=

m m m m m

η η γ γ
η η γ γ

η η γ γ

− + −

− + −

+ − + − ×

 
 
 
 
 
 

Y
   

, 

(23) 

Now, the decision-making problem with multi-dimensional interval numbers is changed into a 
decision-making problem with multi-dimensional real numbers [37]. The optimal scheme can be 
selected with the following multi-dimensional real vector space decision-making method 
(MRVSDM). 

1 The n-dimensional real numbers are regarded as the points A1,…,Ai,…,Am in an n-dimensional 
space with O as the origin, and then we can get the vectors 11 OA=a



,…, ii OA=a


,…, mm OA=a


. 

2 Assuming that the reference scheme vector is p , ia  and p  are the modules of vector ai and 
vector p , respectively. Between vectors ai and p , calculate their angle 

= ( , ) = arccos i
i i

i

θ
 ⋅
  
 

a pa p
a p

 (where i ⋅a p  is their product), as well as their mapping distance 

MD = Sini i iθa . 

3 The set of mapping distance { }MD MD 1,2, ,i i m= =   can be obtained. According to the 

principle that the smaller MDi  is, the closer vector ai is to vector p , the scheme that satisfies the 

objective min MDii
 is selected as the optimal scheme. 

The diagram of decision-making in a three-dimensional real number vector space is shown in 
Figure 2. The input of the MTS-GEM model is the interval number indexes derived from different 
schemes. After orthogonal tests and calculation of the Mahalanobis distance, the signal-to-noise ratio, 
the improved degree of balance and approach, the output is the mapping distance from each scheme 
to the ideal scheme. The flow chart of this study is shown in Figure 3. 

. 

Figure 2. Diagram of decision-making in a three-dimensional real number vector space. 
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Figure 3. Flow chart of multi-dimensional interval number decision-making based on Mahalanobis-
Taguchi System with grey entropy method. 

5. Case Study 

5.1. Initial Interval Number Decision Matrix and Its Weighted Standardization 

Multi-objective reservoir operation is a multi-dimensional and complicated system engineering 
issue. Affected by runoff forecast, operation model, solution method and other factors, in the 
obtained non-inferior solution set, the attribute values are not always a precise real number but an 
interval number with uncertainty. The Pankou reservoir, located at the upstream of the Du River in 
China, is an annual-regulating reservoir with comprehensive utilization tasks of power generation, 
flood control, water supply and so forth. Its basic information is listed in Table 3, and its location map 
is shown in Figure 4. 

Table 3. Basic information of the Pankou reservoir. 

Item Unit Pankou 

Dead water level m 330 

Flood control limit water level m 347.6 

Normal water level m 355 

Flood control high water level m 358.4 

Design flood water level m 357.14 

   

Spillway flood water level m 360.82 

Minimum storage capacity 108 m3 8.5 
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Item Unit Pankou 

Regulating storage capacity 108 m3 11.2 

Total storage capacity 108 m3 23.38 

Regulating performance – Annual regulating 

Installed power capacity MW 500 

Average annual generated power 108 kW·h 10.474 

 

Figure 4. The location of the Pankou reservoir. 

According to the current regulations of the China Yangtze River Flood Control and Drought 
Relief Headquarters, for the Pankou reservoir, the upper limit of operation water level in flood season 
(June 20–August 20) is the flood control limit water level (347.6 m), while in other periods it is the 
normal water level (355 m); the lower limit of operation water level in all periods is the dead water 
level (330 m), and falling to the lower limit should be avoided during operation. 

However, in the actual operation of the Pankou reservoir, it can barely store water to the normal 
water level in most years, undermining such benefits as power generation and water supply. In order 
to reasonably adjust the upper limit of water level in flood season and improve the utilization rate of 
flood resources, in reference [38] the three indexes of flood control risk rate, annual generated power 
and water storage at the end of flood season were used as the evaluation indexes for selecting the 
optimal scheme of water level upper limit in flood season. Flood control risk rate was obtained by 
means of flood stochastic simulation [39]. Firstly, the flood stochastic simulation model was used to 
simulate n (a large number) pieces of annual maximum flood inflow hydrographs, which can fully 
reflect the statistical characteristics of the reservoir's measured flood inflow. Then, a flood operation 
calculation was conducted to obtain the highest annual water level sequence, and the ratio of times 
that the water level limit was exceeded to n was taken as the flood control risk rate, the value of which 
needs to meet people’s acceptable level of risk. Annual generated power refers to the total electricity 
generated by the hydropower station within a one-year operation cycle, which represents the power 
generation benefit of the hydropower station. The more annual generated power, the greater the 
annual power generation benefit. The water storage at the end of the flood season refers to the water 
storage between the dead water level and the particular water level at the end of flood season, which 
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represents the water supply benefit of the reservoir. The more water storage at the end of flood 
season, the greater the water supply benefit. 

The scheme setting is shown in Figure 5. Currently, Scheme 1 is being adopted as the operation 
strategy of the Pankou reservoir's upper water level limit in flood season. 

 
Figure 5. Scheme setting of the Pankou reservoir's upper water level limit in flood season. 

For the flood control risk rate, the Monte Carlo method was used to randomly simulate 100 
groups of 1000 floods corresponding to the 1000-year return period (0.1%). After flood operation 
calculation of each flood, the number of times that the design flood water level (357.14m) is exceeded 
in each group of 1000 floods were counted as ( 1,2, ,100)ξλ ξ =  . The flood control risk rate of each 

group was / 1000ξλ , and the flood control risk rate in the form of an interval number was 

( ) ( )
1 100 1 100
min /1000 , max /1000ξ ξξ ξ

λ λ 
     

. Similarly, the annual generated power and water storage at the 

end of flood season were obtained through reservoir operation calculation by using the monthly 
inflow data of 41 years from 1971 to 2011. Then, the minimum and maximum values of the 41 results 
formed the interval numbers. The initial interval number decision matrix X  is shown in Table 4. 
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Table 4. Initial interval number decision matrix X . 

Scheme 
i 

Flood control risk 
rate 1ix / % 

Annual generated power 
2ix /108 kW·h 

Water storage at the end of 
flood season 3ix /108 m3 

1 [1.812,4.371] [6.531,14.392] [4.887,11.200] 

2 [1.882,4.408] [7.086,14.983] [5.411,11.200] 

3 [1.993,4.421] [7.687,15.639] [6.033,11.200] 

4 [2.211,4.689] [8.275,16.136] [6.751,11.200] 

5 [2.534,5.028] [8.699,16.641] [7.523,11.200] 

6 [2.977,5.594] [9.320,17.343] [8.431,11.200] 

According to Equation (11)–(12), the benefit indexes (annual generated power, water storage at 
the end of flood season) and the cost index (flood control risk rate) in Table 3 are standardized, 
resulting in the standardized interval number decision matrix B  shown in Table 5. 

Table 5. Standardized interval number decision matrix B . 

Scheme 
i 

Flood control risk 
rate 1ib  

Annual generated 
power 2ib  

Water storage at the end of flood 
season 3ib  

1 [0.323,1.000] [0.000,0.727] [0.000,1.000] 

2 [0.314,0.981] [0.051,0.782] [0.083,1.000] 

3 [0.310,0.952] [0.107,0.842] [0.182,1.000] 

4 [0.239,0.895] [0.161,0.888] [0.295,1.000] 

5 [0.150,0.809] [0.201,0.935] [0.418,1.000] 

6 [0.000,0.692] [0.258,1.000] [0.561,1.000] 

According to Lynne [40] who derives the variance formula of interval number sample matrix 

based on uniform distribution, for = ij m n
b

×
  B 

 , its variance ( )jD b  can be expressed as follows: 

2
2 2

21 1

1 1( ) = ( ) + ( ) ( )
3 4

m mL L U U L U
j ij ij ij ij ij iji i

D b b b x b b b
m m= =

  + − +   ∑ ∑

, (24) 

Based on the definition of the correlation coefficient of two random real number variables in the 
probability theory and mathematical statistics, the correlation coefficient of two interval variables 

( , )h jb bρ    (h, j=1,2,…,n) is: 

Cov( , ) ( + ) ( ) ( )
( , ) = =

( , ) ( ) 2 ( ) ( )
h j h j h j

h j

h j h j

b b D b b D b D b
b b

D b D b D b D b
ρ

− −     

 

    , 
(25) 

From Equation (24)–(25), the correlation coefficient matrix of = ij m n
b

×
  B 

  can be obtained, as 

shown in Table 6. 
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Table 6. Correlation coefficient matrix of the standardized interval number decision matrix. 

Index 
Flood control 
risk rate 1b  

Annual generated 
power 2b  

Water storage at the end 
of flood season 3b  

Flood control risk rate 1b  1.000 0.613 0.573 

Annual generated power 

2b  
0.613 1.000 0.971 

Water storage at the end of 
flood season 3b  

0.573 0.971 1.000 

It is shown in Table 5 that there is positive correlation among the three indexes. The correlation 
between the flood control risk rate and annual generated power or water storage at the end of flood 
season is slightly weak. The correlation between annual generated power and water storage at the 
end of flood season is significant in that their correlation coefficient is 0.971. Thus, it is necessary to 
consider the correlation between the indexes in the decision-making process of the reservoir water 
level scheme in flood season. 

There are five experts to grade the importance of the indexes, and the subjective weight of the 
interval number indexes obtained from the scoring matrix is 

[ ] [ ] [ ]{ }= 0 320,0 397  0 292,0 360  0 235,0 300. . . . . .S . According to Equation (13), the information entropy 

weight is (0.252,0.347,0.401)L
jt =  and (0.573,0.427,0)U

jt = . Thus, the objective weight of the 

interval number indexes is [ ] [ ] [ ]{ }0 252,0 573  0 347,0 427  0,0 401. . . . .T = . Let the empirical factor β  

be 0.5, then the combined weight is [ ] [ ] [ ]{ }0 286,0 485  0 320,0 394  0 118,0 351. . . . . .W = . From B  and 

W , the weighted standardized decision matrix C  is obtained, as shown in Table 7. 

Table 7. Weighted standardized interval number decision matrix C . 

Scheme 
i 

Flood control risk 
rate 1ic  

Annual generated 
power 2ic  

Water storage at the end of flood 
season 3ic  

1 [0.092, 0.485] [0.000, 0.286] [0.000, 0.351] 

2 [0.090, 0.476] [0.016, 0.308] [0.010, 0.351] 

3 [0.089, 0.462] [0.034, 0.332] [0.021,0.351] 

4 [0.068,0.434] [0.052, 0.350] [0.035, 0.351] 

5 [0.043, 0.392] [0.064, 0.368] [0.049,0.351] 

6 [0.000, 0.336] [0.083, 0.394] [0.066,0.351] 

Through the matrix C , based on TOPSIS and Equation (15), the positive (negative) ideal scheme 
p+  ( p− ) is determined as follows: 

[ ] [ ] [ ]{ }0.092,0.485  0.083,0.394  0.066,0.351p+ =  

[ ] [ ] [ ]{ }0.000,0.336  0.000,0.286  0.000,0.351p− = . 
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5.2. Orthogonal Test of the Schemes 

Since there are three indexes, the orthogonal table is 3
4L (2 ) . The alternative scheme’s layout 

matrix Ci (i=1,2,…,6), the positive ideal scheme’s layout matrix +P  and the negative ideal scheme’s 

layout matrix −P  are shown in Table 8. 

5.3. Scheme Decision-Making and Result Evaluation 

The square Mahalanobis distance from each point in the layout matrix Ci to the positive ideal 
scheme’s layout matrix +P  and the negative ideal scheme’s layout matrix −P  is worked out, as 
shown in Table 9. 

Table 8. Layout matrixes of the schemes. 

Matrix 
Flood 

control 
risk rate 

Annual 
generated 

power 

Water 
storage at 
the end of 

flood 
season 

Matrix 
Flood 

control 
risk rate 

Annual 
generated 

power 

Water 
storage at 
the end of 

flood 
season 

C1 

0.092 0.000 0.000 

C5 

0.043 0.064 0.049 

0.092 0.286 0.351 0.043 0.368 0.351 

0.485 0.000 0.351 0.392 0.064 0.351 

0.485 0.286 0.000 0.392 0.368 0.049 

C2 

0.090 0.016 0.010 

C6 

0.000 0.083 0.066 

0.090 0.308 0.351 0.000 0.394 0.351 

0.476 0.016 0.351 0.336 0.083 0.351 

0.476 0.308 0.010 0.336 0.394 0.066 

C3 

0.089 0.034 0.021 

+P  

0.092 0.083 0.066 

0.089 0.332 0.351 0.092 0.394 0.351 

0.462 0.034 0.351 0.485 0.083 0.351 

0.462 0.332 0.021 0.485 0.394 0.066 

C4 

0.068 0.052 0.035 

−P  

0.000 0.000 0.000 

0.068 0.350 0.351 0.000 0.286 0.351 

0.434 0.052 0.351 0.336 0.000 0.351 

0.434 0.350 0.035 0.336 0.286 0.000 
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Table 9. Square Mahalanobis distance. 

Scheme i 2 ( )g
id c , +  P  2 ( )g

id c , −  P  

1 4.139 1.567 3.263 2.428 1.658 1.649 4.166 4.175 

2 3.774 1.662 2.966 2.290 1.424 1.906 3.858 4.190 

3 3.386 1.790 2.630 2.155 1.187 2.222 3.478 4.192 

4 3.152 2.076 2.238 1.909 1.054 2.583 2.930 3.936 

5 3.071 2.436 1.901 1.668 1.037 3.018 2.308 3.583 

6 3.132 3.112 1.542 1.543 1.177 3.806 1.628 3.355 

The square Mahalanobis distance is standardized by Equation (18) and the SNR indicator is 
obtained. The indicator of the degree of balance and approach is worked out by Equation (19)–(22). 
Accordingly, the decision matrix X is derived, as shown in Table 10. 

Table 10. Derivative indicator decision matrix X. 

Scheme i iη+  -iη  +iγ  iγ −  

1 2.998  3.010  0.753  0.652  

2 2.829  2.894  0.775  0.660  

3 2.508  2.784  0.801  0.669  

4 1.869  2.633  0.824  0.686  

5 2.429  2.446  0.841  0.705  

6 2.984  3.010  0.838  0.710  

In accordance with Equation (11)–(12), X is standardized and with the weight of each index being 
0.25, the weighted standardized decision matrix C is obtained, as shown in Table 11. 

Table 11. Weighted standardized derivative indicator decision matrix C. 

Scheme i *
iη+  

*
-iη  

*
+iγ  

*
iγ −  

1 0.000  0.250  0.000  0.250  

2 0.037  0.199  0.063  0.216  

3 0.109  0.150  0.136  0.177  

4 0.250  0.083  0.202  0.103  

5 0.126  0.000  0.250  0.022  

6 0.003  0.250  0.241  0.000  

[ ]= 0.25,0.25,0.25,0.25p  is taken as the reference scheme to calculate the mapping distance 

MDi  from the alternative scheme to the reference scheme. 
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To verify the feasibility and effectiveness of the method in this paper, the first comparison 
method of scheme ranking (method 1) is based on the closeness degree of the SNR defined by 
Equation (26), according to reference [40]: 

i
i

i i+
η

η
η η

−

+ −

=
, (26) 

On the basis of TOPSIS, the improved closeness degree of the degree of balance and approach is 
defined as follows: 

i
i

+i i+
γ

γ
γ γ

+

−

=
, (27) 

When 0iγ − → , 1iγ → , the closer scheme i is to the positive ideal scheme, whereas when 

0iγ + → , 0iγ → , the farther scheme i is to the positive ideal scheme. This ranking criterion is that 

the larger iγ  is, the better the corresponding scheme i is, which is the second method for comparison 
(method 2). 

The schemes are sorted according to the different ranking criteria of method 1, method 2 and the 
method in this study. The results are shown in Table 12. 

Table 12. Results of scheme ranking. 

Scheme i 
Method 1 Method 2 This study's method 

iη  Ranking iγ  Ranking MDi  Ranking 

1 0.5010  6 0.5359  6 0.2500  6 

2 0.5057  3 0.5401  5 0.1585  3 

3 0.5260  2 0.5449  2 0.0492  1 

4 0.5848  1 0.5457  1 0.1378  2 

5 0.5018  5 0.5440  3 0.1983  4 

6 0.5021  4 0.5413  4 0.2443  5 

It can be seen from Table 11 that Scheme 1 ranks the last in the decision results of all the three 
methods, meaning that the currently-adopted strategy is far from decent and other schemes need to 
be selected, which conforms to the status quo of the Pankou reservoir. This study's method chooses 
Scheme 3 as the optimal scheme, which raises the upper water level limit in flood season by 0.8 m 
compared with Scheme 1. 

The reasons for the inconsistent scheme ranking results can be explained by the calculation 
process of the SNR and the improved degree of balance and approach in Section 4.2. The two 
indicators respectively reflect the output strength and the degree of balance and approach of 
geometric curves in the alternative and the reference schemes. If method 1 or method 2 is used alone, 
their decision results will be less likely to be adopted. The method proposed in this paper includes 
the advantages of both method 1 and method 2, and gets closer to the reference scheme by the 
mapping distance, producing more accurate and reasonable decision results. Therefore, scheme 3 is 
recommended as the optimal. 

In Table 11, the closeness degree of the SNR and the closeness degree of the balance and 
approach degree are benefit indicators, whereas the mapping distance is a cost indicator, and 
therefore converted into a benefit indicator by the range method. After normalizing the three 
indicators, the decision results of the three methods are illustrated in Figure 6. It can be seen that 
compared with method 1 and method 2, this study’s method produces more obviously distinct 
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decision results, which proves that the proposed model can effectively mine the hidden rules in data, 
especially for the analysis of a system with deficient information. 

 

Figure 6. Comparison of closeness degree of each alternative scheme to the reference scheme. 

6. Conclusions 

In order to reduce the uncertainty of interval numbers as well as computation work and fully 
mine the implied information in multi-attribute decision-making, a multi-dimensional interval 
number decision model based on Mahalanobis-Taguchi System with grey entropy method (MTS-
GEM) was proposed and verified by a case study. The principal conclusions are as follows. 

1 MTS-GEM can effectively reduce the uncertainty created by interval numbers. In the model, 
the bounded uncertain n-dimensional interval number is expressed quantitatively as a hypercube in 
the n-dimensional space. Meanwhile, the alternative and reference schemes are all transformed into 
finite vertices of the hypercube, which realizes the transformation from an interval number decision 
vector to a real number decision vector. 

2 MTS-GEM can produce markedly distinctive decision results, which demonstrates the 
sufficiency of decision information contained in the model. The model not only considers the output 
response strength and the degree of balance and approach between alternative and reference 
schemes, but also uses the idea of further approaching the reference scheme by mapping distance, 
which elevates the accuracy and reliability of the decision results. 

3 The case study of selecting the optimal scheme of controlling the Pankou reservoir’s water 
level in flood season shows that the proposed method can pick out the best scheme that better 
coordinates risk and benefit, which further proves the comprehensive and excellent decision-making 
performance of the model. 
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