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Abstract: Water resource is considered as a significant factor in the development of regional
environment and society. Water consumption prediction can provide an important decision basis for
the regional water supply scheduling optimizations. According to the periodicity and randomness
nature of the daily water consumption data, a Markov modified autoregressive moving average
(ARIMA) model was proposed in this study. The proposed model, combined with the Markov chain,
can correct the prediction error, reduce the continuous superposition of prediction error, and improve
the prediction accuracy of future daily water consumption data. The daily water consumption data
of different monitoring points were used to verify the effectiveness of the model, and the future water
consumption was predicted in the study area. The results show that the proposed algorithm can
effectively reduce the prediction error compared to the ARIMA.

Keywords: water resource management; sustainable development; water consumption prediction;
Markov chain; autoregressive moving average model

1. Introduction

Water resources are considered as an important key factor for regional sustainable development in
both developing and developed countries. With the development of urbanization and the improvement
of people’s living standards, the demand for water supply is increasing, and the shortage of water
resources is becoming more and more serious. A crisis of water scarcity occurs in many parts of the
world. With the expansion of the scope and scale of the urban water supply system, the complexity
of the water supply has been significantly increased. The decision-making for the water supply is
only based on the experience and judgment of the current water demand, which causes difficulty in
predictability of water supply, leading to excessive water supply. In addition, the excessive water
supply increases the pressure on the water supply network, which increases the risk of leakage and
burst of water pipes. Therefore, the analysis of urban water supply and demand is of great significance
for prediction of the urban water demand. Firstly, by quota analysis of water consumption on different
regions, the allocation and management of water resources in the water administration department can
be optimized. Effective forecasting of water consumption is helpful in improving emergency response
ability of water resource management, as well as in providing technical support for assessment or
management of water resource conservation. Secondly, water consumption forecast can improve
management and service quality of water supply enterprises. The water supply demand forecast can
be used to ensure the demand of water supply and water pressure during various periods to improve
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the service quality of water supply enterprises. Because urban water needs to be pressurised and
transported by the pump station, the prediction of water supply can guide the optimal operation
of the pump station. Hence, the utilization of stored energy in the water supply system improves,
significantly, which saves the energy costs, while ensuring a safe and stable water supply. In addition,
through the forecast of water consumption, the water transported by users in different regions can be
reasonably distributed, which provides a basis for the distribution of water resources in water plants
and reduces the dispatching cost.

Regression analysis, exponential smoothing analysis, and Markov chain model are considered as
the main traditional methods for water consumption prediction. In the regression analysis, a large
amount of historical data are required for statistical analysis to establish regression equations between
the dependent variables and independent variables. Yasar et al. [1] established a multivariate nonlinear
regression model of the monthly average water cost, total population, atmospheric temperature,
relative humidity, rainfall, sunshine time, wind speed, air pressure, and water supply to predict the
water supply for the Turkish city of Adana. Brekke et al. [2] adopted the stepwise regression method
to introduce the water-related variables into the model, one-by-one for urban water supply prediction,
which shortened the time of water consumption trend analysis and demand analysis. Brezonik and
Stadelmann [3] used regression analysis to study the relationship between stormwater runoff volumes,
loads, and pollutant concentrations from watersheds in the Twin Cities metropolitan area of USA, so as
to predict runoff volume for rain events. Adamowski et al. [4] established a regression model between
the daily water demand and the data of the previous day’s water consumption, daily precipitation,
and daily maximum temperature by using multiple linear regression analysis. The model was applied
to predict the water consumption data in the city of Montreal, Canada.

Markov process is a typical stochastic process proposed by the Russian mathematician Markovian.
Markov chain is a stochastic process with discrete time and state. It predicts the future value [5]
through the transfer probability by current information. It is widely used in the predictions relating
to the economy, meteorology, environment, and so on. Tsaur [6] used a fuzzy time series Markov
chain model with an application to forecast the exchange rate between the Taiwan and U.S. dollar.
Yu et al. [7] predicted the short term traffic flow on the basis of the Markov chain model. In addition,
Carpinone et al. [8] applied the Markov chain to wind energy prediction. Kani and Ardehali [9]
proposed a hybrid neural network and Markov chain model to predict short-term wind speed. In
addition, Haan et al. [10] proposed a daily rainfall prediction model based on the Markov chain.
Su et al. [11] adopted a set pair analysis and Markov chain model to predict groundwater quality, and
Gagliardi et al. [12] put forward the short-term water consumption prediction method of Markov chain.
The empirical results showed that the proposed forecasting model based on homogeneous Markov
chain is effective. Methods, which is based on regression analysis or Markov chain, provide a poor
data fitting ability. For data with large fluctuation and complex influencing factors, the prediction
ability is limited.

Autoregressive integrated moving average (ARIMA) was proposed by Box and Jenkins [13] in
1976. It regards the data sequence as a random sequence, and predicts future value on the basis of
analyzing the correlation between series data. The ARIMA model has the advantages of fast modeling
and prediction, and is widely used in the prediction of time series data. Lippi et al. [14] analyzed the
effect of the ARIMA model on traffic flow prediction. Shvartser et al. [15] used ARIMA to predict daily
and monthly short-term water consumption. Mombeni et al. [16] employed ARIMA models to forecast
the annual water supply in Iran by monthly water consumption data. Hao et al. [17] established an
ARIMA model for the prediction of runoff and sediment in the reservoir. The model was verified by
an example analysis on prediction of sediment in the Three Gorges project. Garf [18] established an
ARIMA model for water temperature prediction, which was used for environmental protection of
early warning. Wang et al. [19] established a river streamflow prediction and analysis model-based
combing model of ARIMA, which was used to predict the daily streamflow in the upper reaches of the
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Yellow River. Guarnaccia et al. [20] made a prediction of short-term tank water level in urban water
distribution network.

Artificial neural network has a strong nonlinear approximation ability and can be used in data
prediction and other fields [21]. Bennett et al. [22] used the urban water consumption prediction model,
based on artificial neural network (ANN), and used demographic, socio-economic, and water appliance
stock information as an input to predict the future water consumption. Mouatadid and Adamowski [23]
proposed a water consumption prediction method based on the extreme learning machine neural
network. Adebiyi [24] compared the performance difference between ARIMA and the neural network
model on stock price prediction. The results showed that ARIMA-based prediction results can produce
a better trend of prediction results, whereas the ANN-based approach can fit the prediction details well.
Similarly, Sebri [25] compared the performance of Box and Jenkins’ ARIMA model and ANN model
on water consumption prediction in Tunisia, and the result indicated that the traditional Box–Jenkins
method outperformed ANN estimated on raw, degraded, or deseasonalized data in terms of forecasting
accuracy. Thus, it is difficult to obtain the seasonal and periodic characteristics of water consumption
data by ANN, and it is easy to produce over fitting problems in the limited dataset for a strong
nonlinear approximation ability [26], which reduces the prediction accuracy. Therefore, it is worth
performing a further study about the ARIMA model for predicting water consumption data.

However, due to the random and volatility of water consumption data, the ARIMA model will
inevitably have large errors in the prediction of non-linear non-stationary time series data, with certain
trends and periodicity. In addition, the process of data acquisition is tedious, which involves many
links, such as acquisition, transmission, storage, and exchange. Additionally, the integrity of the
obtained data cannot be guaranteed, which greatly limits the accuracy of ARIMA model prediction.

To bridge the gap in the data modelling, this study presents a water consumption prediction model,
combining the ARIMA and Markov model. On the basis of data analysis and pre-processing, the water
consumption prediction was carried out on the basis of the ARIMA model. Aiming at the prediction
error, this study proposes a prediction value correction method that is based on Markov chain.

2. Water Data Pre-Processing

The data pre-processing procedure includes uploading the data through the sensor of the regional
data monitoring point, and then gathering the data to the data processing server to form the dataset
within a certain period of time. However, due to the failure of data collection point, noise, and other
factors, it is easy to have data value missing, or large, small, and other abnormal data, which greatly
affects the effectiveness of data processing. Therefore, effective identification and data processing are
required for further data analysis.

For the analysis of the collected water consumption data, the identifiable data abnormal features
include data missing or zero, data mutation of zero, or a large data mutation, and so on. The above
abnormal data features, zero value and missing value, can be directly tested and judged. The 3δ
criterion (i.e., the pauta criterion) can be used to judge whether the mutation data is abnormally large
or small. Assuming that the sample data approximately obey the normal distribution, the data contain
random errors, and the error region is determined according to the probability. Furthermore, the error
beyond the region is considered as gross error, and the data within the gross error range is regarded
as the abnormal value. If δ is the standard deviation and µ is the mean value, the probability of data
distribution in (µ− 3δ,µ+ 3δ) is 0.9973, and the data beyond this range is the abnormal value point,
where δ and µ are the standard deviation and mean value, calculated from the dataset after eliminating
the zero value and missing value in the water consumption data. After obtaining the abnormal data
value, the data need to be recovered to obtain the normal range. Subsequently, the mean filling method
is used to calculate the mean value of the dataset to remove the outliers, which include the zero value,
missing value, abnormal large value, and abnormal small value, which were previously identified
using the above detection method.



Water 2020, 12, 760 4 of 20

Even after the abnormal value detection and processing, the water consumption data monitoring
process inevitably produces errors and noises. The use of many noise data for water consumption
prediction greatly affects the data prediction, which requires further data abnormal value processing to
remove data noise.

Empirical mode decomposition (EMD) is a time-frequency analysis method that can decompose
time-series data into multiple intrinsic mode function (IMF) components, where each component
represents a certain local feature of data. EMD has been widely used in signal de-noising, fault diagnosis,
image processing, and other aspects. Using the data decomposed by the EMD, it is easy to produce
mode aliasing, and different time-scale features in the IMF allow an efficient data processing [27,28].
Wu and Huang proposed the ensemble empirical mode decomposition (EEMD) method. During the
decomposition process, white noise is introduced according to a certain signal-to-noise ratio, and
the influence of white noise is reduced through the set average method, which has the advantage of
anti-aliasing [29]. The EEMD method is used to remove the noise in the historical water consumption
data. The water consumption data processed by outliers are decomposed by the EEMD to obtain
N-component, including n-1 IMF component and 1 residual term rn. The decomposed data are arranged,
according to the frequency from high to low, and afterwards the highest frequency component is
removed and the residual component is summed to obtain the new data as the de-noised data.

3. Prediction of Water Consumption Based on Markov Chain Modification

The daily water consumption data is nonlinear and uncertain, and interrelated to time. The daily
water consumption data prediction is a time-series prediction problem. In this study, the ARIMA
model was established for daily water consumption data. Furthermore, a modified Markov chain
model was proposed to forecast the daily water consumption, which can reduce the error caused by
the randomness nature of the water consumption data.

3.1. Prediction Model Based on ARIMA

The ARIMA model is widely used to forecast non-stationary time series data. It can be used to
forecast the trend of daily water consumption data. In a model of ARIMA (p, d, q), AR is autoregressive,
p is the number of regression terms, MA is the moving average, q is the number of moving average
terms, and d is the difference time to make the data a stationary series. Firstly, the non-stationary
historical data xt is processed by the d difference to develop the stable historical data yt, fitted to the
ARMA (p, q) model to predict the consumption, and then the original data xt is obtained by d times
contrast difference. The ARMA model is expressed as follows:

yt = c + φ1yt−1 + · · ·+ φpyt−p + εt + θ1εt−1 + · · ·+ θqεt−q (1)

where φ1, · · · ,φp and θ1, · · · ,θq are constant, εt is a white noise sequence, then the time series yt

follows the (p, q) order autoregressive moving average model, which is recorded as ARMA(p, q).
When the original data sequence is non-stationary, firstly, the data is processed by the d-th

difference to obtain the stationary sequence; subsequently, the corresponding ARMA time series model
is established for analysis of the stationary time series. The auto correlation function (ACF) and the
partial auto correlation function (PACF) are analyzed. If the PACF is p-order truncated and the ACF is
tailed, the AR (p) model can be established, accordingly. If the PACF is tailed and the ACF is q-order
truncated, then the MA (q) model can be established. If the PACF and ACF are all tailed, the ARMA
model is established. Subsequently, the ARMA (p, d, q) model is established for the time series of
d-order difference processing. Because the judgment of tailing and truncation is of a certain subjective,
therefore, the model order can be determined according to the Akaike Information Criterion (AIC) and
Bayesian Information Criterion (BIC) criteria, and the parameters p and q of the model can be obtained.

The regression coefficient, moving average coefficient, and white noise variance of the ARIMA (p,
d, q) are estimated by least square method and moment estimate method, and parameter of φ̂1, · · · , φ̂p,
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θ̂1, · · · , θ̂p are obtained. Afterwards, the hypothesis test is carried out to determine whether the residual
sequence is a white noise sequence. The presence of white noise data sequence confirms the efficiency
of the model. On this basis, the model that passed the test can be used for prediction purposes. Table 1
demonstrates the prediction model flow based on the ARIMA. So, according to the Algorithm in
Table 1, the future data can be predicted.

Table 1. Flow of data forecast based on the autoregressive integrated moving average (ARIMA) model.

Forecast Method of ARIMA

A1.1 Stability treatment: The training set of original sequence is tested for stationarity. If the data
sequence is non-stationary, the difference operation is carried out to determine the difference order d,
to obtain the stationary state.

A1.2 Model selection: The parameters p and q of the ARIMA model are determined. According to the BIC
criterion, the p and q values, which minimize the BIC value, are selected.

A1.3 Model test: Whether the residual data sequence after fitting by the selected model is white noise. If
the residual is white noise, the model is valid.

A1.4 Forecast future data: The valid ARIMA (p, d, q) model is used to predict the data in the next few days.

3.2. Markov Chain Theory

Markov chain is a stochastic process with discrete time and state. A Markov chain sequence has
several different states. In one time sequence, the state of the next time sequence can be determined by
the random transition probability matrix [30]. According to the initial probability of each state and
the transition probability of each state, Markov chain predicts the change trend for each state. The
probability of future state of Markov chain at each time is only related to the state of the time, but not
to the state of the sequence before the time, which has no aftereffect.

Markov model can be represented by the triples {S, π, P}, in which S represents the state space of
the random process and the finite data set of the random process. π is the probability vector of the
selected initial state time, and P is the probability transfer matrix. The probability transfer matrix can be
obtained by frequency estimation probability method, or by minimizing the squared sum error of the
probability vector about the probability vector of current state and the theoretical state. Setting the state
value of the random process as S = {S1, S2, · · · , Sn}, the probability transfer characteristic of Markov
chain can be determined by the conditional probability, that is, the probability P, P

{
Xm+k = S j

∣∣∣Xm = Si
}
,

of the state Sj after k-time processing, when the variable X is in state Si on the time m.
Whether the data series can be predicted by Markov model requires χ2 detection. Let fi j be the

number of state i transitions to state j, and Pi j be the probability of state i transitions to state j. The
statistic χ2 is expressed as Equation (2), where, P• j is marginal probability of state j, which satisfies
Equation (3).

χ2 = 2
m∑

i=1

m∑
j=1

fi j

∣∣∣∣∣∣lg Pi j

P• j

∣∣∣∣∣∣ (2)

P• j =

∑m
i=1 fi j∑m

i=1
∑m

j=1 fi j
(3)

If the data sequence accords with χ2 > χ2
α

(
(m− 1)2

)
, then the Markov model can be used to predict

the future trend of data.
If the transition probability of the Markov chain from state Si to S j in one step is P(k)

i j , then the
matrix of state transition probability in one step can be expressed as Equation (4).

P(1) =


P11 · · · P1n

...
. . .

...
Pn1 · · · Pnn

 (4)
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If the random process is in the i-th state at the current time, and the number of times it transfers to
the j-th state at the next time is fi j, then fi=

∑
fi j. Using the method of frequency estimation probability,

The probability Pi j of state i transitions to state j can be calculated by Equation (5).

Pi j =
fi j∑N

j=1 fi j
= P

{
X = S j

∣∣∣X = Si
}

(5)

Let π0 denote the initial vector of the stochastic process at time t, and the parameters p1, p2, · · · , pn

denote the probability of each state at that time. Then, the initial state vector is expressed as
π0 = (p1, p2, · · · , pn), and the probability vector of the random process at t = m is πm = π0Pm. When
the value of m is large enough, the probability vector will tend to a stable value, which is expressed
as Y =

∑
πm × Si. According to the characteristics of the Markov process, the future state of the

stochastic process can be predicted by its historical state. The predicted value Dt+1 is expressed as
Formula (6), which is the inner product of the state vector Xt+1 and the average value of each state,
where Xt+1 = (xt+1,1, xt+1,2, · · · , xt+1,i · · · , xt+1,N), if the state is in i then the value of xt+1,i in the matrix
is 1, and the other variables of xt+1, j are set to zero, where j is any state other than i.

Dt+1 = Xt+1Ei=
∑N

i=1
xt+1,iEi (6)

3.3. Modifying ARIMA Water Consumption Forecast Based on Markov Chain

Markov chain can be used to predict the trend of data, and the predicted value Y of test the
dataset can be modified by ARIMA to improve the accuracy of water consumption prediction. In
this study, firstly, the future trend value of water consumption was predicted, and subsequently, the
water consumption data obtained from the prediction model was increased by a certain error value in
proportion as the corrected water consumption data.

Let the data prediction series in the continuous time range be expressed as Dr = [D1, · · · , DR], and
divide the data series Dr into N states, D1, D2, · · · , DN. Considering the randomness nature of the water
consumption data, the data distribution law is unclear. In order to evenly divide the data sequence
into several states, this study proposed the use of the method of k-means algorithm on state division.

Let yt+n be the water consumption data at the time of t+n predicted by the ARIMA model, Dte

be the average predicted value based on Markov chain, and yte be the average predicted value of the
ARIMA model. As the error value of the ARIMA prediction increases gradually, in the predicted
value of the time t+n in future, the correction coefficient ft+n is used to correct the error value. Then,
the modified predicted water consumption data ŷt+n at the time of t+n is expressed as Formula (7).
Because the error value of the ARIMA prediction in the future is the cumulative error, one-by-one,
therefore, the value of the correction factor is increased gradually, hence Formula (8) is adopted so as
to improve the prediction accuracy.

ŷt+n = yt+n ×
Dte

yte
× ft+n (7)

ft+n =

(
1−

Dte

yte

)
1

n− 1
(8)

The daily water consumption prediction process based on the modified ARIMA prediction of
Markov chain is demonstrated in Figure 1, and the specific process is presented as as Algorithm in
Table 2.
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Table 2. Algorithm of data forecast based on the Markov chain-modified ARIMA model.

The Proposed Markov Chain-Modified ARIMA Prediction

A2.1 The water consumption data series Dr is divided into N states. The k-means clustering
algorithm is used to cluster the data sequence, and the states of each value in the
sequences, the partition of N states, and the mean value Ei of state i are obtained.

A2.2 One step state transition matrix P(1) is calculated by Formula (4). According to the change
of state in the sequence, the state transition frequency fi j is obtained, and then the
transition probability pi j of each state is obtained according to Formula (5).

A2.3 Select the time t as the initial state, and get the initial state vector Xt =
(
xt,1, xt,2, · · · , xt,N

)
.

The data of the day before the forecast date is taken as the initial state.
A2.4 Calculate the state vector Xt+1 of water consumption to be predicted at the next time. Let

xt+1,i represent the probability of state i at time t+1, then the state vector at time t+1 is the
product of state vector at time t and transfer matrix, Xt+1= XtP(1).

A2.5 The prediction value Dt+1 of future time based on Markov chain is calculated, which is
expressed as Formula (6).

A2.6 Repeat steps A2.3–A2.6 to find the predicted water consumption of Markov chain at each
time to be predicted.

A2.7 The prediction value of water consumption data at the time of t+n is obtained on the basis
of the Markov chain prediction value and the ARIMA prediction value by Formula (7).

The algorithm flow is as follows in Figure 1.

4. Data Analysis

The effectiveness of the proposed algorithm is verified by examples. The daily water intake data
of some water monitoring points in Guangdong Province from 2016 to 2017 were selected for the
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experiment. The daily water consumption data from January to December 2016 was used to build the
model, and the data from January 2017 was used to test the validity of the model.

4.1. Data Pre-Processing

The abnormal values in the daily water consumption data, such as the noise, zero value, abnormally
large values, or abnormally small values, may easily cause the error in the prediction model. Therefore,
it is necessary to pre-process the data to remove the noise, abnormally large values, and other
abnormalities. First, the abnormally large values of water consumption data were removed, on the
basis of the pauta criterion, and the mean value was used to fill the abnormal values. For the noise data,
the mode decomposition method was used to remove the high frequency data component as the noise.

Figures 2 and 3 represent the original data and data after outlier processing of the two monitoring
points, respectively. Figures 4 and 5 demonstrate the outliers processed and de-noised data of two
monitoring points, respectively.
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4.2. Model Validation

Firstly, the ARIMA analysis was performed on data 1 of the monitoring point. The water
consumption data X1 of the monitoring point 1 fluctuated within a wide range. To eliminate the
fluctuation trend of its time series, the data sequence of X1 was differentially processed and data
sequence of DX1 was obtained. As can be seen from Figure 6, the sequence after the first-order
difference fluctuated steadily, around the mean value. Figure 7 displays the autocorrelation diagram
after the first-order difference of the water consumption sequence. It can be seen from the figure that
the autocorrelation coefficient is greater than zero for a long time, indicating the presence of a strong
property between the sequences. The stationary state of the Augmented Dickey-Fuller (ADF) unit root
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test sequence was selected (see Table 3). The p-value of the unit root test was less than 0.05, suggesting
the sequence after the first difference was a stationary sequence.
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Table 3. The unit root test results of the water consumption data difference at monitoring point 1.

ADF Critical Value p-Value

test 1% 5% 10%

−6.99 −3.45 −2.87 −2.57 7.72 × 10−10

Further, it is necessary to judge whether there is correlation between the sequence data. If the
sequence is white noise sequence, there is no information to be extracted, and the analysis of the
sequence needs to be terminated. White noise test was conducted for the data after the first-order
difference, and the results are shown in Table 4. The output p value is far less than 0.05, so the first-order
difference sequence is a stationary non-white noise sequence.
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Table 4. The white noise test results of the water consumption data difference at monitoring point 1.

Stat 5%

312.49 6.26 × 10−70

The ARIMA model was fitted on the first-order stationary white noise sequence. The relative
optimal model identification method was used to calculate the BIC information of all combinations
of ARIMA (p, 1, q) at p and q less than or equal to 5. The model parameter with the minimum BIC
information was selected and the BIC matrix bic_mat was as follows:

6808.99 6334.83 NaN NaN NaN
6092.91 NaN NaN NaN NaN
5376.16
5247.25
5214.20

5184.98
5180.17
5185.55

5178.98 5184.73 5190.27
5184.70 NaN NaN

NaN 5189.91 5193.39


(9)

When p value is 2 and q value is 2, the minimum BIC value is 5178.98. Then the sequence was
fitted and analyzed with the model of ARIMA (2, 1, 2). The p-value of the white noise test around the
residual was 0.93, which is white noise; therefore, the model is valid.

The same method was adopted to determine the water consumption data fitting model of
monitoring point 2. The time sequence after the first-order difference of monitoring point 2 fluctuated
stably around the mean value, as shown in Figure 8. And Figure 9 displays the autocorrelation diagram
after the first-order difference of the water consumption sequence at monitoring point 2. The ADF unit
root was selected to check the stable state of the sequence, and the results are shown in Table 5. The
unit root test p-value was less than 0.05, which suggests the sequence after the first-order difference was
a stationary sequence. The white noise test was carried out on the data after the first-order difference,
and the results are shown in Table 6. As it can be observed from the results, the output p-value was far
less than 0.05; therefore, the sequence after the first-order difference was a stationary non-white noise
sequence. It was determined that the ARIMA (p, 1, q) was less than or equal to 5 BIC information of all
combinations. The p and q values, corresponding to the minimum BIC value, were all 2, and then the
sequence was also fitted and analyzed with the model of ARIMA (2, 1, 2). The white noise test p-value
of the residual was 0.90, which was white noise; thus, the model passed the test and is valid.
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test 1% 5% 10%
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Table 6. The white noise test results of water consumption data difference at monitoring point 2.

Stat 5%

316.44 8.62 × 10−71

The longer the prediction period of the ARIMA model, the larger the prediction error, which
causes error accumulation. Therefore, the proposed error correction method based on the Markov
chain was used to correct the prediction results from the ARIMA model.

Firstly, on the basis of the Markov model, the training data were counted, and the state transition
matrix and the one-step state transition value under each state were obtained. Subsequently, the future
data prediction value was obtained as the future data trend. Then, the modified values were calculated
on the basis of the prediction results of the Markov model.

In the prediction based on the Markov chain, the state of data sequence was set to 5, and k-means
algorithm was used to divide the state of data sequence. The cluster diagram of water consumption of
monitoring point 1 and 2 are demonstrated in Figures 10 and 11, respectively. The cluster center points
of monitoring point 1 were the vector of [127561.19 86415.6 120963.62 109515.03 139121.21].

The Markov chain one-step state probability matrix of daily water consumption data at monitoring
point 1 and point 2 are presented in the following equation, respectively, as follows:

p =


0.87 0 0.11 0 0.02

0 0.89 0 0.11 0
0.09 0 0.86 0.05 0.01

0 0.08 0.18 0.75 0
0.18 0 0 0 0.82


(10)
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p =


0.85 0 0.77 0.07 0

0 0.81 0 0.13 0.52
0.08 0.06 0.85 0 0
0.13 0 0 0.87 0

0 0.22 0 0 0.78


(11)

Given the significance level α = 0.01, χ2
0.01

(
(5− 1)2

)
= 32 can be obtained by looking at the table.

According to Equations (2) and (3), the statistical value χ2 of monitoring point 1 and 2 are 700.81 and
1268.14, respectively. Therefore, the Markov model can be used to predict the daily water consumption
in future.

If the water consumption data of monitoring point 1 on that day is known, the state vector is set
as P0 = [0,0,0,0,1], according to the water consumption data, then the state vector of the next day is
P1 = P0 ×P(1). According to Equation (6), the predicted value is [127114.01 88890.54 121126.54 109786.08
137019.38]. In the same way, the prediction value of the next n days is calculated, accordingly, on
the basis of the method of the modified ARIMA model, that is, combining the predicted value of the
Markov chain to modify the predicted result of the ARIMA in proportion.
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To test the prediction performance of the proposed model, the following prediction algorithms
were compared and analyzed, which included the ARIMA prediction, the Markov prediction, and the
modified ARIMA model (ARIMA-M).
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In order to measure the stability and adaptability of the prediction model, root mean square error
(RMSE) and coefficient of determination (R2), and the relative prediction error (RE) were selected as
the evaluation indexes. The RMSE reflects the difference between the original value and the estimated
value. The smaller the value, the closer the predicted value is to the real value, and the better the
prediction effect. The R2 can represent the whole fitting degree of the prediction model. The closer the
R2 is to 1, the better the fitting degree of the prediction value to the observation value, and the better
the prediction performance of the model. The RE is the ratio of absolute error to the real value. The
relative error reflects the reliability of the prediction. If the true real value and the predicted value of
data r are Ti and Yi, respectively, N is the number of predicted samples, and the average value of all
data values is Ti, then RMSE can be calculated through Equation (12), and R2 and RE can be expressed
by Equations (13) and (14).

RMSE =

√√√
1
N

N∑
i=1

(Ti −Yi)
2 (12)

R2 = 1−

∑N
i=1(Ti −Yi)

2∑N
i=1

(
Ti − Ti

)2 (13)

RE =
N∑

i=1

(Ti −Yi)

Ti
×

1
N
× 100 (14)

The prediction results and the relative error of the training data of monitoring point 1 are presented
in Figures 12 and 13, respectively. In addition, the prediction results and relative error curves of the
training data of monitoring point 2 are demonstrated in Figures 14 and 15, respectively. From the
prediction results of the training data, it can be seen that the daily water consumption data of the two
monitoring points predicted by the ARIMA were close to the real data value, and the overall trend
predicted by the Markov was consistent with the predicted data; however, some errors were present.
According to the error curve, it can be seen that the error of the ARIMA prediction was close to 0,
and the error value of the Markov prediction at monitoring point 1 fluctuated between −12 and 15.
Furthermore, the error value of the Markov prediction at monitoring point 2 fluctuated between −8
and 14.
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Tables 7 and 8 show the prediction error of the ARIMA and the Markov model on the training
dataset for monitoring point 1 and 2, respectively. According to the prediction data of monitoring point,
the relative error (RE) of the ARIMA prediction was less than 0.2, and the coefficient of determination
(R2) was close to 1; therefore, the training dataset can be better fitted by this model. The training
data mean square error, coefficient of determination, and relative error rate of the Markov model
were much larger than those of the ARIMA model. The relative errors of the Markov model for
monitoring point 1 and monitoring point 2 were about 13 and 18 times that of the ARIMA, respectively.
Therefore, the ARIMA model provided good fitting results for the training data, and the relative error
RE of the Markov prediction was less than 2.5%, which can meet the requirements of the daily water
consumption data prediction.

Table 7. Prediction error of the training set at monitoring point 1.

RMSE R2 RE

ARIMA 275.17 0.9994 0.19
Markov 3919.08 0.90 2.47

Table 8. Prediction error of the training set at monitoring point 2.

RMSE R2 RE

ARIMA 300.93 0.9996 0.13
Markov 5628.25 0.89 2.34

Therefore, the ARIMA and Markov combined data prediction model (ARIMA_M) can be used for
the daily water consumption data prediction. The ARIMA model can fit the training data with high
prediction accuracy. The Markov model can predict the trend of water consumption data on the basis
of the training data of water consumption.

On the basis of the training set of daily water consumption, the ARIMA and Markov prediction
models can be obtained by training. The ARIMA and the proposed ARIMA-M correction algorithm
were used to predict the data of 20 days from 1 to 20 January 2017, in order to verify the validity of
the model.

Table 9 demonstrates the predicted values and errors of monitoring point 1 during the following
10 days. According to the future forecast data, the relative error RE of the ARIMA-M forecast can be
reduced by 15.77%, compared to the ARIMA forecast.

Table 9. Forecast value of monitoring point 1 during the following 10 days.

ID
Actual Water
Consumption

(m3)

ARIMA
Forecast

ARIMA-M
Forecast

RE of
ARIMA

Forecast (%)

RE of
ARIMA-M
Forecast (%)

RE Decrease of
ARIMA-M Compared

with ARIMA

1 136,226 157,671.60 131,251.64 15.74 −3.65 12.09

2 132,041.7 155,218.90 129,209.92 17.55 −2.14 15.41

3 130,589.9 153,773.05 128,006.34 17.75 −1.98 15.77

4 131,616.3 153,390.78 127,688.13 16.54 −2.98 13.56

5 134,733.5 153,969.18 128,169.61 14.28 −4.87 9.41

6 138,878.1 155,285.24 129,265.14 11.81 −6.92 4.89

7 142,930.4 157,046.25 130,731.08 9.88 −8.54 1.34

8 145,891.4 158,942.22 132,309.34 8.95 −9.31 −0.36

9 147,015.6 160,692.44 133,766.30 9.30 −9.01 0.29

10 146,597.7 162,080.79 134,922.01 10.56 −7.96 2.6
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Figure 16 represents the total water consumption change and the relative error curve of monitoring
point 2 for the following 20 days. Figure 17 shows the prediction error curve of water consumption of
monitoring point 2 for the following 20 days using the ARIMA and ARIMA-M algorithms. It can be
seen from the figure that the predicted value of the test data using the ARIMA-M model was closer to
the real value, and that the prediction error was lower.Water 2020, 12, x FOR PEER REVIEW 17 of 20 
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Figure 17. The relative error of total water consumption prediction at monitoring point 2.

The prediction error of the ARIMA and the proposed ARIMA-M model in the overall test set of
monitoring points 1 and 2 are presented in Tables 10 and 11, respectively. It can be observed from the
table that compared to the training data that the prediction error of the test data was greatly increased.
At monitoring point 1, the RMSE reached to 14,085, the R2 value was only −0.04, and the relative error
reached 8.07. Using ARIMA-M, the RMSE of the predicted value of the test set was decreased by 25%,
R2 was increased by more than 10 times, and relative error was decreased by 24.4%, in comparison
with the traditional ARIMA. For monitoring point 2, compared to the ARIMA, the RMSE of predicted
value on ARIMA-M test set and the relative error were reduced by 18.4% and 13%, respectively.
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Table 10. Prediction error of test set for monitoring point 1.

RMSE R2 RE

ARIMA 14,085.60 −0.04 8.07
ARIMA-M 10,569.32 0.42 6.10

Table 11. Prediction error of test set for monitoring point 2.

RMSE R2 RE

ARIMA 18,388.74 −3.04 8.07
ARIMA-M 15,003.34 −1.69 7.02

According to the above analysis, the ARIMA model can provide a better fit for the changes of
daily water consumption data of monitoring points, wheras the Markov can predict the trend of daily
water consumption data within a certain error range. However, due to the randomness nature of the
water consumption data, the prediction accuracy of the above model for the unknown data decreased,
and the proposed ARIMA-M model can be used (1) to correct the deviation of the future daily water
consumption prediction data, (2) to reduce the over fitting of the ARIMA model on the training data
set, (3) to improve the prediction accuracy of the data, and (4) to provide data support for the decision
makers, on the basis of daily water consumption data prediction value.

5. Discussion and Conclusions

Water resource is an important factor affecting the sustainable development of regional
environment and society. Water consumption prediction can provide an important decision basis for
regional water supply scheduling optimization. The accurate prediction and quota analysis of water
consumption are helpful to the design of regional water use strategy, the improvement of emergency
response ability of water resource management, and the improvement of water resource management
and service level.

Therefore, a daily water consumption data prediction method is proposed in this study on the
basis of the Markov model to modify the ARIMA prediction value. A complete set of schemes from
actual data preprocessing to prediction analysis was provided. Firstly, the abnormal value of the data
was corrected, and the data noise was effectively reduced by EEMD decomposition, and then further
prediction and analysis were carried out. The main idea of the method was to get the data prediction
model by fitting the historical data on the basis of the ARIMA model. Using the Markov model to
predict the future trend of the data, the ARIMA model was modified, which corrected the great error
caused by error superposition, and improved the accuracy of data prediction.

By analyzing the actual data of two water consumption monitoring points, the results showed
that the prediction model of ARIMA and Markov had a small error for the training data; however, the
prediction error to the unknown data in the future increased greatly. This meant that the model was
overfitted. The ARIMA-M method can effectively improve the prediction accuracy of the future daily
water consumption data for the monitoring point.

The main findings of this study include: (1) The prediction error of ARIMA model for unknown
data can be corrected by using the data trend prediction results of the Markov model. (2) When
the ARIMA model is used on a limited dataset, it can easily to produce over fitting. By the hybrid
model based on ARIMA and Markov prediction model, the prediction error can be corrected and the
prediction ability of the model can be improved. (3) The small predictive error on the training data
does not mean that the prediction result of the model is good. Therefore, a hybrid model can be used
to eliminate the effect of overfitting.

For future research, the seasonal characteristics of water consumption data can be analyzed, with
the aim of further improvement in prediction accuracy. In addition, the adaptability of the model to the
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annual water consumption data, as well as the early warning of regional water security by integrating
regional economic, social, and environmental data, are all worthy of further exploration.
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