
water

Article

A Nonlinear Autoregressive Modeling Approach for
Forecasting Groundwater Level Fluctuation in
Urban Aquifers

Abdullah A. Alsumaiei

Civil Engineering Department, College of Engineering and Petroleum (COEP), Khaldiya Campus,
Kuwait University, P.O. Box 5969, Safat 13060, Kuwait; alsumaiei.a@ku.edu.kw

Received: 30 January 2020; Accepted: 11 March 2020; Published: 14 March 2020
����������
�������

Abstract: The application of a nonlinear autoregressive modeling approach with exogenous input
(NARX) neural networks for modeling groundwater level fluctuation has been examined by several
researchers. However, the suitability of NARX in modeling groundwater level dynamics in urbanized
and arid aquifer systems has not been comprehensively investigated. In this study, a NARX-based
modeling approach is presented to establish a robust water management tool to aid urban water
managers in controlling the development of shallow water tables induced by artificial recharge activity.
Temperature data series are used as exogenous inputs for the NARX network, as they better reflect the
intensity of artificial recharge activities, such as excessive lawns irrigation. Input delays and feedback
delays for the NARX networks are determined based on the autocorrelation and cross-correlation
analyses of detrended groundwater levels and monthly temperature averages. The validation of the
proposed approach is assessed through a rolling validation procedure. Four observation wells in
Kuwait City are selected to test the applicability of the proposed approach. The results showed the
superiority of the NARX-based approach in modeling groundwater levels in such an urbanized and
arid aquifer system, with coefficient of determination (R2) values ranging between 0.762 and 0.994
in the validation period. Comparison with other statistical models applied to the same study area
shows that NARX models presented here reduced the mean absolute error (MAE) of groundwater
levels forecasts by 50%. The findings of this paper are promising and provide a valuable tool for the
urban city planner to assist in controlling the problem of shallow water tables for similar climatic and
aquifer systems.
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1. Introduction

Groundwater represents a crucial resource for domestic, agricultural, and industrial sectors in
many countries throughout the world. Therefore, predicting groundwater level fluctuation is essential
for the effective management of groundwater resources. Typically, physically based groundwater
models are employed to characterize groundwater level fluctuation with respect to time. These models
are established based on the solution of the general groundwater flow equation with appropriate
boundary conditions. Assumptions are usually made to simplify the physics of the subsurface flow
system. Groundwater levels can then be simulated on temporal and spatial scales within a given
domain. Physically based models require a large quantity of precise inputs to assign the physical
properties of the real system in order to give reliable results [1,2]. The availability of such data is often
limited due to constraints of cost, time or technology, resulting in poor performance and higher levels
of uncertainty for physically based models.
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Artificial intelligence methods represent a suitable alternative for modeling groundwater levels in
cases of data scarcity. Despite the variety of groundwater level modeling methods, artificial intelligence
methods have been widely used recently due to their simplicity and satisfactory results. Despite
having some weaknesses, such as low generalizability, possible overfitting and the possible use of
unrelated parameters, artificial intelligence methods can nonlinearly model groundwater levels without
necessarily requiring understanding of the complicated subsurface processes [3].

Artificial neural network (ANN) algorithms are considered to be one of the most used artificial
intelligence methods in modeling groundwater level fluctuations at different temporal scales. An ANN
algorithm is a black box empirical model that is inspired by biological neural systems. ANNs emulate
human brain functioning in detecting the relationship between variables by using certain training
algorithms. This property of ANNs makes them a valuable tool in analyzing complex scenarios, which
might be difficult to analyze using traditional methods. The development of ANNs dates to the middle
of the last century [4]. However, a considerable growth in the scientific interest in ANNs started in the
1980s along with the advancement of computational technologies. Numerous studies employed ANN
algorithms to model time series data in many disciplines due to their ability to reproduce and model
nonlinear processes.

In this regard, hydrological systems are not an exception. Prolific literature employing ANNs to
simulate hydrological systems has been published within the last two decades (e.g., [5–9]). Further,
numerous studies have focused on the use of ANNs to model groundwater level fluctuation. However,
only a small number of studies emphasize utilizing ANNs for modeling groundwater time series using
a non-linear autoregressive approach with exogenous input (NARX) [10–14].

Izady et al. [11] investigated the application of NARXs in forecasting monthly groundwater
levels in six observation wells in the arid Neishaboor plain, Iran. The selected study area lies on
an agricultural watershed, where most groundwater extractions are used for irrigation. Three main
parameters were identified as affecting groundwater fluctuation, namely, monthly precipitation, which
was selected as a surrogate for groundwater recharge, monthly average temperature for simulating
evapotranspiration loss from the water table and the average monthly groundwater extraction rate.
The researchers assessed NARX capabilities in forecasting groundwater levels in comparison to static
neural networks, basing their conclusions on the performance of each method over the validation
period. The study showed that NARX is superior to static neural networks in predicting groundwater
levels, and that ANNs are robust and effective tools for groundwater modeling. The paper also
investigated the effect of the duration of training data on model performance and concluded that
further research is needed in this field, prompting researchers to improve the application of NARX
models as a research tool for forecasting groundwater levels.

Exploring the relationship between groundwater level fluctuation on a regional scale and surface
water interaction mechanism has been the primary focus of a recent study [12]. The researchers
worked on improving monthly groundwater level predictions for 168 datasets at the alluvial fan of
the Zhuoshui River basin, Taiwan using NARX. They proposed a hybrid soft computing modeling
technique combining self-organizing map (SOM) and NARX models. The results demonstrated that
the hybrid technique is a reliable and promising modeling tool for predicting regional groundwater
levels. The model developed by [12] used rainfall and river stage data as exogenous inputs for a
nonlinear autoregressive model. Preliminary analysis of rainfall datasets for the studied area showed
groundwater level fluctuation curves roughly resembling rainfall hyetographs, except for areas where
extensive groundwater pumping is present. Choosing rainfall as an exogenous input for the NARX
model in the model developed by [12] resulted in good model predictions, because the studied area is
considered a natural recharge area, where rainfall water represents a natural forcing contributing to
groundwater level variations.

Guzman et al. [14] utilized a NARX to model daily groundwater level fluctuation in an alluvial
aquifer in the United States and the results were promising. Daily precipitation time series were used
as exogenous inputs for the ANNs. Both groundwater and precipitation time series were normalized
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between −1 and 1 to provide a common range for the ANNs inputs. It was found that Bayesian
regularization training algorithms are more robust in modeling the daily fluctuation of groundwater,
while Levenberg–Marquardt algorithms produce convergence more quickly. Wunsch et al. [13]
applied a NARX-based methodology to investigate groundwater level fluctuation in porous, karst,
and fractured aquifers. It was demonstrated that NARX modeling is reliable for forecasting short-term
and mid-term groundwater levels. Wunsch et al. [13] also examined the influence of pumping in their
study and concluded that adding additional exogenous inputs to the NARX model would considerably
improve model performance. The study concluded that further investigations are needed to assess the
suitability of the NARX methodology to various other hydrogeological systems.

The main goal of this study is to extend previous efforts in utilizing NARX-based methodologies
in forecasting groundwater level variations. While none of the previous studies have examined the
suitability of NARX models for urban groundwater systems, this study aims to develop and implement
a modeling approach using NARX for a residential urban groundwater aquifer in an arid climate in
Kuwait City, Kuwait. The increase in groundwater levels in the study area is a common problem
which causes serious damage to building foundations, buried pipes and road pavements [15–18].
Anthropogenic activities including excessive lawn irrigation, water supply pipe leakage, septic tank
leakage and sewage system losses are believed to develop a long-term trend raising the water table in
such a desert environment where precipitation amounts are limited and are usually drained by the
local storm water network [15,19].

In this study, the temperature time series is selected as the exogenous input for the NARX model
instead of the precipitation time series. Lawn irrigation and other artificial recharge activities are
generally increased in high temperature months. Hence, seasonal temperature variation can add
an artificial recharge signature to the NARX network. Groundwater datasets from four selected
observation wells are firstly detrended in order to separate the effects of dewatering activities and to
improve the NARX performance. The proposed methodology is relatively simple and can be easily
applied for other urban groundwater systems under similar hydrological and climatological conditions.
The aim here is to establish a reliable and robust modeling procedure that can aid water managers
and city planners in predicting and controlling the problem of shallow water tables, which can cause
severe damage to urban infrastructure.

2. Study Area and Materials

The state of Kuwait is located in western Asia at the northwest corner of the Arabian Gulf. The
climate of the country is arid. The average annual precipitation is 115 mm while the average annual
pan evaporation exceeds 3500 mm. The summer months (April to October) are characterized by high
temperatures, between 25 ◦C and 45 ◦C, with recorded extremes exceeding 50 ◦C. The winter season
(November to March) is mild with an average temperature ranging from 5–15 ◦C. Daily meteorological
data are available from the Kuwait International Airport Weather Station. The weather station is
situated in the suburbs of Kuwait City and has been chosen for providing the average monthly
temperature necessary for the NARX model.

The capital of the country is Kuwait City, which covers an area of 205 km2. The land use in
Kuwait City is primarily residential with commercial areas. Water resources are scarce with no surface
water bodies existing in the entire country. Seawater desalination is the only domestic water supply
resource available. Several desalination plants were constructed to secure the increasing water demand.
Due to the rapid economic development the country has witnessed during the last few decades, the
population has grown rapidly to 4.5 million placing the country under a serious water shortage threat.
Most of the population is concentrated within the urbanized area of Kuwait City, representing less
than 2% of the total land area for the country and its suburbs near the coast.

Selected groundwater monitoring wells lie in Kuwait City and are shown in Figure 1. Table 1
summarizes the key features of these wells. The groundwater table in the study area is generally
shallow. The depth of groundwater table ranges between 1.0 m near the coastal line, to more than
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15.0 m in the landward direction. Generally, the water table follows the ground surface topography,
which gently slopes from the land towards the coast. The Ministry of Electricity and Water (MEW)
has monitored the groundwater water fluctuations on a monthly time scale since 1985. The primary
concern of city officials is the development of shallow water table, which may cause damage to urban
infrastructure. The water table becomes very shallow in areas that are very close to the coastal line
where the topography is flat and is only few meters above mean sea level. Figure 2 demonstrates
groundwater level fluctuation at DE-1A well, which is located within 1 km from the coast. Historical
groundwater levels there vary between 0.5 and 1.5 m below the ground surface. The shallow water table
makes buried infrastructure utilities and building basement highly vulnerable to flooding. The MEW
operates dewatering projects to increase groundwater depth in order to preserve buried infrastructure
utilities as well as buildings basements from damage.
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Figure 1. Study area map showing the location of the selected observation wells.

Table 1. Selected observation wells in the study area. m.s.l.: mean sea level.

ID Area Easting (m) Northing (m) Data Period Ground Level
Above m.s.l. (m)

Water Table Depth
Range (m)

BN-1A Bayan 503,750.6 243,098.7 1992–2001 27.74 8.42–12.23
NZ-1A Nuzha 499,402.2 247,349.0 1992–2000 16.45 2.68–4.07
JB-1A Jabriya 502,472.2 244,781.0 1993–2002 23.00 4.52–6.08
HL-1A Hawally 500,673.1 247,010.4 1993–2002 20.06 3.76–5.60

It is essential to establish a hydro-stratigraphic framework for the study area in order to select an
appropriate modeling scheme, thus Figure 3 shows a conceptual hydro-stratigraphic model for the
study area. In terms of soil lithology, the shallow subsurface (to a depth of 20 m) of Kuwait City is
generally composed of a highly hydraulically conductive granular silty sand with patches of cemented
discontinuities. The granular deposits are underlined by a low conductivity layer of gatch soil. The
underlying gatch layer contributed to the occurrence of a perched water table within sandy deposits.
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Figure 3. Schematic illustration for the problem of shallow water table development in Kuwait City.

The intensive urban development in Kuwait City has substantially reduced the natural recharge
to the perched aquifer due to urban storm water drainage systems and increased catchment
imperviousness. Previous research on the study area has estimated that only 13.8%–14.6% of the total
recharge to the perched water table is from natural sources (including lateral inflow and upward
leakage from deeper groundwater) while the remainder comes from man-made activities [15,20]. On
the other hand, the urban development has also decreased evaporation from the shallow water table.

Previous efforts in modeling groundwater level fluctuations at the study area have focused on
either physically based numerical modeling approaches (e.g., [16,18,21]) or statistically based periodic
models [22]. Due to the hydro-stratigraphic features of the study area, physically based models are
limited in simulating groundwater level fluctuations due to the difficulty in estimating man-made
artificial recharge activities, which are the key influencer on seasonal variation in the localized water
table. In addition, the complexity and heterogeneity of the subsurface lithology of the aquifer system
add further constraints to the use of physically based models where known aquifer parameters are
scarce. On the other hand, periodical models did not present a robust tool for forecasting future
groundwater levels as discrepancies can be found in these model’s predictions [22].

3. Methodology

Figure 4 illustrates the applied sequential modeling approach used for forecasting groundwater
levels fluctuation in the study area. As mentioned in the introduction section, the temperature time
series has been selected as the exogenous input for the NARX model as it is better correlated to artificial
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recharge activities. The following subsections explain the modeling approach shown in Figure 4
in detail.
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3.1. Non-Linear Autoregressive Networks with Exogenous Input

3.1.1. Network Architecture

NARX networks are a special family of networks within ANNs. Inspired by the biological neural
system, ANNs consist of nodes, which are connected by neurons in a certain manner. During the
training process, weights are assigned to these neurons in order to specify the best fit, which can
relate the input data and output data (targets) of the network. ANNs can be categorized based on the
direction of information flow [23]. In feedforward neural networks (FNNs), nodes are arranged in
layers, where input data are fed to the input layer, and pass through hidden layers to the final output
layer. The flow of information in FNNs is along one direction. On the other hand, in recurrent neural
networks (RNNs) information flows in the forward and backward directions. The output of RNNs is
recycled as the next time step input.

NARX networks are a special type of RNNs that describe the modeled process based on a lagged
input-output variable. This feature of the NARX network makes it an efficient tool for modeling
nonlinear systems [24,25]. NARX networks combine ANNs with ARX (autoregressive models with
exogenous input) which is a popular statistical technique for time series analysis and modeling. These
combined features of NARX allow for capturing nonlinear behavior in an autoregressive time series.
When the exogenous input is added to the NARX network, NARX becomes easier to calibrate as the
number of parameters needed to be calibrated is reduced [14].

The common formulation for the NARX model is given by the following equation

y(t) = f
(
(y(t− 1), y(t− 2), . . . , y

(
t− ny

)
, (x(t− 1), x(t− 2), . . . , x(t− nx)

)
. (1)

where y(t) represents the target time series, x(t) represents exogenous time series, ny and nx are the
delay of the target and the exogenous time series respectively, and f is a nonlinear function which is
generally unknown (the black box function).

The black box function is regressed to the target time series by calibrating the number of hidden
layers. This black box function passes the input and exogenous time series through a specific number
of hidden layers, and the NARX network is trained by certain algorithms to produce the best match
between the inputs and the target variable.
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3.1.2. Training Algorithms

In this study, the Levenberg–Marquardt (LM) algorithm is used to train the NARX network.
The LM algorithm is a widely accepted training algorithm for ANN-based groundwater time series
modeling [13,26]. The LM algorithm combines the advantages of the Gaussian–Newton and steepest
descent methods [27]. Essentially, the LM algorithm searches for the function minima and optimizes
the solution. The LM method approximates the Hessian matrix as follows [28]:

∆w = [JT(w)J(w) + λI]
−1

JT(w)e(w). (2)

where, w is the weight vector, J is the Jacobian matrix, JT is the transpose matrix of J, λ is a learning
parameter, I is the identity matrix and e represents the vector of the network error.

Using Jacobian matrix J with identity matrix term λI ensures that the Hessian matrix is always
positive. This significantly reduces the computational cost of the algorithm. Hence, the LM method is
considered more efficient as a training algorithm in comparison to other second order methods [29].

3.2. Data Preprocessing

The first computational step in the presented modeling approach is detrending the groundwater
level data. Due to the increase in manmade recharge activities, the examined raw groundwater
wells data show an increasing trend in the water table (i.e., the water level becomes shallower). The
detrending procedure is meant to eliminate the effect of any external influence on the data. Dewatering
projects or artificial recharge activities are difficult to estimate; hence, the detrending procedure will
effectively improve the NARX model procedure. Another key advantage achieved when detrending
raw groundwater data is that it ensures specifying the significant number of autocorrelation lags
for the groundwater time series as highly trended time series will likely have strong autocorrelation
coefficients [30,31].

One of the widely accepted detrending procedures in groundwater modeling is the first order
polynomial detrending procedure (linear detrending) [32,33]. A linear regression model is fitted to the
groundwater data based on a least squares criterion. The detrended groundwater signal (remainder
signal) is then used as an input for the NARX model, simulating groundwater fluctuation independently
of the effects of external fluxes. The fitted trend is then added back to the simulated groundwater
levels by NARX to include the effect of the external fluxes.

3.3. Autocorrelation and Cross-Correlation Analysis

The basic premise behind autoregressive models is the assumption of the existence of a significant
autocorrelation within the time series. The autocorrelation can be used to construct an autoregressive
model, which predicts future values based on the current values of a time series. In order to test
for autocorrelation within a time series, the correlogram test is used. The objective is to analyze the
detrended monthly groundwater time series to determine the degree of correlation between adjacent
values. The temporal separation interval is called lag and is denoted by the letter tau τ. Initially, each
series of detrended monthly groundwater level data was standardized by the following equation:

Z j =
GWL j − µ

σ
, (3)

where GWL is the detrended monthly groundwater level in month j, µ is the time series mean and σ is
the time series standard deviation. The standardized series Z j has a zero mean and a unity standard
deviation. The correlogram r was then obtained for the series Z j at lag τ as follows:

rτ =
n

n− τ

∑n−τ
j=1

(
Z j −Z

)(
Z j+τ −Z

)
∑n

j=1

(
Z j −Z

)2 , (4)
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where Z is the mean of the sample of n values of the standardized series Z j. The value of Equation (2)
is bounded between −1 and +1. In the correlogram, the upper and lower lines define the confidence
bounds (C.B.). Confidence lines are usually indicated for a significance level α = 0.05.

C.B. = ±
z1−α/2
√

n
, (5)

where z represents the quantile function of the standard normal distribution. If the correlogram
computed according to Equation (2) exceeds the upper (or lower) confidence line, then a significant
positive (or negative) autocorrelation exists within the time series. If the correlogram does not exceed
either the upper or the lower confidence lines, then the null hypothesis of no significant autocorrelation
is indicated.

To confirm the appropriateness of the selection of the temperature time series as the exogenous
input to the NARX model, a cross-correlation analysis is performed. The Pearson correlation measures
the linear dependency between two time series. In this study, the Pearson correlation is used to
assess the strength of the association between the detrended groundwater level data and the selected
exogenous input for the NARX model.

3.4. Model Validation and Performance Assessment

The developed model was validated based on the conventional practice of chronologically dividing
the observed data into training and validation subsets. However, in order to ensure the robustness of
the model performance, a rolling validation procedure with modification was adopted [34]. In this
procedure, the NARX model is constructed using 60% of the available data with 80% of the subset used
for network training and 20% used for network validation. Next, the network is constructed using 80%
of data with the same data portioning percentages for training and validation purposes. Lastly, 100%
of the data is used to construct the NARX model at the third-round validation procedure. This rolling
validation procedure can effectively ensure that the NARX model is not overfitted.

At each of the three validation rounds, three performance metrics are calculated to assess NARX
performance, namely, the coefficient of determination (R2), the mean absolute error (MAE), and the
Nash–Sutcliffe coefficient (NASH). The coefficient of determination indicates the strength of association
between the observed and simulated targets, and ranges between zero and one, where zero indicates no
statistical association, and one indicates a perfect match between the observed and simulated targets.
R2 is defined as the square of the well-known Pearson correlation coefficient. In this case, R2 does not
directly measure how good the predictions are (unlike how Pearson correlation does), but rather it
assesses the quality of a predictor that might be constructed from the model. The following equation
calculates R2 for the simulated and observed groundwater depths values:

R2 =


∑n

i=1

(
GWDoi −GWDo

)(
GWDsi −GWDs

)
√∑n

i=1

(
GWDoi −GWDo

)2
√∑n

i=1

(
GWDsi −GWDs

)2


2

. (6)

where GWDoi represents the observed groundwater depth at time step i, GWDsi represents the
simulated groundwater depth at time step i, GWDo represents the mean of the observed groundwater
depth time series, GWDs represents the mean of the simulated groundwater depth time series and n
represents the number of time steps in the validation period.

The second criterion used here is the MAE, which quantifies the variation of simulated targets
from observations in an objective manner according to the following equation:

MAE =
1
n

n∑
i=1

|GWDoi −GWDsi|. (7)
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The third criterion used is the Nash–Sutcliffe coefficient, which is a well-established performance
metric for hydrological models [35]. The NASH ranges between −∞ and 1 where below zero values
indicting that the observed time series mean is a better predictor than the simulated values [36]. The
following equation is used to calculate NASH:

NASH = 1−
1
n
∑n

i=1 (GWDoi −GWDsi)
2

1
m

∑m
i=1 (GWDoi −GWDo)

2 , (8)

where m represents the number of time steps in the observations time series.
According to Equation (8), the NASH assesses the performance of the model within the validation

period relative to the complete observation dataset variation from the mean. The advantage of using
the NASH for the proposed model assessment is that it assures that the variability of the modeled
system is adequately represented whenever the NASH values are greater than zero.

4. Results and Discussion

4.1. Modeling Results

The modeling approach, which is illustrated in Figure 4 and described in detail in the previous
section, was implemented to the four selected wells in the study area. Well BN-1A was used as an
illustrative example for the obtained results. Figure 5A demonstrates the detrending procedure results
for well BN-1A. Apparently, the raw groundwater depth data has an obvious decreasing trend (i.e.,
water table becomes shallower) due to the increase in man-made recharge activities over time. The
detrended groundwater dataset (remainder) was then used for the next step of the modeling approach,
which is the autocorrelation and cross-correlation analyses. Figure 5B shows the autocorrelation
function applied to the remainder groundwater signal for well BN-1A. The upper and lower bounds
drawn in the figure designate the correlation significance limit. Detrending raw groundwater data
before applying the autocorrelation test assures that the specified lag time is not influenced by the
long-term trend caused by the increase of recharge activities over time.

It was found that the detrended groundwater signal for well BN-1A exhibits a strong and
significant positive autocorrelation for up to four lags. Accordingly, the target delay time term in
Equation (1) was set equal to four. The target delay term will account for the autocorrelation in
the groundwater data. On the other hand, the cross-correlation analysis between the detrended
groundwater depth data and temperature time series demonstrates that a significant and negative
third lagged correlation equal to −0.48 exists between the groundwater depth and average monthly
temperature (Figure 5C). Accordingly, the exogenous input delay time term is set equal to three. The
highly correlated temperature-groundwater depth time series emphasizes the proposed hypothesis,
that the rate of artificial recharge activities can be reflected in the NARX model using the temperature
dataset. Table 2 summarizes the autocorrelation and cross-correlation analysis results and the associated
selection of target and exogenous delays for the four examined wells in the study area. Similarly,
for the other three wells, the target input delays and exogenous input delays were set based on the
computed correlations shown in Table 2.
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Table 2. Auto- and cross correlations for groundwater remainder data.

Auto Correlation for Remainder Data Cross Correlation
with Temperature

Well 1st lag 2nd lag 3rd lag 4th lag 5th lag 6th lag Magnitude Lag

BN-1A 0.92 0.80 0.65 0.5 - - −0.48 3rd lag
NZ-1A 0.89 0.75 0.57 - - - −0.37 2nd lag
JB-1A 0.93 0.85 0.75 0.65 0.56 0.49 −0.33 3rd lag
HL-1A 0.91 0.77 0.62 0.48 - - −0.35 4th lag

The best performing NARX models were obtained by calibrating the number of hidden neurons
for each well. Table 3 shows the calibrated hidden neurons for each well corresponding to the best
performing NARX network. The computed model assessment metrics can also be found in Table 3. It is
important to consider all performance metrics to assess model adequacy in order to avoid contradictory
results. In the current study, the performance metrics for each study site at each calibration round
show that the model can efficiently predict groundwater variability. This finding is supported by the
values of the NASHs and coefficients of determination computed at each validation round. It is worth
mentioning here that there is an increasing trend of the NASH and the coefficient of determination
as the number of data points used to build the model increases. This is considered reasonable as
shorter datasets which were used in validation round 1 (only 60% of the data) or in round 2 (only
80% of the data) may not adequately represent the long-term groundwater level behavior. Hence, it is
recommended to use sufficient and continuous groundwater level data for constructing the NARX
model. The data period considered in the current study for the monthly groundwater level data
(Table 1) are comparable with previous artificial intelligence modeling studies, which used comparable
time spans for monthly groundwater data modeling (e.g., 9 years period [37], 10 years period [38], 11
years period [39], and 9 years period [40]).

Table 3. NARX models performance at each validation round (R1: round 1, R2: round 2, and R3:
round 3).

Well Validation Round R2 MAE (m) NASH a ID b FD c HL d

BN-1A
R1 0.971 0.063 0.964

1:3 1:4 30R2 0.992 0.026 0.992
R3 0.994 0.049 0.993

NZ-1A
R1 0.762 0.072 0.735

1:2 1:3 30R2 0.967 0.042 0.966
R3 0.966 0.048 0.966

JB-1A
R1 0.887 0.020 0.823

1:3 1:6 70R2 0.987 0.010 0.986
R3 0.987 0.032 0.985

HL-1A
R1 0.765 0.052 0.643

1:4 1:4 70R2 0.953 0.050 0.949
R3 0.973 0.065 0.964

a NASH = Nash-Sutcliffe coefficient; b Input delays; c Feedback delays; d Hidden layers; MAE = mean absolute
error, R2 = coefficient of determination.

Figure 6 shows the observed and modeled groundwater levels at the BN-1A well at all validation
rounds. It is evident that the model can capture the long-term trends as well as the seasonal variability
of the observed data. It is shown that the duration of the training period is significantly influencing the
quality of the matching between observed and modeled data. Longer training period will eventually
result in better model performance. This result is reasonable as longer training data implicitly guarantee
further information regarding the hydrological behavior of the modeled system. Figure 7 shows
the modeled levels versus the observed groundwater levels for all examined wells with respect
to the perfect 1:1 line fit. It is evident that there is no observed bias in the modeled results. A
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random scattering of points above and below the perfect match line implies that the model neither
overestimates nor underestimates the target data. In addition, it is worth noting that the NARX
models are better performing in wells where groundwater level is deeper. As described in study
area section, the groundwater table follows land topography, which slopes gently from land toward
the coast. Consequently, better performance of the NARX models is observed as land surface above
mean sea level (m.s.l.) becomes higher. Namely, the NASH is equal to 0.993 at BN-1A well where
groundwater depth is within 8.42–12.23 m and ground surface elevation is at 27.74 m above m.s.l. in
comparison to the NZ-1A well, where NASH = 0.966, groundwater depth is within 2.68–4.07 m range,
and ground surface elevation is at 16.45 m above m.s.l. This can be interpreted as deeper groundwater
is less affected by the artificial recharge activities. The pathway for deeper water table will make the
percolating water highly vulnerable to evaporation and transpiration, and thus, the effect of artificial
recharge in raising the water table will be reduced.

The results shown in Figures 6 and 7 indicate that the NARX modeling technique developed in the
current study is a reliable approach for the modeling groundwater level fluctuation in urbanized and
arid aquifers. Including monthly temperature data to overcome the difficulty of measuring artificial
recharge inputs to the groundwater systems was found to be effective. NARX network models have
been shown to be effective in modeling groundwater levels in the study area even without using
precipitation as an exogenous input for the network. Therefore, the presented modeling approach
provides a novel forecasting tool for water managers in the study area for short-term assessment of
shallow water table dynamics. The presented methodology could be used at other study areas with
similar hydro-lithological settings. However, the presented approach cannot be generalized for other
study areas where natural recharge through precipitation is a significant contributor in raising the
shallow water table.
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4.2. Comparisons with Previous Studies

The results of the NARX modeling approach obtained in this study generally agree with the
previously conducted research in this field (e.g., [11–14,41–44]). In particular, the results confirm the
suitability of NARX in efficiently modeling groundwater level fluctuations. In terms of the performance
of statistical metrics, the R2 values obtained from the current study for all examined wells ranged
between 0.762 to 0.994 which are comparable to similar studies which used similar neural network
approach (e.g., Guzman et al. [14] obtained R2 values ranging between 0.83 and 0.92 when using ANNs
for modeling daily groundwater levels fluctuation). In addition, the performance of statistical metrics
for the current study indicate that the developed modeling approach efficiency is even comparable
with other data driven approaches such as support vector machine (SVM), which usually gives more
accurate results [45].

However, none of the previous research has examined the suitability of NARX in modeling
groundwater level dynamics in an urbanized aquifer system under arid climatic conditions. In this
studyf, this gap has been bridged and the results for NARX applications in such aquifer systems are
promising. Temperature time series have been used as exogenous inputs for the NARX networks
in order to reflect the artificial recharge rate with time. Rajaee et al. [46] reviewed 67 recent studies
published between 2001 and 2018 that used artificial intelligence methods to forecast groundwater
levels, none of which solely used temperature for groundwater levels predictions. The appropriateness
of using the temperature time series is strictly tied to the unique hydro-stratigraphy, shown in Figure 3.
This approach has been shown to be effective in reflecting the intensity of artificial recharge, and thus,
it can be considered a valuable tool for urban water managers in regard to supporting groundwater
table control decisions.

The utility of the NARX approach in modeling groundwater levels in the study area was found to
be superior to other statistical or physically based modeling approaches applied to the same study
area. The MAE obtained for the examined groundwater wells in the current study is approximately
50% less than the MAE obtained using periodic statistical models [22]. Unlike the periodic statistical
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models, the NARX approach was found to be capable of representing groundwater level variability
with no discrepancies between the observed and modeled groundwater values. By comparing the
results of the current study with numerical simulations results, which were conducted at the study area
(e.g., [16,20,21]), it was found that the NARX model can predict groundwater level fluctuations without
the need for detailed aquifer parameter measurements. These measurements are often unavailable or
only describe aquifer heterogeneity to a limited degree. On the other hand, the presented approach
only requires groundwater and temperature data, which are widely available. Thus, the proposed
methodology can be easily applied to similar aquifer systems.

5. Summary and Conclusions

This study has explored the suitability of NARX network models in modeling groundwater level
fluctuations in urbanized and arid aquifers systems. The selected study area was in Kuwait City, the
capital of the State of Kuwait. A modeling approach was presented and implemented for four selected
groundwater wells in the study site. Initially, the groundwater level time series were preprocessed
by applying a linear detrending procedure. Autocorrelation analysis of the detrended groundwater
remainder time series showed that the data exhibit strong autocorrelation coefficients. The modeling
approach merely relies on temperature time series data as an exogenous input for the NARX network
without the inclusion of recharge sources (e.g., precipitation).

Artificial recharge sources are the major contributor in developing shallow water tables in the
study area. The basic hypothesis validated by this study is the ability of average monthly temperature
to reflect these recharge intensities throughout the year. The results show that the constructed NARX
networks with temperature time series as exogenous input are efficient and reliable in modeling
groundwater level fluctuation dynamics.

The robustness of the developed procedure has been assessed through the implementation
of a rolling validation procedure in which the methodology was applied to shorter subsets of the
groundwater data. It was found that longer groundwater data inputs to the NARX network improve
network performance where the R2 values are increasing significantly for three of the examined wells
(NZ-1A well from 0.762 to 0.966, JB-1A well from 0.887 to 0.987, and HL-1A well from 0.765 to 0.973).
Comparisons with other groundwater level fluctuation modeling techniques applied to the study site
showed the superiority of the NARX-based approach (MAE was reduced by 50% in comparison with
periodical models). In particular, the proposed NARX model has been found to represent the variability
of groundwater levels while other periodic models have failed to do so. Unlike physically based
models, the proposed NARX model is simple to use and does not require detailed site investigations.

The results of the current study generally agree with studies that are focused on using artificial
intelligence methods to model groundwater level fluctuations. The topic of groundwater resources
in arid regions needs to be researched further in order to provide efficient water management tools
in these regions where surface water bodies are limited, and groundwater often represents the only
readily available water resource. Although the methodology developed in this study was tested in
selected wells in Kuwait City, it can be applied to other aquifers with comparable hydro-stratigraphic
settings. Thus, it is a reliable tool for urban city planners to manage urban groundwater systems.
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