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Abstract: Urbanization typically results in increased imperviousness which alters suspended sediment
yield and impacts geomorphic and ecological processes within urban streams. Therefore, there is
an increasing interest in the ability to predict suspended sediment yield. This study assesses the
combined impact of urban development and increased precipitation on suspended sediment yield
in the Cuyahoga River using statistical modeling. Historical satellite-based land-cover data was
combined with precipitation and suspended sediment yield data to create a Multiple Linear Regression
(MLR) model for the Cuyahoga watershed. An R2 value of 0.71 was obtained for the comparison
between the observed and predicted results based on limited land-use and land-cover data. The model
also shows that every 1 mm increase in the mean annual precipitation has the potential to increase
the mean annual suspended sediment yield by 860 tons/day. Further, a 1 km2 increase in developed
land area has the potential to increase mean annual suspended sediment yield by 0.9 tons/day.
The framework proposed in this study provides decision makers with a measure for assessing the
potential impacts of future development and climate alteration on water quality in the watershed
and implications for stream stability, dam and flood management, and in-stream and near-stream
infrastructure life.

Keywords: urbanization; suspended sediment; hydrology; water quality; remote sensing;
Cuyahoga River

1. Introduction

As the population living near natural waters increases, there is an increased global interest in water
security and the impacts of development on water resource quantity and quality. Urban developments
(e.g., construction of roads, buildings, and parking lots) alter watershed characteristics such as land-use
and land-cover (LULC) and total impervious area. Changes in LULC ultimately impact water resources
and the ecology of the streams and, therefore, such changes are of a great concern not only to watershed
managers but also to all levels of stakeholders in areas around these features [1–3].

In recent decades, many studies have demonstrated the impacts of watershed development
on streams, deepening our understanding of fluvial geomorphology, river channel dynamics, and
sediment transport [4,5]. Urbanizing watersheds often have a larger total sediment yield compared with
unurbanized and fully developed watersheds, even for watersheds with small and widely scattered
areas of exposed soil [6,7]. Hillslope erosion is largely responsible for the increased sediment supply
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during the construction or urbanizing phase [7,8]. For urbanized watersheds, hillslope sediment
supply is decreased, but bankfull flows are increased due to imperviousness as a result of the reduction
in infiltration rates [1]. This results in bank erosion, as the urban stream attempts to adjust itself to
receive larger discharge [8]. Imperviousness leads to a reduction in infiltration rates and increase
in runoff [1]. Studies by Wolman and Schick [6], Leopold [7] and Paul and Meyer [8] all emphasize
the importance of land development on suspended sediment yield in urban areas. While the total
sediment load decreases in urban areas, the suspended load often increases [9].

Precipitation is a key factor for surface erosion and driving suspended sediment transport
through waterways for a given watershed [10–12]. Surface erosion within a watershed is often
intensified by a combination of rain events with high intensity and substantial LULC changes towards
development [13,14]. Additionally, storm water in a developed area may transport considerable
amounts of nutrients and suspended sediment [12,15–17]. The suspended sediment concentration
is closely correlated with water quality [18] and is, therefore, factored into stormwater regulation as
it is of great concern to watershed managers and residents. Although changes in precipitation may
alter the suspended sediment concentration within the stream, the relationship between the two is
difficult to establish. Sediment discharge is not solely dependent on precipitation and usually varies
nonlinearly during an event [18,19]. Further, different rain patterns generate completely different
patterns of surface erosion [20,21], resulting in alteration in the sediment yield delivered downstream.
For example, in a study of rivers fed by runoff from the Himalaya mountains using over a decade of
data [21], it was reported that only two out of eight peaks of suspended sediment discharges coincided
with peaks in precipitation. The other six peaks coincided with moderate–low rain. This suggests that
other control factors such as substantial erosions within the streams and banks, a potentially significant
source of suspended sediment, may be responsible for the peaks [22–24].

Land-cover type significantly influences suspended sediment yield [25–27]. Exposure of soil to
stormwater runoff is the principal consequence of land use on sediment yield in a developing
watershed [7,17]. Land development and watershed surface alterations have the potential to
substantially alter suspended sediment yield in streams [15,28,29]. Despite numerous studies on
the effects of land-cover types on water resources, the relationship between land development and
suspended sediment is not fully understood. For instance, land-use changes in a watershed may
cause an increase in sediment yield, while a similar change in another watershed may decrease the
yield [30,31]. Variations in sediment yield are assumed to be related to watershed physiography [32]
and the system of sediment delivery in the watershed [33,34]. Schilling [34] reported that for a case
study in Iowa, changing the LULC of a watershed from agriculture to native prairie did not cause
significant change in sediment yield due to an increase in channel erosion. In this case, a substantial
amount of the eroded sediment may originate from within a river’s channels and banks [1,35]. Local
changes in a watershed such as urban construction, dams, new patterns of agriculture, mining, and
tree felling can alter the erosion and deposition regime [25]. Sediment yield in a small watershed
(<103 km2) is more sensitive to LULC change [35,36]. In larger watersheds, the eroded sediment is
more likely to settle in the basin before reaching the outlet [35]. These factors highlight the need for
individual case studies of watersheds to quantify the effects of urban development on sediment yield.

Remote sensing techniques and satellite imagery are useful tools for assessing Earth’s surface
features, providing valuable information for water resource analysis [37]. Landsat satellite images
provide the world’s longest continuous Earth surface data and have been used extensively for land
type classification and surface change detection. Landsat images continue to play an important role in
many water resource applications, such as the classification of isolated wetlands in Cuyahoga County,
Ohio [38].

There are few studies on land type changes and their effects on sediment yield for the Cuyahoga
Watershed. One study [39] analyzed trapped sediment behind the Gorge Dam on the Cuyahoga
River and concluded that from 1926 to 1978, sediment yield had doubled due to urbanization in the
watershed. The study also showed that there was no substantial increase in total sediment yield until
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2004 and then an increase from 2004 to 2008 and in 2011. To the best of the authors’ knowledge, there
is currently no model for predicting suspended sediment yield within the Cuyahoga River. Suspended
sediment transport modeling is traditionally based on an understanding of the hydraulics of particle
transport [40,41]. Advancements in computational power over recent decades, however, has resulted in
the creation of innovative techniques for estimating sediment load such as machine learning algorithms
that can estimate suspended sediment yield without solving the governing hydraulic equations [42,43].
In addition to these methods, empirical models such as the Soil Water Assessment Tool (SWAT), which
is based on the Universal Soil Loss Equation (USLE) [44,45], and physically based models such as the
Water Erosion Prediction Project (WEPP) model [46,47] have also been used. However, most of these
existing models require either substantial amounts of data or training in order to properly utilize them.
There is no known study which utilizes limited historical satellite image and precipitation data to
create a simplified Multiple Linear Regression (MLR) model for predicting suspended sediment yield.

In contrast to existing models for estimating suspended sediment yield, this study introduces a
new framework for suspended sediment yield estimation by combining remote sensing techniques
with limited historical data to establish and quantify the combined effect of land development and
precipitation on suspended sediment yield in the Cuyahoga Watershed. This unique approach
simplifies the process of suspended sediment yield estimation by taking advantage of readily available
historical satellite image and precipitation data. The period of 1991–2011 was chosen for this study
because it contains continuous satellite image data for the Cuyahoga Watershed. A major advantage
of this simplified statistical method for modeling suspended sediment yield is that this framework
can be easily replicated in other watersheds, particularly with the growing availability of satellite and
precipitation data. The outcome of this research provides decision makers with a means for assessing
the impacts of future development and climate alteration on stream total suspended solids (TSS) for a
given watershed, as well as implications for stream stability, fluvial infrastructure stainability, and
flood management.

2. Study Area

The study area for this research is the Cuyahoga River watershed in northeast Ohio (Figure 1).
The watershed area is 2105 km2—of which, 51% is covered by forest, shrub, grassland, pasture,
cultivated crops and wetlands, and 46% is classified as developed land based on National Land Cover
Database 2011 [48], following two decades of substantial development. The average terrain slope for
the whole watershed is 3.8%, with an elevation change from 160 to 395 m [48]. The relatively steep
slopes of the Cuyahoga River banks and its tributaries’ banks cause frequent river bank failures in the
watershed [49]. The watershed is U-shaped, with its origins in northeast Ohio. It flows southwards to
Cuyahoga Falls, where it redirects northward towards Cleveland and finally empties into Lake Erie.
Compared with the western segment, the eastern segment is less urbanized, with more wetlands and
more channelized tributaries. The degree of development within the watershed increases from Summit
County toward Lake Erie, reaching peak industrial development in the Cleveland area [50]. The soil of
the watershed ranges from organic to clay, silt and sand, with an estimated average sediment yield of 5
to 100 tons per acre per year [49]. There are five major dams along the main stem of the Cuyahoga
River and several smaller dams on many of its tributaries.
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Figure 1. The Cuyahoga watershed and study area. (Map data from Ohio Department of Natural
Resources, United States Census Bureau, United States Geological Survey, National Oceanic and
Atmospheric Administration.)

3. Materials and Methods

3.1. Data Integration

Table 1 summarizes the data utilized for this study. This includes both hydrologic and geographic
information system (GIS) spatial data types, such as vector and raster datasets.

Table 1. Summary of data used in study.

Data Source

Precipitation (1991–2011) National Oceanic and Atmospheric Administration
(NOAA) [51]

Discharge (1950–2011) U.S Geological Survey (USGS) National Water
Information System [52]

Suspended Sediment (1950–2002) U.S. Geological Survey (USGS) National Water
Information System [52]

Landsat Satellite Images (1991–2011) USGS Global Visualization Viewer (GloVis) [53]

Cuyahoga Watershed Shapefile (2018) Ohio Department of Natural Resources—Division of
Water Resources [54]

Cartographic Boundary Shapefiles—Counties (2018) United Sates Census Bureau [55]
Water Bodies (2018) USGS National Hydrography Watershed [56]

Watershed Index Online (2019) US EPA [57]

3.1.1. Precipitation

Daily precipitation data was obtained from National Oceanic and Atmospheric Administration
(NOAA) gage stations located at (1) Chardon (USC00331458), (2) Hiram (USC00333780), (3) Ravenna
(USW0001485), and (4) Akron-Canton (USW00014895) as shown in Figure 1. Daily precipitation data at
each gage station was averaged over each year from 1991 to 2011 to obtain an annual average. Figure 2
plots the annual precipitation of individual gages and the annual mean areal precipitation of the entire
watershed computed using the Thiessen weighted average method.
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change [61]. The Landsat images used in this study were obtained from the USGS Global 
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Figure 2. Mean annual precipitation measured across the watershed. The Thiessen method is used to
estimate the average precipitation from the four gages.

3.1.2. Suspended Sediment Yield

Mean daily suspended sediment yield data was obtained from the USGS stream gage at
Independence, Ohio, and averaged for each year. It is important to note that suspended sediment
data was available only from 1950 to 2002. For the purpose of this study, a sediment rating curve was
developed to estimate suspended sediment yield from 2003 to 2011 (Figure 3). The rating curve takes
the form of a power function expressed as

Qs = aQb (1)

where Q is the discharge, QS is the suspended sediment yield, and a and b are coefficients [58,59].
All the discharge values from 2003 to 2011 were within the limits of the rating curve, and hence there
was no extrapolation beyond those limits.
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Figure 3. Suspended sediment rating curve created from data from 1950 to 2002 at the Independence
stream gage.

3.1.3. Satellite Images

Landsat provides accurate Earth surface images [60] and has been widely used in various studies
including water TSS monitoring, ecosystem mapping, flood evaluations, and detecting land-use
change [61]. The Landsat images used in this study were obtained from the USGS Global Visualization
Viewer website [53]. The images used in this study are captured by the Landsat 5 Thematic Mapper
Sensor [62] and are radiometrically and geometrically corrected. The images had a 30 m by 30 m
spatial resolution taken at sixteen day intervals. Satellite data often have varying percentages of cloud
coverage, depending on the time of day and year the data was collected. The selected images were
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limited to data collected between April and September to minimize cloud coverage. In addition, visual
inspections were performed to exclude images with high cloud or shadow coverage. The majority of
the images used had a cloud cover of less than twenty percent. In cases of higher cloud cover, pixels in
the clouded area were replaced with matching pixels from the subsequent year as suggested by [63].
This step allowed for the estimation of the full extent of annual land-cover change.

3.2. Land Classification

To detect land development changes within the watershed from 1991 to 2011, a supervised image
classification was performed using Environment for Visualizing Images (ENVI) [64], a software for
geospatial imagery processing. Additional post-processing was performed using the ArcGIS [65]
software application. The images were classified into three categories: developed, undeveloped and
open water. The developed category included rooftops, roads, parking lots and other impervious
surfaces. Agricultural land, forests, bare soil and other pervious surfaces were classified as undeveloped
land. Lakes, rivers and all other water bodies were grouped under open water.

Pre-processing of the images was performed to improve the outcome of the image classification.
The pre-processing began with a calibration using ENVI to compensate for satellite sensor errors due
to variations in scan angle and system noise. Noise within the images resulting from light scattering
was minimized using an image correction procedure known as dark subtraction [66].

After the calibration and dark subtraction, each image was classified into three categories.
To perform the classification, training samples were first created using on-screen selection polygons.
A minimum of 50 training samples were defined for each class. The minimum-distance-to-means
classification algorithm [62] was then used to classify each pixel as either developed, undeveloped or
open water.

3.3. MLR Model

Regression models have been used extensively in the field of water resources and environmental
engineering for predicting, forecasting and interpolating data [67]. The MLR model developed in this
study was used to establish the statistical relationship among mean annual suspended sediment yield
Qsavg, mean annual precipitation (Pavg), and total area of developed land in each year (Dev). Qsavg was
treated as the response variable (dependent variable), while Pavg and Dev were modeled as predictor
variables (independent variables). Summary statistics for the MLR variables are presented in Table 2.

Table 2. Summary statistics of the Multiple Linear Regression (MLR) variables.

Variable Minimum Maximum Mean Standard Deviation

Mean Annual Suspended Sediment
Yield (Tons/day) 233 1297 652 286

Developed Land Area (km2) 485 969 828 167
Mean Annual Precipitation (mm) 2.08 3.99 2.92 0.42

Each variable (Qsavg, Pavg, and Dev), was standardized as

xstd =
x− x
sdx

(2)

where x is the variable, xstd is the standardized variable, x is the mean of the variable and sdx is the
standard deviation of the variable. Standardizing the variables is an important step for regression
modeling, as it results in a standard normal random variable with a mean of zero and a standard
deviation of unity. This enhances the understanding between the dependent and independent variables
and helps in determining which variables are most important for the MLR model.

To develop the model, the suitability of a variety of variables was evaluated. This evaluation
assessed the inter-dependency of the variables using correlation coefficients (Table 3). In addition to
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Qsavg, Pavg, and Dev, the suitability of the mean annual discharge (Qavg) for the statistical model was
also considered.

Table 3. Correlation coefficient among variables.

Qsavg Dev Pavg Qavg

Qsavg 1 - - -
Dev −0.2 1 - -
Pavg 0.6 0.4 1 -
Qavg 0.5 0.2 0.6 1

The strongest correlation was observed between Pavg and Qsavg. There was also a strong correlation
between Qsavg and Qavg as well as between Pavg and Qavg. However, due to the inter-dependency
between Pavg and Qavg, only Pavg was included in the MLR model. There was also a weak inverse
correlation between Dev and Qsavg. To this end, Qsavg may be modeled as a function of Dev and Pavg

that is Qsavg = f
(
Dev, Pavg

)
. Using MLR analysis, the holistic understanding of the combined impact

of both Dev and Pavg on suspended sediment yield is expressed as:

Q̂savg = f
(
Dev, Pavg

)
= α+ β1Dev + β2Pavg (3)

where Q̂savg is the expected value of the standardized suspended sediment yield (non-dimensional),
expressed as a function of Dev (non-dimensional) and Pavg (non-dimensional). The values of α, β are
the intercept and slopes of the fitted MLR model, respectively. The first ten years of data (1991 to 2000)
was used to create the MLR model. The remaining eleven years of data was used to verify the model.

4. Results and Discussion

4.1. Assessing the Effect of Land Development on Suspended Sediment Yield

The results of the geospatial imagery analysis (Figure 4) indicate a steady increase in developed
land area within the Cuyahoga watershed between 1991 and 2001. There is also a corresponding
decrease in the percentage of undeveloped land, which reduces from 75% in 1991 to 53% in 2001. The rate
of urbanization reduces significantly after 2001 and remains nearly flat for another decade. The area
covered by water bodies did not change significantly over the period of the study. The percentage of
area covered in water remain steadily at an average of 2% during the study period which implies that
there was no significant change in total surface area of water bodies within the watershed during the
period of study.
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The direct consequence of urbanization on suspended sediment is often difficult to quantify due to
the nonlinear relationship that exists between the two variables. In the case of the Cuyahoga watershed,
the relationship is equally difficult to establish. However, based on the overall trend of both variables
(Figure 5), while land development showed an increasing trend throughout the period of study, the
mean annual suspended sediment only increased from 1991 to 1996. Further, with the exception of
the unusually high suspended sediment yield in 2011, the suspended sediment yield has an overall
decreasing trend over the two decades studied.
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It can be inferred from Figure 6 that the majority of the land development in the Cuyahoga
watershed during the first decade of the study period (1991–2001) occurred within the western segment
of the watershed between Akron in the south and Cleveland in the northwest. Developed land
(rooftops, roads, parking lots and other impervious surfaces) for the entire watershed constituted 23%
in 1991, 45% in 2001 and 47% in 2011. Despite this increasing trend in land development, the mean
annual suspended sediment only increased from 1991 to 1996, as seen in Figure 5, and this indicates
that there may be other geomorphic drivers which make this watershed respond differently to land
development, hence the need for this type of study.
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4.2. Assessing the Effect of Precipitation on Suspended Sediment Yield

The relationship between mean annual precipitation and mean annual suspended sediment yield
was also assessed. As shown in Figure 7, except for 1992 and 1996, the annual mean suspended sediment
yield and annual mean precipitation generally followed a similar annual trend. The discrepancies may
be the result of the combined effects of changes in developed land area or other activity, such as an
in-stream construction within the watershed, forcing an alteration to the instream sediment transport.

Water 2019, 11, x FOR PEER REVIEW 9 of 18 

4.2. Assessing the Effect of Precipitation on Suspended Sediment Yield 

The relationship between mean annual precipitation and mean annual suspended sediment 
yield was also assessed. As shown in Figure 7, except for 1992 and 1996, the annual mean suspended 
sediment yield and annual mean precipitation generally followed a similar annual trend. The 
discrepancies may be the result of the combined effects of changes in developed land area or other 
activity, such as an in-stream construction within the watershed, forcing an alteration to the instream 
sediment transport. 

 
Figure 7. Variation in suspended sediment yield and precipitation. 

4.3. MLR Model Results 

The significance F-value for the regression model was 0.0008, suggesting that this is a valid MLR 
model. A summary of the MLR coefficient estimates, their standard errors and p-values are presented 
in Table 4. The p-value for the coefficients  and  are both significant at a 95% confidence level, 
suggesting that both variables (developed land area and mean annual precipitation) are relevant for 
the MLR. The p-value for the intercept (α) is not significant at a 95% confidence level, suggesting that 
the model’s intercept is not significantly different from zero. 

Table 4. MLR model coefficient estimates, standard errors and p-values. 

Coefficient Estimate Standard Error p-Value 
α 0.29 0.20 0.19 

 −0.52 0.18 0.02 
 1.26 0.19 0.00 

The goodness-of-fit statistics presented in Table 5 demonstrate an acceptable fit between the data 
and the regression model. In particular, the strong R-squared (0.87) and adjusted R-squared (0.83) 
values of the fitted model confirm the model’s ability to explain the variance within the data and 
hence the appropriateness of this model for the given data. 

Table 5. Statistics on the goodness-of-fit of the MLR model. 

Parameter Value 
R-Squared of Model 0.87 

Adjusted R-squared of Model 0.83 
Number of Observations 10 

The MLR for the Cuyahoga watershed can thus be expressed as  =  0.29 − 0.52 + 1.26  (4) 

Figure 7. Variation in suspended sediment yield and precipitation.

4.3. MLR Model Results

The significance F-value for the regression model was 0.0008, suggesting that this is a valid MLR
model. A summary of the MLR coefficient estimates, their standard errors and p-values are presented
in Table 4. The p-value for the coefficients β1 and β2 are both significant at a 95% confidence level,
suggesting that both variables (developed land area and mean annual precipitation) are relevant for
the MLR. The p-value for the intercept (α) is not significant at a 95% confidence level, suggesting that
the model’s intercept is not significantly different from zero.

Table 4. MLR model coefficient estimates, standard errors and p-values.

Coefficient Estimate Standard Error p-Value

α 0.29 0.20 0.19
β1 −0.52 0.18 0.02
β2 1.26 0.19 0.00

The goodness-of-fit statistics presented in Table 5 demonstrate an acceptable fit between the data
and the regression model. In particular, the strong R-squared (0.87) and adjusted R-squared (0.83)
values of the fitted model confirm the model’s ability to explain the variance within the data and hence
the appropriateness of this model for the given data.

Table 5. Statistics on the goodness-of-fit of the MLR model.

Parameter Value

R-Squared of Model 0.87
Adjusted R-squared of Model 0.83

Number of Observations 10
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The MLR for the Cuyahoga watershed can thus be expressed as

Qsavg = 0.29− 0.52Dev + 1.26 Pavg (4)

in which, Qsavg is the standardized mean annual suspended sediment yield (non-dimensional), Dev is
the standardized developed area (non-dimensional), and Pavg is the standardized mean annual
precipitation (non-dimensional).

The coefficient estimates of the MLR are also a measure of the sensitivity of the model to changes
in the predictor variables. Therefore, based on this model, every 1 standard deviation increase in
developed land area (167 km2) could result in potential 0.52 standard deviations of reduction in mean
annual suspended sediment yield (149 tons/day), i.e., a 1 km2 increase in developed land area will
result in a 0.9 tons/day decrease in the mean annual suspended sediment yield. Conversely, a 1 mm
increase in annual mean precipitation could result in an 860 tons/day increase in the mean annual
suspended sediment yield assuming the mean annual precipitation is constant. This suggests that the
model is much more sensitive to changes in precipitation than it is to changes in developed land area.

The MLR model was then used to predict suspended sediment yield from 2001 to 2011. As shown
in Figure 8, the model prediction tracks well with the trend in observed suspended sediment yield. This
is also consistent with the correlation coefficient (0.8) estimated for the comparison between observed
and predicted suspended sediment yield. Given the limited amount of data used in developing the
MLR model, this result can be considered as acceptable. The accuracy of the model may be improved
with additional satellite, precipitation and suspended sediment data.
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4.4. Model Verification and Uncertainty

Typical with regression-based models, the MLR model developed in this study has some
uncertainty. Model verification and uncertainty assessments were performed to enhance the
understanding of potential limitations of the model’s application. To verify the results of the model,
the observed and predicted mean annual suspended sediment yields were compared (Figure 9). The
estimated R-squared for the comparison between predicted and observed data was 0.71. Based on
the Model Performance Rating suggested by Ayele et al. [68], this MLR model can be considered as
“good” to “very good”. Comparatively, published studies involving sediment load prediction with
other regression models such as Sinnakaudan et al. [69] yielded an R-squared value of 0.67.
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In addition to the R-squared value, several statistical parameters were estimated to provide
a broader understanding of the model’s performance. An examination of the mean and standard
deviation of the observed and predicted annual mean suspended sediment yield (Table 6) shows that
the MLR developed in this study generally overpredicts the suspended sediment yield. This may
be influenced by a number of reasons including the fact that only 10 years of data was used to
train the MLR model. Some of the uncertainties in the sediment data itself may also account for
underprediction or over prediction in some of the years. It is also important to note that suspended
sediment measurements themselves are inherently prone to some level of uncertainty. For example,
Yen et al. [70] reported suspended sediment measurement uncertainty as high as 117%.

Table 6. Statistics for observed and predicted annual mean suspended sediment yield.

Statistic Observed Predicted

Mean 589 748
Standard Deviation 281 381

Mean Absolute Error (MAE) 229
Root Mean Square Error (RMSE) 255

Pearson’s Correlation Coefficient (PCC) 0.8
Coefficient of Determination (R-Squared) 0.7

Index of Agreement 0.8
Modified Index of Agreement 0.5

The closeness of the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) is an
indication of low variance in the differences between the observed and the predicted values. The strong
Pearson’s Correlation Coefficient (0.8) also demonstrates the model’s ability to replicate the trend
within the observed annual mean suspended sediment yield data. It is important to note, however, that
although the Index of Agreement is high (0.8), and it is significantly greater than the Modified Index of
Agreement. This is an indication that the results of this MLR may have been influenced more by the
larger values within the independent variables (developed land area and mean annual precipitation)
as explained by Legates and McCabe [71].

The uncertainty within the MLR model results was further assessed by computing the 95%
confidence interval (Figure 10). This interval indicates that there is a 95% chance that the estimated
suspended sediment yield will be contained within the confidence bound shown. It is interesting
to note that seven out of the eleven observed values (2003, 2004, 2005, 2007, 2008, 2009, and 2011)
fall within the confidence bound. This is an indication that there is a 63% chance that the observed
suspended sediment yield falls within the confidence interval of this MLR model.
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4.5. Validation of the MLR Assumptions

For the regression model to be valid, all underlying assumptions of an MLR must be correct.
The first assumption in an MLR is that the relationship between the independent and dependent
variables is linear. Although the correlation between the developed land area and mean annual
suspended sediment yield was weak, there was a general linear trend within the data (Figure 11a).
Linearity was also verified for mean annual precipitation and mean annual suspended sediment as
presented in Figure 11b. The linearity among the variables indicates that they are appropriate for the
MLR model.
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Figure 11. Relationship between (a) developed land area and mean annual suspended sediment yield,
and (b) mean annual precipitation and mean annual suspended sediment yield.

The second key assumption of a regression model is that all variables are multivariate normal.
To test this assumption, the quantiles of each variable is plotted against that of a standard normal
distribution. Based on Figure 12, all three variables were normally distributed. Hence, the normality
assumption has been satisfied and, therefore, precipitation, suspended sediment yield and developed
land area are appropriate for this MLR model.
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Further, a regression model assumes that there is no multicollinearity among the variables. For
this assumption to be correct, the Variance Inflation Factor (VIF) of the independent variables must be
less than 10. A VIF of 0.00008 was computed for both Dev and Pavg. This low VIF indicates the absence
of a linear relation between the developed land area and precipitation and, therefore, validates the use
of these variables in the MLR model.

Finally, the homoscedasticity assumption must be satisfied for the MLR to be valid.
Homoscedasticity represents the variance of the model residuals around the regression line. The evenly
spread out residuals around the regression line in Figure 13 indicates that on the average, the random
disturbance in the relationship between the suspended sediment yield (dependent variable), developed
land area and precipitation (independent variables) is similar across all values of the independent
variables. The presence of homoscedasticity among the dependent and independent variables makes
them valid inputs for the MLR model.
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5. Conclusions

Land-use and land-cover characteristics along with precipitation are some of the most important
factors influencing the suspended sediment yield in a watershed. The relation between those variables
is site specific and important for watershed managers, as it provides them with a tool to predict
potential impacts to water quality and also evaluate possible implications for stream stability, dam and
flood management, and in-stream and near-stream infrastructure life.

This study aimed to develop a framework for establishing the relation between land developments,
mean annual precipitation, and mean annual suspended sediment yield in Cuyahoga River, OH by
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combining remote sensing techniques with limited data. To do that, remote sensing techniques were
employed to classify land cover of the Cuyahoga watershed from 1991 to 2011 with historical satellite
imagery. Then, a statistical model was developed to find the relation between measured mean annual
precipitation, land development and measured mean annual suspended sediment yield. The geospatial
imagery analysis showed that nearly all the urbanization within the Cuyahoga watershed between 1991
and 2011 occurred within the first decade. This rapid urbanization, however, did not directly result
in an increase in suspended sediment yield within the Cuyahoga River. It is, therefore, possible that
within the period of study, urbanization was not the most dominant geomorphic driver for suspended
sediment yield. This study also found that within the Cuyahoga watershed, precipitation was more
correlated to the suspended sediment yield than the rate of urbanization. This is demonstrated by the
similarity in trends between mean annual precipitation and mean annual suspended sediment yield. It
is worth noting, however, that the highest mean annual precipitation measurement did not coincide
with the years with the highest mean annual suspended sediment yield, an additional indication that
there may be some other factors influencing suspended sediment yield. This finding is consistent with
findings from previous studies such as Wulf [21].

Using an MLR model, this research predicted the suspended sediment yield from 2001 to 2011
moderately well. Given the limited amount of data used in developing the model, this result is
acceptable and can be improved with additional data. The study has produced a tool for estimating
the potential changes in suspended sediment yield in the Cuyahoga River resulting from alterations in
the land-use and land-cover as well as climatic effects on this watershed. The outcome of this research
can provide decision makers with a measure for assessing the impacts of future development and
climate alteration on Total Suspended Solids (TSS), and ultimately water quality in the watershed and
may have implications for stream stability, dam and flood management as well as infrastructure life.
With the increasing availability of satellite and precipitation data, this method has the potential to be a
viable alternative to other data-intensive and sophisticated models for predicting suspended sediment
yield especially for watersheds with limited data.

Overall, the performance of the model presented in this study was acceptable, as demonstrated by
an estimated R-squared value of 0.7 based on the comparison between predicted and observed mean
annual suspended sediment yield. However, it is important to note that typical with regression-based
studies, this model has some uncertainty which was investigated and discussed. Based on the
uncertainty analysis, there is a 63% chance that the observed suspended sediment of the Cuyahoga
River falls within the 95% confidence interval of this model. Some of the uncertainty around the
model’s predictions is due to the size of dataset used to develop the model. Further, there are inherent
uncertainties with data, such as suspended sediment yield measurements in general, which may
impact the performance of any suspended sediment yield model.
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