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Abstract: Data-driven models using an artificial neural network (ANN), deep learning (DL) and
numerical models are applied in flood analysis of the urban watershed, which has a complex drainage
system. In particular, data-driven models using neural networks can quickly present the results and
be used for flood forecasting. However, not a lot of data with actual flood history and heavy rainfalls
are available, it is difficult to conduct a preliminary analysis of flood in urban areas. In this study, a
deep neural network (DNN) was used to predict the total accumulative overflow, and because of the
insufficiency of observed rainfall data, 6 h of rainfall were surveyed nationwide in Korea. Statistical
characteristics of each rainfall event were used as input data for the DNN. The target value of the
DNN was the total accumulative overflow calculated from Storm Water Management Model (SWMM)
simulations, and the methodology of data augmentation was applied to increase the input data.
The SWMM is one-dimensional model for rainfall-runoff analysis. The data augmentation allowed
enrichment of the training data for DNN. The data augmentation was applied ten times for each input
combination, and the practicality of the data augmentation was determined by predicting the total
accumulative overflow over the testing data and the observed rainfall. The prediction result of DNN
was compared with the simulated result obtained using the SWMM model, and it was confirmed that
the predictive performance was improved on applying data augmentation.
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1. Introduction

It is very important to predict the possibility of flooding in urban basins and ascertain the degree
of flooding in advance. Hazardous flooding events that cause residential and commercial property
damage can occur in many forms and with frequent frequencies. Numerical analysis, trend analysis,
and flood prediction for various rainfall scenarios can be utilized as important basic data for urban
planning or flood response. One- and two-dimensional flood analysis programs can be used for this
purpose; however, in the case of a numerical-based model, it may take some time to adjust parameters,
collect data, and perform post-processing of output data.

For this reason, data-driven models using machine learning have recently been applied to the
prediction of urban runoff [1]. Granata et al. [2] predicted runoff in urban regions via support vector
regression (SVR) and compared it with the results of EPA-SWMM simulations. Although there was a
lack of accuracy in estimating the peak runoff, the possibility of improvement was confirmed through
verification. If more data are applied to the learning of SVR, the prediction power of peak flow will be
further enhanced. The study of input data for a machine learning method is also important to find a
reliable prediction model. Talei et al. [3] suggested the evaluation result of rainfall and discharge inputs
with adaptive network fuzzy inference systems (ANFIS). In this study, the criteria for determining
the optimal rainfall-runoff analysis model among sequential, pruned sequential, and non-sequential
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time-series input data were presented. In addition to a general artificial neural network (ANN), the
deep learning (DL) technique has begun to be applied to the water resources field to improve the
predictive power of hydrologic data and to include more ideas in the model. According to Shen [4],
the application of the DL technique to the water resources and hydrology fields is becoming more
common, and it is likely to yield good predictions and analysis results in the water resources field as
well as in most scientific fields. Hu et al. [5] used a long short-term memory (LSTM)-based DL model
for rainfall-runoff simulation and used data on 86 rainfall-runoff patterns. This research was possible
because the database for LSTM could be collected by hydrologic observations in the target river basin.

Although many studies have been conducted to predict rainfall, hydrologic data, and flood events
using ANN and DL techniques, research related to the supplementation of input data for DL is deficient.
Indeed, some studies have raised the problem of insufficiency data for application to a data-driven
model. Li et al. [6] raised the problem of the lack of input data and attempted to predict the possibility
of flooding in urban regions. For flood forecasting, a conceptual model considering the drainage
system was combined with the logistic regression technique. The hydraulic model was compared with
the prediction results, and the verification results that could be developed were shown. Nikhil et al. [7]
analyzed a dam basin that had been recently affected by a disaster, which was caused by dam outflow.
The dam outflow could not be predicted due to the lack of data. Rainfall, flow discharge, and water
level data were used to predict the flood downstream, and as observation data were added to the ANN,
the predictive power was shown to decrease. It appears that the performance of a neural network
becomes degraded when using uncertain observational data when data are insufficient. However, this
study does not provide a sure solution for a lack of data.

In this study, urban flood prediction was performed using a deep neural network (DNN), and
the problem of a lack of data was resolved by data augmentation and observed rainfall data that
caused the urban flooding. The total amount of overflow was predicted via the trained DNN for the
drainage basin of Samseong-dong, Seoul, which was damaged by heavy flooding during the years
of 2010–2011. The input data for DNN learning consisted of 10 statistical characteristics, including
total rainfall, rainfall intensity, hourly maximum rainfall, standard deviation, skewness, and kurtosis.
The total accumulative overflow calculated by SWMM simulations was selected as the target value.
To apply abundant data to the predictive model, data augmentation was applied. The predictive
power according to the amount of augmented data was evaluated to estimate the applicability of the
suggested methodology. In this paper, the effectiveness of data augmentation for the urban flood
prediction is discussed. In addition, this paper attempts to confirm the optimal input combination by
using statistical characteristics of rainfall distribution. The proposed methodology can supplement the
lack of data on actual rainfall that has caused flooding and establish an optimal database that can be
applied to DL techniques that require various data patterns. Finally, a prediction model is selected to
predict the exact total accumulative overflow for the study area.

2. Methodology

2.1. Observed Rainfall

Heavy rainfall that caused severe flooding damage to cities (Seoul, Incheon, Cheonan, Chungju,
Busan, Ulsan, Changwon city area) was investigated. For collecting rainfall data, the Automated
Synoptic Observing System (ASOS) and observed data from the Automatic Weather System (AWS)
were obtained from the Korea Meteorological Administration (KMA) website [8]. The actual rainfall
from 2009 to 2017 was investigated and a total of 70 heavy rainfall events were collected. The duration
of rainfall was considered to be 6 hours, since most urban floods occur within 6 hours [9]. The total
rainfall ranged from a minimum of 7.5 mm to a maximum of 284.4 mm, and the rainfall that did not
cause flooding was also considered for input data of the DNN. By collecting data on observed cases of
rainfall that induced urban flood, it is possible to compensate for the lack of rainfall data in the study
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area. Table 1 shows the names and codes of observatories, the dates of observation, and the amounts
of rainfall employed in this study.

Table 1. Survey of observed rainfall nationwide.

Rainfall Station Days of Observation Total Rainfall (mm)

Seoul
Area

Seoul (108) ASOS 21 September 2010,
27 July 2011 267.5, 116.5

Gangnam (400) AWS

21 September 2010,
27 July 2011,

15 August 2012,
22 July 2013

253.5, 184.5,
131.5, 140.5

Kwanak Mountain (116) Weather Radar 21 September 2010,
27 July 2011 110.0, 184.5

Seocho (401) AWS

21 September 2010,
27 July 2011,

15 August 2012,
22 July 2013

258.0, 201.0,
129.5, 128.0

Gangdong (402) AWS 21 September 2010,
27 July 2011 275.5, 111.5

Songpa (403) AWS 21 September 2010,
27 July 2011 252.0, 194.5

Gangseo (404) AWS 21 September 2010,
27 July 2011 70.0, 178.5

Yangchoen (405) AWS 21 September 2010,
27 July 2011 52.0, 180.5

Dobong (406) AWS 21 September 2010 166.5

Nowon (407) AWS 21 September 2010,
27 July 2011 57.5, 88.5

Dongdaemun (408) AWS 21 September 2010,
27 July 2011 232.5, 127.5

Jungrang (409) AWS 21 September 2010,
27 July 2011 267.5, 112.0

KMA (410) AWS 21 September 2010,
27 July 2011 251.5, 164.5

Mapo (411) AWS 21 September 2010,
27 July 2011 241.5, 177.5

Seodaemun (412) AWS 21 September 2010,
27 July 2011 154.5, 121.5

Gwangjin (413) AWS 21 September 2010,
27 July 2011 249.0, 117.0

Seongbuk (414) AWS 21 September 2010,
27 July 2011 160.0, 106.5

Yongsan (415) AWS 21 September 2010,
27 July 2011 180.0, 136.5

Eunpyeong (416) AWS 21 September 2010,
27 July 2011 238.5, 25.5

Geumcheon (417) AWS 21 September 2010,
27 July 2011 160.0, 47.0

Hangang (418) AWS 21 September 2010,
27 July 2011 240.5, 150.0

Seongdong (421) AWS 21 September 2010,
27 July 2011 216.5, 118.0

Bukak Mountain (422) AWS 27 July 2011 125.0

Gangbuk (424) AWS 21 September 2010,
27 July 2011 119.5, 81.0

Namhyeon (425) AWS 27 July 2011 248.0

Kwanak (509) AWS 21 September 2010,
27 July 2011 91.0, 245.0

Yeongdeungpo (510) AWS 21 September 2010,
27 July 2011 260.0, 181.0

Gwacheon (590) AWS 21 September 2010,
27 July 2011 63.5, 140.0
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Rainfall Station Days of Observation Total Rainfall (mm)

Other
Areas

Incheon (112) ASOS 23 July 2017 69.3
Cheonan (232) ASOS 16 July 2017 223.6
Chungju (127) ASOS 16 July 2017 284.4

Busan (159) ASOS

16 July 2009,
27 July 2011,
15 July 2012,

25 August 2014,
11 September 2017

243.0, 229.5,
114.0, 91.0,

254.1,

Ulsan (152) ASOS 5 October 2016,
11 September 2017 91.2

Changwon (155) ASOS 25 August 2014,
5 October 2016 209.5, 116.7

2.2. Urban Runoff Simulation

EPA-SWMM, which is used to calculate the total accumulative overflow in the study area, is an
urban runoff model that can be used for both rainfall–runoff and river routing, such as the analysis of
surface and underground flows, and flows in the drainage pipe network in urban basins with drainage
systems [10]. Prior to analysis of the scope of flooding for urban basins, the runoff for the rainfall was
calculated using SWMM (version 5.1, United States Environmental Protection Agency, Washington,
DC, USA), and operation of the pump station was applied with reference to the report of the Seoul
Comprehensive Planning System for Flood Damage Reduction (2015). RUNOFF and EXTRAN were
used among the execution blocks of the SWMM model, and the RUNOFF block performed initial
calculations for the outflow, water quality, and inflow hydrographs for drainage basins based on the
rainfall scenario [11]. The EXTRAN block was used to calculate the flow rate and depth of the drainage
pipe system using the output data of the runoff block, and it was possible to analyze the backflow and
overflow amount in the pipe based on the flow rate and the water level in the drainage network for
each calculation [12]. For analysis of the overflow according to various rainfall events in the study
area, the Saint–Venant equations (Equations (1) and (2)) were used.

Q = W ×
1
n

(
d− dp

) 5
3
× S

1
2 (1)

∂Q
∂t

+ gAS f − 2V
∂A
∂t
−V2 ∂A

∂x
+ gA

∂H
∂x

= 0 (2)

Here, Q is runoff (m3/s), W is the subwatershed width (m), n is the Manning’s roughness
coefficient, d is the depth (m), dp is the ground reservoir lost depth (m), S is the subwatershed slope, A
is the surface flow cross-sectional area of sub-watershed (m2), and V is the surface flow velocity (m/s).
One-dimensional runoff analysis results of SWMM were used as the target value of the DNN model,
although they had some limitations [13]. Because there is no observed flow data in the study area,
simulated SWMM results were considered as a reasonable runoff from rainfall events.

2.3. Deep Neural Network

The DNN is the most basic DL technique that can be used for DL by using two or more hidden
layers in a general ANN. The basic structure of a DNN is shown as Figure 1a, where x1, x2, . . . , xn

represent the input data with n attributes, and ŷ represents the value predicted through the DNN.
When the neural network layer is deepened, it can have a high level of expressive power and is strong
in terms of elaborate learning and expression efficiency. The DNN can require large amounts of data
and must be supported by high-performance computing technology and data storage capabilities.
DNNs are also composed of an input layer, a hidden layer, and an output layer, and various activation
functions can be applied to ensure that input data is completely reflected the hidden layer [14].
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Figure 1. (a) Deep neural network (DNN) and (b) rectified linear units (ReLU) activation function.

The rectified linear units (ReLU) function as shown in Figure 1b was used as the activation
function of hidden layers. As a result, if x is greater than 0, the derivative value is 1, and even if input
data go through several hidden layers, the characteristics of the data remain without disappearing to
the output layer [15]. Adam used for optimization for the learning process of DNN, which is effective
for dealing with nonlinear problems, including outliers [16]. In this study, these parameters could
improve the accuracy and reliability of the learning process.

For the error function, the mean absolute error (MAE) shown in Equation (3) was used to estimate
the loss rate for learning. Here, n is the number of target data and, in this study, it represents the
total number of total accumulative overflows to be predicted. y is the amount of total accumulative
overflow calculated using EPA-SWMM, and ŷ is the total amount of accumulative overflow predicted
by the DNN. In order to make up for the shortcomings of MAE’s size-dependent error analysis, the
mean absolute percentage error (MAPE) was also used. The MAE and MAPE were applied in the error
analysis to verify the performance of the DNN.

MAE =
1
n

∑∣∣∣ŷ− y
∣∣∣ (3)

MAPE =
1
n

∑∣∣∣∣∣ ŷ− y
y

∣∣∣∣∣× 100(%) (4)

2.4. Data Augmentation

Data augmentation is a method of increasing the quantitative amount of data by finely tuning
the initial input data. It is effective for neural network training to make invariant predictions [17]. In
other words, some changes are made to specific data x to obtain x′ and this is treated as new input
data. In general, it is also an effective method to uniformly apply random noise along a Gaussian
distribution [18]. In this study, it is necessary to build a DL model with only observed rainfall scenario
and so, it was determined that the application of data augmentation is effective. Therefore, data
augmentation was attempted on the input data. The standard deviation for the properties (total rainfall,
maximum rainfall by duration, rainfall intensity, etc.) of various samples (rainfall scenarios) was
multiplied by C(constant number) and N(0, 1) (the noise of a Gaussian distribution). Then, the new set
of input data was constructed by adding multiplication results to the initial input data. In Equation (5),
x represents the original data, σi( i = 1 ∼ 9) is the standard deviation of each 9 data feature, noise is a
random number between 0 and 1 generated in the Gaussian distribution, x′ represents newly generated
data, and this was used as new input data. The constant number of C is user-defined hyper-parameter
and it was empirically specified as a 0.05 value. The reason for using 0.05 in C is that when the data



Water 2020, 12, 899 6 of 17

augmentation technique is applied to the observed rainfall, it changed less than 10 mm. There are not
many examples of the application of data augmentation in the water resources field, and the focus
should be on confirming the validity and reliability of this technique. The final goal was to increase the
accuracy of the prediction of the total overflow rate by linking data augmentation and DL.

x′ = x + C× σi ×N(0, 1) (5)

The flowchart for applying data augmentation is shown in Figure 2. The database of rainfall and
the total accumulative overflow was constructed by simulation results of SWMM which validated
by the usage of FLO-2D (two-dimensional flood analysis program) and flood marks. The DNN was
trained using the initial database, and the prediction of total accumulative overflow was performed
on the new input data, which came out of the data augmentation. An outlier check for the predicted
results was performed by comparing with SWMM simulation results. Excel was used to check whether
the negative prediction result was shown, and the unacceptable value was predicted compared to
the simulated results. Once the data were confirmed to be sound, the processed input data and the
predicted total accumulative overflow data were added to the database for DL. The proposed series of
processes was repeated, and this study attempted to identify how many rounds of data augmentation
would be best according to the input data combination.
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Figure 2. Flowchart for data augmentation and training the DNN.

3. Application

3.1. Study Area

The subject area was set to the Samseong-dong district including Samseong 1 and Samseong 2
drainage basins in Seoul, Korea. Figure 3a reveals the drainage basin borders, drainpipe network, and
manhole locations. Figure 3b shows the nearby AWS stations around the study area. The Gangnam
AWS station in the Samsung-dong basin. Seocho and Songpa AWS stations are 4.1 km, 4.6 km from
Gangnam Observatory, respectively. The drainpipe network and manhole information were used in
performing SWMM-based one-dimensional urban runoff analysis. The rainfall on the urban surface
flows into the Tancheon stream through a conduit network. The subject area experienced extreme flood
damage because of torrential rain on 21 September 2010 and 27 July 2011. It appears that an urban flood
occurred because of the relatively low land, complicated drainage system, and inflow of rain exceeding
the conduit capacity. According to Seoul City’s Storm and Flood Damage Reduction Master Plan [19],
urban flood-prone areas (red section in Figure 4) in Samseong-dong were Samseong-Seonreung Stations
(around Teheran street, Figure 4a) and Bongeunsa-Samseong Stations (Yeongdong street, Figure 4b).
It is likely that in the event of torrential rain exceeding sewage conduit capacity, a flood might have
occurred in the two regions described above. According to the inundation trace map in 2010 and 2011,
a flood took place along the street between Samseong Station and Seonreung Station.
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3.2. SWMM Validation with Flood Trace Mark

To decide the adequacy of the one-dimensional urban runoff analysis results, this study performed
two-dimensional inundation analysis, using overflow at each manhole point and attempted to compare
the results with those for flood-prone areas and flood marks. It is because there are only records of flood
marks and data on the water level and discharge in the conduit are absent. To validate the adequacy
of the SWMM model results, the two-dimensional model adopted the use of the finite difference
method (FDM)-based hydraulic analysis program ’FLO-2D’. FLO-2D is a grid-based hydraulic model
designed to analyze flood wave propagation approved by the Federal Emergency Management Agency
(FEMA) [20]. If the overflows of each manhole were calculated from SWMM, these were entered into
the input file of FLO-2D. The exact location of a manhole in the two-dimensional space was found by
using the GIS program (spatial join tool in ArcGIS). The scope of calculation on the target basin was
examined through an expected flood map and flood history records. After completing the construction
of two-dimensional grids, flood waves were analyzed, using the continuity and momentum equations.

Sufficient time was assigned for simulation, delivering flood waves between buildings and to
the road as much as possible. To properly reflect the influence of buildings and roads on the flood
waves, two-dimensional inundation analysis was performed on 5 m2 grids. Using Equations (6) and
(7), the synthetic roughness coefficient was calculated, and the result (0.025) was applied. Here, n
is the synthetic roughness coefficient and n0 is the bed roughness coefficient. In addition, θ refers
to building coverage (%) while n1, n2, and n3 are 0.06 (farmland), 0.047 (road), and 0.05 (others),
respectively. Furthermore, A1, A2, and A3 denote the agricultural area, road area, and other land-use
areas, respectively, while h (m) refers to the depth of water [21,22]. Considering that the study area is a
metropolitan watershed, only the roughness coefficient of the roads (n2) was used in Equation (7). In
addition, this study applied 0.014 as the roughness coefficient of the roads by referring to the road
design manual [23].

n2 = n2
o + 0.02×

θ
100− θ

× h4/3 (6)

n2
o =

n2
1A1 + n2

2A2 + n2
3A3

A1 + A2 + A3
(7)

As shown in Figure 5, the flood mark of 2010 and 2011 was compared to the two-dimensional
flood analysis results applying observed rainfall for 21 September 2010 and 27 July 2011. Flood marks
were prepared by Seoul city. The hydrograph of the SWMM result (10 min interval) for each observed
rainfall was indicated in Figure 5b,d. The ratio of inundation was calculated in 5 × 5 grid units. The
percentage of simulated inundation grid within the flood mark was 75.8% and 71.2% for 2010 and
2011 rainfall events, respectively. In addition, 67% and 63.4% of the two-dimensional simulation
results for 2010 and 2011 events occurred within the flood mark from Samseong Station to Seonreung
Station. Because a flood trace map is prepared at 0.3 m or deeper, and Figure 5b,d represents the
flood depth through surface flow analysis results reflecting roads and buildings, it is concluded that
two-dimensional flood analysis and SWMM simulation results in the study area are acceptable.



Water 2020, 12, 899 9 of 17
Water 2018, 7, x FOR PEER REVIEW  9 of 17 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5. Verification of 2D flood analysis results. (a) shows flood mark (2010), (b) shows simulation 

result (21 September 2010), (c) shows flood mark (2011), and (d) shows simulation result (27 July 2011). 

3.3. Input Data 

Because the observed heavy rainfall is diverse in terms of the shape of distribution and location 

of the peak, it is hard to predict urban flood in real‐time. It appears that runoff patterns in the urban 

basins are influenced by rainfall distribution characteristics. Based on 70 observed rainfall events, this 

study calculated the total rainfall, maximum 1‐hour rainfall, maximum 2‐hour rainfall, maximum 3‐

hour rainfall, rainfall intensity, peak rainfall position(%), standard variation, skewness, inter‐event 

time, and kurtosis. Using the same statistical features of rainfall events as those of the DNN input 

data, this study attempted to build a total accumulative overflow prediction model in which 

spatiotemporal characteristics of rainfall were learned. The maximum rainfall for a duration of 1–3 h 

represented the maximum value of ordinate with 1‐, 2‐, and 3‐hour durations while rainfall intensity 

was estimated by dividing the 6‐hour duration of the total rainfall. The peak rainfall location 

represents the location of the peak value of the rainfall distribution in percentage. The inter‐event 

time is obtained by estimating the time, which represents 0 rainfall events in minutes. The results of 

statistical analysis on a part of the collected rainfall event data are stated in Tables 2 and 3. 
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result (21 September 2010), (c) shows flood mark (2011), and (d) shows simulation result (27 July 2011).

3.3. Input Data

Because the observed heavy rainfall is diverse in terms of the shape of distribution and location of
the peak, it is hard to predict urban flood in real-time. It appears that runoff patterns in the urban
basins are influenced by rainfall distribution characteristics. Based on 70 observed rainfall events, this
study calculated the total rainfall, maximum 1-hour rainfall, maximum 2-hour rainfall, maximum
3-hour rainfall, rainfall intensity, peak rainfall position(%), standard variation, skewness, inter-event
time, and kurtosis. Using the same statistical features of rainfall events as those of the DNN input data,
this study attempted to build a total accumulative overflow prediction model in which spatiotemporal
characteristics of rainfall were learned. The maximum rainfall for a duration of 1–3 h represented the
maximum value of ordinate with 1-, 2-, and 3-hour durations while rainfall intensity was estimated by
dividing the 6-hour duration of the total rainfall. The peak rainfall location represents the location of
the peak value of the rainfall distribution in percentage. The inter-event time is obtained by estimating
the time, which represents 0 rainfall events in minutes. The results of statistical analysis on a part of
the collected rainfall event data are stated in Tables 2 and 3.
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Table 2. Observed rainfall and statistical features (four observation stations in the Seoul area).

Statistical Characteristic Gangnam Station Gangnam Station Dobong Station Gangbuk Station

Observation Date 21 September 2010 27 July 2011 21 September 2010 27 July 2011
Total Rainfall (mm) 253.50 184.50 166.50 81.00

Max. Rainfall in 1 h (mm) 78.00 71.00 57.00 25.00
Max. Rainfall in 2 h (mm) 136.50 105.50 106.00 38.00
Max. Rainfall in 3 h (mm) 181.50 143.00 136.00 41.00
Rainfall Intensity (mm/h) 42.25 30.75 27.75 13.35

Peak Rainfall Location (%) 25.00 55.56 66.67 77.78
Standard Deviation (mm) 5.17 4.38 4.68 2.49

Skewness 0.39 1.28 0.40 1.05
Inter-event Time (min) 60 10 100 130

Kurtosis −0.4973 1.2289 −1.4715 0.3522

Table 3. Observed rainfall and statistical features (four observation stations in other areas).

Statistical Characteristic Busan Station Ulsan Station Changwon Station Cheonan Station

Observation Date 11 September 2017 5 October 2016 5 October 2016 16 July 2017
Total Rainfall (mm) 254.10 233.80 116.70 223.60

Max. Rainfall in 1 h (mm) 84.90 103.10 74.90 69.30
Max. Rainfall in 2 h (mm) 144.90 166.40 97.10 118.50
Max. Rainfall in 3 h (mm) 176.20 203.30 107.20 142.50
Rainfall Intensity (mm/h) 42.35 38.97 19.45 37.27

Peak Rainfall Location (%) 36.11 77.78 75.00 75.00
Standard Deviation (mm) 5.15 6.06 4.96 4.05

Skewness 1.05 0.89 2.25 0.33
Inter-event Time (min) 0 0 20 0

Kurtosis 0.6922 −0.4508 4.7215 −0.8722

The statistical characteristics on rainfall event data were entered into the DNN. In this study,
four different cases of input data sets were applied (Table 4). Then, a correlation analysis of the total
accumulative overflow of statistical characteristics was performed. It is estimated that the correlation
between total rainfall and total accumulative overflow is relatively higher than other characteristics.
In terms of a peak rainfall position (%), the correlation converged to 0, not being used in combination
with input data. In addition, a relatively high positive correlation with total accumulative overflow
was found at maximum 3-hour rainfall and rainfall intensity as well. In terms of skewness, kurtosis,
and inter-event time on observed rainfall, a negative correlation with the target value was observed.
Case 1 reveals the use of all statistical analysis values excluding a peak rainfall position while Case
2 refers to a combination of input data without two sub-factors among characteristics in negative
correlation. Case 3 uses five data sets in a high positive correlation. Lastly, Case 4 uses the highest
positive correlation data and three of the negative correlation data. Regardless of the combination of
input data, the target values were the same as the total accumulative overflow.
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Table 4. Combination of input data.

CASE 1
(9 Inputs)

CASE 2
(6 Inputs)

CASE 3
(5 Inputs)

CASE 4
(4 Inputs)

R2 with
Total

Accumulative
Overflow

Total Rainfall Total Rainfall Total Rainfall Total Rainfall 0.8144
Max. Rainfall in 1 h Max. Rainfall in 1 h Max. Rainfall in 1 h - 0.5698
Max. Rainfall in 2 h Max. Rainfall in 2 h Max. Rainfall in 2 h - 0.5114
Max. Rainfall in 3 h Max. Rainfall in 3 h Max. Rainfall in 3 h - 0.3957
Rainfall Intensity Rainfall Intensity Rainfall Intensity - 0.566

Standard Deviation Standard Deviation - - 0.3623
Skewness - - Skewness (−) 0.3778
Kurtosis - - Kurtosis (−) 0.2499

Inter-event Time - - Inter-event Time (−) 0.1087

3.4. Prediction Model and Data Augmentation

A total of 69 rainfall events were used for DNN learning except for the prediction target rainfall
among a total of 70 observed rainfall events. The DNN was composed of one input layer, eight hidden
layers, and one output layer, and three hidden layers were set to have 18, 18, 12, 12, 12, 10, 10, and
8 nodes, respectively. The number of hidden layers and the number of nodes of each hidden layer
were determined through trial and error. The final structure of DNN was determined by the empirical
process and the MAE of the testing process. The summarized process of finding the optimal structure
of the DNN is shown in Table 5. The activation function of the hidden layer uses the ReLU function. In
the case of the activation function for output nodes, the linear function was used to derive the results
in units of floating decimal points. The epoch for maximum learning was set to 5000. In DNN learning,
70% of input data was used for training, 20% was used for validation, and 10% was used for testing.
The data for training, validation, and testing were randomly selected in 69 rainfall events. This is
to avoid over-fitting a particular data set. As another way to avoid over-fitting, the early stopping
function was used. If the MAE value for validation does not decrease even after repeating the DNN
training, the learning process was stopped early.

Table 5. Empirical process for finding the DNN structure.

No. MAE (Testing) Number of Batches Structure

1 19.63 4 4/9/18/12/10
2 21.02 4 4/9/18/18/12/12/10
3 23.2 4 4/9/18/18/12/10
4 20.84 4 4/18/18/12/12/12/10/10
5 19.81 8 8/18/18/12/12/12/10/10
6 19.64 8 8/18/18/12/12/12/10/10

7(Selected) 17.51 8 18/18/12/12/12/10/10/8
8 18.28 10 18/18/12/12/12/10/10/8
9 19.05 8 18/18/18/12/12/12/10/10/8

The MAE with training and validation process is shown in Table 6. Table 7 shows the predictive
results for the testing data through MAE and MAPE analysis. In order to show the overall error
variation according to the application of the data augmentation, the number of data augmentation was
applied up to 10 times. The reason for doing data augmentation up to 10 times is that too much data
augmentation can make the original data meaningless. The dataset for DNN learning is increased by
applying noise to the original data. In addition, gaps in the original data can be filled with noise-added
data through the data augmentation technique. For these reasons, the DNN used in this study learns a
more abundant rainfall-runoff pattern by data augmentation more than using only simulated results.
Considering that abundant data is a fundamental condition of deep learning models, it is expected that
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the predictive power of the suggested model would be improved. As data augmentation was applied,
the training, validation, and testing error were decreased (Tables 6 and 7). In the case of the MAE, the
overall decrease was observed without significant variation. However, in the case of the MAPE, which
shows the error ratio of the observed value and the variability appeared to be large depending on the
number of times data augmentation was applied.

Table 6. Training and validation error with data augmentation.

Training and Validation Result
Input Criterion

CASE 1 (MAE) CASE 2 (MAE) CASE 3 (MAE) CASE 4 (MAE)

Train. Val. Train. Val Train. Val Train. Val

Original DNN 17.13 25.24 10.79 14.80 8.42 11.28 25.18 18.32

Number of Data
Augmentations

Applied

1 10.40 15.04 4.01 10.27 6.68 9.83 9.80 21.71
2 7.45 11.17 5.09 7.69 3.81 5.65 10.37 13.52
3 5.88 6.81 5.43 5.29 3.84 4.70 8.63 11.79
4 6.69 7.25 4.30 5.33 3.98 4.48 7.98 11.25
5 5.33 5.01 4.91 4.23 3.82 3.25 7.24 6.08
6 5.06 4.71 3.16 3.28 3.11 3.08 7.40 7.77
7 5.1 7.74 3.06 4.62 3.02 4.88 6.43 8.83
8 4.92 3.94 3.24 2.42 2.95 2.70 7.15 6.04
9 5.12 6.15 2.82 3.09 3.6 2.94 5.60 5.80
10 4.17 4.71 3.43 3.74 3.31 3.97 6.04 5.78

Table 7. Testing error with data augmentation.

Testing Result
Input Criterion

CASE 1 CASE 2 CASE 3 CASE 4

MAE MAPE MAE MAPE MAE MAPE MAE MAPE

Original DNN 23.87 61.75 13.02 37.83 11.11 36.89 23.77 49.30

Number of Data
Augmentations

Applied

1 13.91 46.94 7.92 48.75 5.90 21.31 27.32 71.77
2 10.06 11.04 5.41 6.18 4.75 6.46 12.75 14.28
3 10.6 9.48 7.12 7.13 5.99 5.46 14.74 14.72
4 8.33 12.62 4.20 6.73 3.92 6.76 11.80 22.24
5 9.17 16.29 4.44 18.99 5.46 35.13 8.40 27.83
6 6.23 57.27 3.39 6.96 6.21 14.34 7.96 12.97
7 5.13 15.91 4.12 11.19 2.77 8.07 6.54 8.93
8 1.96 11.56 3.77 27.99 3.77 7.24 7.27 42.32
9 6.14 13.56 3.07 21.74 3.15 22.83 6.44 32.0
10 4.46 34.42 3.38 11.49 4.22 7.83 4.15 7.02

Figure 6 shows the results of DL training for each combination of the input data after applying
the initial input data and data augmentation. The horizontal axis of each graph represents an epoch,
and the vertical axis represents the mean absolute error (MAE). The red dotted line shows the graph
for the validation data set, and the blue solid line shows the error graph for the training data set. Each
graph shows that after applying data augmentation, predictive power is improved not only for the
training data set for the DL model, but also for the validation data set as well. In other words, the data
augmentation technique improves the analysis result of validation data, rather than simply over-fitting
with the training data.
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Figure 6. The trend of mean absolute error (MAE) with validation and testing data. (a) Shows Case
1: original data, (b) shows Case 1: after the 10th data augmentation, (c) shows Case 2: original data,
(d) shows Case 2: after the 10th data augmentation, (e) shows Case 3: original data (f) shows Case 3:
after the 10th data augmentation, (g) shows Case 4: original data and (h) shows Case 4: after the 10th
data augmentation.

3.5. Prediction Results

The result of SWMM simulations with consideration of the observed rainfall on 27 July 2011, was
used as the target data for total accumulative overflow prediction (Figure 7). The DNN trained with
69 rainfall scenarios was used to perform the prediction. The total rainfall for the target rainfall was
184.5 mm, the rainfall intensity was 30.75 mm/h, the 1-, 2-, and 3-hour maximum rainfall was 71.0,
105.5, and 143.0 mm, respectively, the standard deviation was 4.38 mm, the skewness was 1.27, the
kurtosis was 1.23, and the inter-event time was 10 min. As a result of EPA-SWMM simulations, the
total accumulated overflow was calculated as 144.7 m3/s. Table 6 shows the predictive results before
applying data augmentation and the predictive results of the DNN according to the number of data
augmentations applied. When the data augmentation was applied four times for the input data of
CASE 1, seven times for CASE 2, ten times for CASE 3, and once for CASE 4, predictions were the
closest to the results of SWMM. The absolute average was calculated for the correlation values between
the target value and the statistical characteristics in each input data (refer to Table 4). They were
calculated as 0.4395, 0.5366, 0.5715, and 0.3877 in CASE 1, CASE 2, CASE 3, and CAS 4, respectively,
and the higher the mean of the correlation coefficients was, the lower was the standard deviation of
the predictive results according to data augmentation. The absolute average correlation is shown
in Table 8.

In the case of CASE 4, which had the lowest absolute mean value of the correlation coefficient, the
difference with the results of SWMM was confirmed to increase as data augmentation was applied.
In contrast, in CASE 3, which had the highest mean value of the correlation coefficient, it was shown
that predictive power could be increased by attempting data augmentation. In Table 8, * (asterisk)
indicates that the predictive results of the DNN for each input data combination was the closest to the
results of SWMM.
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Figure 7. Observed rainfall on 27 July 2011.

Table 8. Results of the simulation and prediction.

Total Accumulative Overflow (m3/s)
Input Criterion

CASE 1 CASE 2 CASE 3 CASE 4

Average of Absolute R-square
(refer to R2 in Table 4) 0.4395 0.5366 0.5715 0.3877

Simulated with SWMM 144.7
Prediction with Original DNN 168.66 159.10 142.15 149.90

Predict with Data
Augmentation

1 174.92 147.67 143.36 145.61 *
2 149.27 160.80 152.75 140.37
3 130.88 166.44 149.01 134.75
4 146.63 * 148.31 150.18 132.25
5 152.48 147.14 146.77 119.99
6 154.49 148.82 160.14 142.34
7 162.85 143.57 * 147.71 136.49
8 129.85 160.21 160.21 136.32
9 151.82 149.65 162.69 137.04

10 147.39 142.69 144.51 * 138.47
Standard Deviation 13.21 7.58 6.32 6.47

4. Conclusions

In general, there is a lack of historical data on flooding for a single urban drainage basin and
basic data for constructing a data-driven model. In this study, a DNN was used to predict the total
accumulative overflow in an urban drainage basin. Cases in which significant damage was caused
by flooding in the target area were limited to the events of 21 September 2010, and 27 July 2011, and
therefore an additional 6-hour rainfall observation on the national scale was applied. SWMM was
used to calculate the total accumulative overflow in 10-minute units. Data augmentation was used to
increase the quantitative amount of input data, and the variation in the predictive performance was
examined for each of the input data conditions. The main findings are as follows.

(1) Flood analysis was performed on the drainage basin of Samseong-dong, Seoul. The total
accumulative overflow results for each heavy rainfall event were calculated using 70 observed
rainfall events and EPA-SWMM. The characteristics of each rainfall event were analyzed and the
correlation with the total accumulative overflow was calculated. As a result, rainfall characteristics
that had a high correlation with urban outflow phenomena were identified. Although the highest
correlation was found for the total rainfall and rainfall intensity, it was also found that maximum
rainfall in 1- to 3-hour units during 6 hours of heavy rainfall was also highly correlated. It was
found that the peak rainfall location did not have significant influence during rainfall events
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and that kurtosis, skewness, and rainfall time for rainfall events had a negative correlation with
urban runoff.

(2) As data augmentation was applied, it was found that the mean absolute error (MAE) and mean
absolute percentage error (MAPE) values of the predictive results for testing data decreased
for all input data combinations, which verified that prediction performance for data that were
not applied to the training can be sufficiently improved using data augmentation. The largest
difference of error analysis between the initial input condition (predicted with original DNN,
Table 6) and after applying the 10th data augmentation was indicated at the CASE 4-based DNN
model. Although input data with low correlation was used in CASE 4, it was judged that data
augmentation could be helpful to partially overcome the poor predictive power.

(3) The total accumulative overflow for the rainfall event on 27 July 2011, was predicted using the
DNN constructed according to input data combinations. Predictions were made according to
the data augmentation method, and the predictions of CASE 3 using a highly correlated input
data combination were the closest to the results of SWMM. In the case of CASE 4, which used the
least correlated input data, as more data augmentations were applied, the poorer the predictive
results were. Although data augmentation can be used to make up for the lack of input data and
reduce errors in learning, it is necessary to conduct proper correlation analysis between the input
data and the target value data beforehand. It took 14 minutes for the one-dimensional urban
runoff analysis of the SWMM model to be completed; however, predictions using the DNN took
2–3 seconds. In an event of heavy rainfall causing actual flooding, it is likely to save a lot of time
in estimating the degree of urban flooding.

(4) By successfully performing predictions using observed rainfall data and applying data
augmentation, basic research on data supplementation techniques in the data-based analysis
could be performed. The result of the proposed DNN model is expected to be used as basic data
for the real-time flood response in urban areas. If a predictive model is constructed not only for
the drainage basin in Samseong-dong but also for all drainage basins in Seoul, it seems that it
would be possible to use practically for the entire flood forecasting and warning system in Seoul.
Furthermore, if the predicted total accumulative overflow is linked with the expected inundation
map, the rapid-simulation of a two-dimensional flood map could be possible. This methodology
would be helpful to identify the flood risk area in an urban watershed.
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