Supplementary Material

General, a zero-order rate expression r_{F} can be seen as a product of a rate constant $k_{0, F}$ and active biomass X_{H} [36]. If no substrate is present, this rate expression equals the endogenous oxygen uptake rate OURe:

$$
\begin{equation*}
\mathrm{r}_{\mathrm{F}}=\mathrm{k}_{0, \mathrm{~F}} \cdot \mathrm{X}_{\mathrm{H}}=\mathrm{OUR}_{\mathrm{e}}\left[\mathrm{~g} \cdot \mathrm{~m}^{-3} \cdot \mathrm{~d}^{-1}\right] \tag{1}
\end{equation*}
$$

With this in mind, a critical characteristic length Lcrit of the biofilm can be expressed with Equation (2). For a detailed derivation of the equations, see [36].

$$
\begin{equation*}
\mathrm{L}_{\text {crit }}=\sqrt{\frac{\mathrm{D}_{\mathrm{F}}}{\mathrm{OUR}_{\mathrm{e}}}}[\mathrm{~mm}] \tag{2}
\end{equation*}
$$

With D_{F} as diffusion coefficient in the biofilm $\left[m^{2} \cdot d^{-1}\right]$. For oxygen, the D_{F} can be set as 2.1 . $10^{-4} \mathrm{~m}^{2} \cdot \mathrm{~d}^{-1}$. Regarding typical OURe within the monitored range of $18-2 \mathrm{~g} \cdot \mathrm{~m}^{-3} \cdot \mathrm{~d}^{-1}$, a critical length Lcrit of $1.0-1.9 \mathrm{~mm}$ results. The used biofilm carrier showed a biofilm thickness LF of $6.0-8.0 \mathrm{~mm}$. Therefore, the quotient $\mathrm{L}_{\mathrm{F}} / \mathrm{Lcrit}^{\text {is }}$ is above 4 , which is indicating a mass transport limitation within the biofilm [36]. The penetration depth BLF is expressed with Equation (3):

$$
\begin{equation*}
\beta \mathrm{L}_{\mathrm{F}}=\sqrt{\frac{2 \cdot \mathrm{C}_{\mathrm{O} 2} \cdot \mathrm{D}_{\mathrm{F}}}{\mathrm{k}_{0} \cdot \mathrm{X}_{\mathrm{H}}}}[\mathrm{~mm}] \tag{3}
\end{equation*}
$$

With $\mathrm{Co}_{2}\left[\mathrm{~g} \cdot \mathrm{~m}^{-3}\right]$ as concentration in the liquid phase, here oxygen. Again, replacing the rate expression with the oxygen uptake rate results in Equation (4):

$$
\begin{equation*}
\beta \mathrm{L}_{\mathrm{F}}=\sqrt{\frac{2 \cdot \mathrm{C}_{\mathrm{O} 2} \cdot \mathrm{D}_{\mathrm{F}}}{\mathrm{OUR}_{\mathrm{e}}}}[\mathrm{~mm}] \tag{4}
\end{equation*}
$$

The range of oxygen during the aerobic batch experiments was between 2 and $4 \mathrm{~g} \cdot \mathrm{~m}^{-3}$. The comparison of biofilm thickness and oxygen penetration is presented in Error! Reference source not found.. Concerning a decrease of the endogenous OUR with time due to a degradation of X_{H}, the oxygen penetration depth slightly increases with time. However, there is still a gap of 1.5 mm between oxygen penetration and minimal biofilm thickness which can be seen as anaerobic.

Figure S1. Diffusion limitation with respect of oxygen penetration into the biofilm.

References

1. Morgenroth, E. Modelling Biofilms. In Biological Wastewater Treatment: Principles, Modelling and Design; Henze, M., van Loosdrecht, M.C.M., Ekama, G.A., Brdjanovic, D., Eds.; 2008; pp. 456-492.
