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Abstract: Humic acids (HA) are a potential hazard to aquatic ecosystems and human health. Because
biological treatment of contaminated water does not satisfactorily remove these pollutants, novel
approaches are under evaluation. This work explores electrochemical oxidation of HA in aqueous
solution in a lab-scale apparatus using platinum-coated titanium electrodes. We evaluated the effects
of HA concentration, current density, chloride concentration and ionic strength on the rate of HA
oxidation. The initial reaction rate method was used for determining the rate law of HA degradation.
The results showed that the reaction rate was first-order relative to HA concentration, chloride
concentration and current density. An appreciable effect of ionic strength was also observed, most
likely due to the polyanionic character of HA. We propose a kinetic model that satisfactorily fits the
experimental data.

Keywords: humic acids; electro-oxidation; kinetic modelling; platinum electrodes; emerging and
refractory pollutants; advanced oxidation processes (AOPs)

1. Introduction

The removal of emerging and refractory pollutants from wastewater is a priority research area
worldwide [1,2]. Humic compounds are organic macromolecules deriving in nature from biological
decomposition of organic matter [3]. They consist of aromatic and aliphatic blocks with carboxylic,
phenolic and alkoxy functional groups [4,5]. Humic compounds are generally found in landfill
leachate, as the organic fraction of mature leachate is mainly refractory humic substances [6–8],
domestic sewage [9] and coking wastewater [10]. These are recalcitrant towards conventional biological
treatment [11], thereby requiring additional treatment with other methods. Humic acids (HA) are
the water-soluble fraction of humic compounds at neutral and basic pH [12]. HA impart undesirable
color, taste, and odor to water [13] and are potentially harmful to aquatic ecosystems and human
health [14–16].

Advanced procedures currently employed to remove recalcitrant compounds from wastewater
include adsorption on conventional and innovative solid matrices [17–31], advanced oxidation processes
(AOPs) [17,32–36], hydrodynamic cavitation [37,38], and ozone-based techniques [39–41]. In the last
years, electrochemical oxidation (EO), a technique belonging to the class of AOPs, has proven to
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be effective for removing bio-recalcitrant organic pollutants, due to the simplicity of operation, the
stability, versatility, energy efficiency, easy handling, high removal efficiency and environmental
compatibility [42–46].

Electrochemical oxidation consists in the application of an electrical potential difference at
electrodes and involves two degradation mechanisms working either separately or simultaneously,
depending on the nature of the electrodes [47–49]. These are (i) direct oxidation on the anodic surface
via the generation of physically adsorbed hydroxyl radicals or chemisorbed reactive oxygen species
and (ii) indirect oxidation by oxidants generated at the anode and freely diffusing in solution.

The performance of the EO technique strongly depends on operational conditions. The rate
of degradation of organic compounds at low electrical potential increases using anodes with high
electrocatalytic activity [48]. High electric current density [48,50] and electrolytes such as NaCl [48,51]
enhance the oxidation rate, the former accelerating the generation of oxidants, the latter increasing the
electrical conductivity of the solution. Moreover, chloride ions are known to produce reactive chlorine
species that may take part in the oxidation process [52]. The pH also plays a relevant role because it
affects the formation of oxidants such as OH radicals and reactive chlorine species [42].

Electrochemical oxidation has proven to be effective with several refractory pollutants such as
phenol [42], organochlorine and organophosphorous pesticides [53], dyes [54] and cyanide [55].
Moreover, EO has been satisfactorily applied to the treatment of landfill leachate [6], coking
wastewater [56], olive oil mill wastewater [57] and urine wastewater [58], as well as humics and
humic-like substances [10,49,51,59–61].

Despite the strong interest in electro-oxidation applications, the current knowledge of chemical
mechanisms underlying the process and of individual effects of a diversity of potential players remains
incomplete. Here, we report an EO study on HA in a lab-scale experimental apparatus provided with
platinum-coated titanium (Pt/Ti) electrodes. We worked on purified HA in artificial solutions and
focused attention on the following variables: HA concentration, electric current density, inert and
non-inert electrolytes, ionic strength and chloride ion concentration. The data were employed for the
development and assessment of a kinetic model of the process.

2. Materials and Methods

2.1. Materials

HA were extracted from a compost sample using an acid/basic procedure [62,63]. The compost
was purchased from Gesal S.r.l., Naples (Italy). According to the manufacturer’s data, the sample
contained 30% organic carbon and 1.7% organic nitrogen. All other chemicals employed in this study
were from Sigma-Aldrich and were of analytical grade.

2.2. Humic Acids Extraction

One hundred grams of compost were treated with 1.0 L of distilled water and, under stirring, the
pH was brought to 12.0 by dissolving solid NaOH. The mixture was stirred for two days and the pH
periodically checked, adding a few drops of concentrated NaOH solution if necessary. The mixture
was centrifuged at 10,000 rpm for 30 min, paper-filtered, and the filtrate recovered. After that, the
pH was brought to 1.5 by adding concentrated HCl. After one night in the fridge, the precipitate was
collected by centrifugation at 10,000 rpm, washed with distilled water and oven-dried at 45 ◦C. Eight
grams of dry sample (henceforth denoted as HA) were obtained from 100 g compost, the yield of
acid/basic extraction procedure thus being 8%.

For HA purification, a solution of raw HA at neutral pH was dialyzed against 0.1 M NaHCO3

solution, using a molecular porous membrane tubing with a cut-off of 6–8 kDa (Spectra/Por), until
UV–Vis absorbance of the external solution reached a stable value (approximately after one week).
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2.3. Electro-Oxidation Experiments

Electro-oxidation experiments were carried out at lab scale at about 25 ◦C. A batch reactor of 0.5 L
was fed with 250 mL of 70–150 mg L−1 HA solution (CHA). The pH of the samples was recorded using
a HI 9017 Hanna Instruments pH meter, calibrated in pH 1, 7 and 10 buffer solutions. The initial pH
was brought to 10.0 by adding few drops of dilute NaOH solution. During the EO experiments, the
pH was continuously monitored showing only a slight decrease, from 10.0 up to a minimum of about
9.0. These experimental conditions prevented the formation of HA aggregates [64,65].

The effect of reactive (Cl−) and/or inert (ClO4
− or NO3

−) anions was evaluated by adding
0.01–0.05 mol L−1 NaCl, NaClO4 or NaNO3 to the HA solution, which caused an increase of the ionic
strength (IS) in the range 10–50 mM. The electrochemical reactor (Figure 1) consisted of two cylindrical
electrodes of platinum-coated titanium 0.80 cm in diameter and 10 cm in length, placed at a distance of
3 cm. The electrodes were connected to a Direct Current (DC) power supply BPS-305 (Lavolta, London,
UK). The EO tests were carried out under amperostatic conditions at values of current density (I) in the
range 77–230 A m−2.
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Figure 1. Diagrammatic representation of the electrochemical reactor.

2.4. UV–Vis Analysis

The starting HA solutions and the aliquots collected at programmed time-intervals during the
electro-removal treatment were analyzed by UV–Vis spectroscopy. The UV–Vis spectra were recorded in
the range of 200–800 nm on a Lambda 40, spectrometer, optical path = 1.00 cm (Perkin Elmer, Waltham,
MA, USA). Quantitative analysis was performed using an absorbance–concentration calibration curve
at 320 nm (molar extinction coefficient = 0.01412 L cm−1 mg−1). After each test, the electrodes were
washed with a solution containing Na4P2O7 and NaOH, and the rinsing solution was analyzed by
UV–Vis spectroscopy to verify the occurrence of HA adsorbed on the electrode surface. In no case was
HA detected in measurable amount.

2.5. Low-Pressure Size-Exclusion Chromatography (LP-SEC)

In selected experiments, low-pressure size-exclusion chromatography was performed in order
to obtain information on the molecular weight distribution of HA and of reaction products, using a
Bio-Gel P10 Gel medium with 1.5–20 kDa fractional range (Bio-Rad Laboratories, Hercules, CA, USA),
in a column 30 cm in length and 2.5 cm in diameter, eluted with 0.1 mol L−1 NaHCO3 at a flow rate of
2.0 mL h−1. Vanillic acid was used in LP-SEC experiments as a reference for low molecular weight
HA-like compounds.
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2.6. Total Organic Carbon

The total organic carbon (TOC) was determined at the end of the EO runs using a TOC-L
CSN carbon analyzer (Shimadzu, Kyoto, Japan). Samples were heated to 680 ◦C in an oxygen-rich
environment in combustion tubes filled with a platinum catalyst. The carbon dioxide generated by
oxidation was measured with an infrared gas analyzer.

2.7. Elemental Analysis

The C/H ratios in the starting HA solution and two HA solutions obtained by the addition of 0.01 mol L−1

NaCl or NaClO4 were determined by elemental analysis before and after the electro-removal runs. To this
purpose, the solutions were first subjected to LP-SEC. The eluted fractions were recovered, and the pH was
brought to about 3 with a dilute HCl solution. This procedure was performed twice. Finally, the samples
were dialyzed against water to eliminate the residues of NaHCO3 (eluent phase of the LP-SEC), lyophilized
and analyzed using a CHN628 elemental analyzer (Leco, St. Joseph, Michigan, USA).

3. Results and Discussion

3.1. Electro-Oxidation of HA

The EO of HA was investigated under several different operational conditions: about one hundred
kinetic runs were carried out to evaluate the effect of changes in HA and salt concentrations, type of
electrolyte and current density.

UV spectroscopy and TOC measurements demonstrated a marked reduction of HA concentration
in all experiments. During EO experiments, the release of bubbles from the electrodes was observed.
According to the literature [66], this was probably due to the electrolysis of water leading to the
formation of O2 (anode) and H2 (cathode) and causing overpotential phenomena. Figure 2 shows, as
an example, the time dependence of HA concentration in two kinetic runs performed in the presence
of 10 mM NaCl and 10 mM NaClO4, respectively. The degradation reaction was faster for the sample
containing NaCl. As discussed in detail in Section 3.2, the different degradation rates of HA in the
presence of Cl− (reactive) and ClO4

− (inert) can be ascribed to the different chemical behavior of these
anions under current flow.
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To explore the effect of each investigated parameter on the rate of HA oxidation, the initial reaction
rates (v0) of the experimental kinetic curves were estimated and compared. The values of v0 (accessible
in Supplementary Material) were obtained from the slope of the tangent to the concentration-time
curve at t = 0. Figure 3 reports the full set of estimated v0 values as a function of NaCl concentration at
four current densities.
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Figure 3. Dependence of the initial reaction rate (v0), on log scale, on NaCl concentration under different
operational conditions: CHA = 70–150 mg L−1; NaClO4 and NaNO3 = 0–50 mM; IS = 10–50 mM; initial
pH = 10.0; I = 77 A m−2 (A), 115 A m−2 (B), 153 A m−2 (C), 230 A m−2 (D).

As can be seen, the degradation rate was simultaneously affected by HA concentration, Cl−

concentration, current density and ionic strength.
To clarify the role of HA concentration in the kinetics of the process, we investigated the dependence

of v0 on HA concentration for different current densities, while keeping the salt concentration constant.
The results from experiments carried out in the presence of 10 mM NaClO4 and 10 mM NaCl are
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illustrated in Figure 4A,B, respectively. The curves were obtained by fitting the data to linear equations
passing through the origin.
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The reaction rate linearly increased with increasing HA concentration, within experimental error,
thus suggesting that the reaction obeys the first-order kinetics relative to HA. As clearly shown in
Figure 4A,B, the slope of the lines proportionally increased with increasing current density. This
suggests that the fraction of current loss due to undesirable side-reactions, such as the evolution of O2

at the platinum anode [67], did not appreciably vary over the investigated range of current density.
The effect of ionic strength on the kinetics of HA EO was studied using NaClO4 as an inert

supporting electrolyte. Interestingly, an increase of the HA removal rate with increasing NaClO4

concentration for all the investigated experimental conditions was observed (see Figure 5A). It is worth
noting that the removal of HA was not strictly proportional to the salt concentration: the initial rate of
HA oxidation increased less rapidly with respect to the increase of NaClO4 (concave downward trend),
as can be inferred from the slope of the lines in Figure 5A and from the data points in Figure 5B, which
do not lie along a straight line passing from the origin. Experiments with another inert electrolyte,
NaNO3, gave similar results (see Table S1 in the Supplementary Materials). A similar, although less
marked, effect of ionic strength on the oxidation rate of HA was also observed in the presence of
chloride ions. Figure 5C shows, as an example, that the rate of HA EO in the presence of 10 mM Cl−

slightly increased with an increase in NaClO4 concentration from 0 to 40 mM.
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Figure 5. Effect of the supporting inert electrolyte (NaClO4) on the initial rate of HA electro-oxidation
(v0): (A) dependence of v0 on CHA at different NaClO4 concentrations (10–50 mM), I = 77 A m−2;
(B) dependence of v0 on NaClO4 concentration at different CHA (70–150 mg L−1), I = 77 A m−2; (C) effect
of NaClO4 concentration on v0 in the presence of 10 mM NaCl, CHA = 100 mg L−1, I = 153 A m−2.
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The results presented above indicate that ionic strength plays an active role in HA EO. In line with
transition state theory [68], a possible explanation for this behavior might be in the polyanionic nature
of HA. Moreover, a rise in ionic strength causes HA molecules to shift to a more compact conformation,
possibly altering their sensitivity to EO [69,70].

UV–Vis spectral analysis, TOC measurement, size-exclusion chromatography and elemental
analysis provided useful information concerning the nature of the chemical species generated by the
EO process. Figure 6 reports the UV–Vis spectra of untreated HA solution and of two HA solutions
containing NaCl or NaClO4 after the EO treatment.
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Figure 6. UV–Vis spectra of untreated HA containing 10 mM NaCl and after electrochemical treatment
in the presence of 10mM NaCl and 10mM NaClO4; I = 115 A m−2. The UV–Vis spectrum of the
untreated HA in the presences of 10 mM NaClO4 is not shown because very similar to that of the
untreated HA sample containing NaCl.

The spectrum of the untreated HA solution shows the typical HA absorbance in the UV–Vis region,
reflecting the presence of conjugated double bonds systems and aromatic groups [71]. The spectra
show a hypsochromic shift and a concomitant hypochromic effect in both treated solutions. These
spectroscopic effects can only in part be ascribed to HA mineralization, in line with TOC reduction
from 58.2 mg L−1 to 38.0 (≈35% TOC reduction) and 29.0 mg L−1 (≈50% TOC reduction) in the NaClO4

and NaCl solution, respectively.
Figure 7 reports LP-SEC chromatograms of HA solution containing 10 mM NaCl, before and after

EO and, for comparison, of vanillic acid (a low-molecular-weight HA-like compound). At the end of
the EO experiment, the solution shows a reaction product with an intermediate retention time between
the pristine HA sample and vanillic acid. This suggests that the treatment induces the formation of
compounds with lower hydrodynamic volume (i.e., the volume of the molecules in solution) and lower
molecular weight than the original HA molecules, while still retaining a macromolecular character.
These findings are supported by dialysis experiments, which showed that the product of HA EO did
not diffuse across a membrane with a relatively high cut off (6–8 kDa).
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(reaction product) and, for comparison, of vanillic acid; NaCl concentration = 10 mM.

Elemental analysis showed that the C/H ratio decreased from 12.4 in the untreated solution to 9.0
and 8.5 in treated solutions containing NaClO4 and NaCl, respectively. This suggests that the reaction
product had a lower degree of unsaturation than the initial HA.

The full characterization and identification of byproducts was not possible. However, the
formation of chlorinated compounds has been observed by several authors [72,73].

The TOC reduction obtained in the present work is quite low compared to that reported in other
studies on HA EO, the main reason probably being passivation and high overpotential of platinum
electrodes [66]. Alternative electrode materials may strongly enhance the dispersion of anions in the
solution and, therefore, the removal of HA [74–76]. Better HA aqueous removal efficiency was obtained,
for example, by Deng et al. [49] using a Ti/RuO2 anode, an electric current density of 100 mA/cm2

and pH 6.5. Those authors observed a reduction of chemical oxygen demand (COD) by over 80% in
biologically pre-treated landfill leachate. Wang et al. [10] reported complete mineralization of HA from
an effluent of biotreated coking wastewater after 30-min treatment involving boron-doped diamond
anodes. Trellu et al. [59] obtained nearly 99% reduction of TOC in drinking water within 7-h treatment
at 1000 mA, using a boron doped diamond anode and a stainless-steel cathode.

3.2. Kinetic Modelling

In line with former work [60], the experimental data reported above suggest that the degradation
of HA may proceed through one or two pathways, depending on whether chloride is present or not.

In the presence of inert supporting electrolytes (in our protocol, NaClO4 or NaNO3) but without
chlorides (or of other salts, such as sulfates, from which oxidant species can be electro-generated), HA
EO only depends on the formation of hydroxyl radicals by water discharge at the anode [52]. The first
step of this oxidative pathway is water interaction with active sites at the anode surface leading to the
formation of adsorbed hydroxyl radicals (Equation (1)):

H2O + Pt→ Pt(OH•) + H+ + e− (1)
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In the second step, hydroxyl radicals oxidize HA (Equation (2)):

Pt(OH•) + HA→ Pt + Oxidized HA (2)

Oxidation can only occur in close proximity to the anode, because hydroxyl radicals have a very
short lifetime [52]. Thus, the rate of reaction (2) most likely controls the overall reaction rate. If so, HA
concentration should be a primary determinant of the reaction rate. Our experimental results support
this conclusion by showing a linear relationship between the reaction rate and HA concentration
(Figure 4A).

The rate of HA degradation in the presence of NaCl as electrolyte was significantly higher than
with NaClO4 or NaNO3 (Figures 2 and 4), indicating that HA oxidation not only occurred via hydroxyl
radicals, as was the case with inert electrolytes, but additionally involving active chlorine species
originating from chloride ions during the electrochemical process. Active chlorine species such as Cl2,
HClO and ClO− may be generated at the anode by the following reactions [52]:

2Cl−→ 2Cl• + 2e− (3)

2Cl•→ Cl2 (4)

Cl2 + H2O→ HClO + H+ + Cl− (5)

HClO↔ H+ + ClO− (6)

Although active chlorine species have lower reduction potentials than hydroxyl radicals, they
may be more efficient oxidants because, after formation at the anode, they are sufficiently stable to
diffuse into the solution and bulk-react with HA. The relative abundance of Cl2, HClO and ClO−

depends on pH. At pH 10 chosen for our experiments, ClO− dominates over the other species and is
probably the main driver of HA EO [77].

The reactions of HA oxidation by hydroxyl radicals and active chlorine species probably proceed
in parallel as sketched in Figure 8, with kOH and kCl being the kinetic rate constants of either pathway.

Water 2020, 12, 2250 12 of 18 

 

support this conclusion by showing a linear relationship between the reaction rate and HA 

concentration (Figure 4A). 

The rate of HA degradation in the presence of NaCl as electrolyte was significantly higher than 

with NaClO4 or NaNO3 ( Figure 2;  Figure 4), indicating that HA oxidation not only occurred via 

hydroxyl radicals, as was the case with inert electrolytes, but additionally involving active chlorine 

species originating from chloride ions during the electrochemical process. Active chlorine species 

such as Cl2, HClO and ClO− may be generated at the anode by the following reactions [52]: 

2Cl−  2Cl• + 2e− (3) 

2Cl•  Cl2 (4) 

Cl2 + H2O  HClO + H+ + Cl− (5) 

HClO  H+ + ClO− (6) 

Although active chlorine species have lower reduction potentials than hydroxyl radicals, they 

may be more efficient oxidants because, after formation at the anode, they are sufficiently stable to 

diffuse into the solution and bulk-react with HA. The relative abundance of Cl2, HClO and ClO− 

depends on pH. At pH 10 chosen for our experiments, ClO− dominates over the other species and is 

probably the main driver of HA EO [77]. 

The reactions of HA oxidation by hydroxyl radicals and active chlorine species probably proceed 

in parallel as sketched in Figure 8, with kOH and kCl being the kinetic rate constants of either pathway. 

 

Figure 8. Proposed pathways for the electro-oxidation of HA. 

In order to model the kinetics of HA degradation, we used the initial reaction rate method, a 

method widely used in enzymatic kinetics [78]. This approach has the advantage of being 

independent of the time evolution of reactive species and operational conditions (e.g., HA, pH, 

concentration of chlorine species and OH•). 

Based on the above reasoning and in line with the data presented, we propose the following 

equation to describe the initial rate of HA EO in the presence of inert supporting electrolytes (v0,OH, 

upper reaction pathway in Figure 8): 

v0,OH = −(dCHA/dt)0 = kOH × CHA × ISn × I (7) 

where CHA, IS and I are the initial HA concentration, ionic strength and current density, respectively, 

and n is a constant. 

The rate of HA EO in the presence of Cl− (lower reaction pathway in Figure 8) depends on the 

formation rate of both hydroxyl radicals and active chlorine species. In line with our experimental 

data, the initial rate of HA electro-oxidation in the presence of Cl− (v0,Cl) varies with the initial chloride 

concentration (CCl−), CHA, IS and I according to the following relation: 

v0,Cl = −(dCHA/dt)0 = kCl × CCl− × CHA × ISn × I (8) 

Figure 8. Proposed pathways for the electro-oxidation of HA.

In order to model the kinetics of HA degradation, we used the initial reaction rate method, a
method widely used in enzymatic kinetics [78]. This approach has the advantage of being independent
of the time evolution of reactive species and operational conditions (e.g., HA, pH, concentration of
chlorine species and OH•).

Based on the above reasoning and in line with the data presented, we propose the following
equation to describe the initial rate of HA EO in the presence of inert supporting electrolytes (v0,OH,
upper reaction pathway in Figure 8):

v0,OH = −(dCHA/dt)0 = kOH × CHA × ISn
× I (7)
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where CHA, IS and I are the initial HA concentration, ionic strength and current density, respectively,
and n is a constant.

The rate of HA EO in the presence of Cl− (lower reaction pathway in Figure 8) depends on the
formation rate of both hydroxyl radicals and active chlorine species. In line with our experimental
data, the initial rate of HA electro-oxidation in the presence of Cl− (v0,Cl) varies with the initial chloride
concentration (CCl

−), CHA, IS and I according to the following relation:

v0,Cl = −(dCHA/dt)0 = kCl × CCl
−
× CHA × ISn

× I (8)

The quantity ISn in Equations (7) and (8) was introduced to take into account the observed effect of ionic
strength, which unlike CHA, CCl

−and I cannot be described by a first-kinetic-order reaction (cf. Figure 5).
The overall initial rate (v0) of HA electro-oxidation can be obtained by summing up Equations (7) and (8):

v0 = kOH × CHA × ISn
× I + kCl × CCl

−
× CHA × ISn

× I (9)

To test the validity of the above model and estimate the kinetic parameters, the initial reaction rate
(v0) values shown in Figure 3 were fitted to Equation (9) using a multivariable fitting procedure (Table 1).

Table 1. Kinetic parameters for the EO of HA.

kCl
(Ln+1 m2 mmol−(n+1)h−1 A−1)

kOH
(Ln m2 mmol−nh−1 A−1)

n Adjusted R2

(1.4 ± 0.3) × 10−5 (2.0 ± 0.4) × 10−4 0.24 ± 0.06 0.93

Our kinetic model fitted the experimental data well (as shown by a high adjusted R2 value) and
produced a reliable estimation of kinetic parameters (because of relatively low associated standard
errors). As expected, the results point to a significant effect of ionic strength (n = 0.24). Noticeably, the
values of the estimated kinetic parameters suggest that, at low Cl− concentration (e.g., 10 mM), the rate
of the oxidation of HA is mainly promoted by the hydroxyl radicals, i.e., the pathway mediated by
hydroxyl radicals predominates over the pathway depending on active chlorine species.

The accuracy of the above model was verified by parity plotting model predictions and experimentally
measured values of initial v0 (Figure 9). Most points fell in a variation range of±30%, indicating a satisfactory
agreement between predicted and experimental data for all operative conditions tested. This supports our
kinetic model as a reliable description of HA EO in the experimental conditions investigated.
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4. Conclusions

The electro-treatment of HA solution using Pt electrodes led to rapid oxidation of HA into smaller
molecules with lower aromaticity and conjugation degree. The impacts of these products on the
ecosystem and human health remain to be determined. Humic acids EO may proceed through two
concurrent reactions, one mediated by reactive chlorine species, the other by hydroxyl radicals, the
latter being dominant at low chlorine concentration. Kinetic analysis suggests that the overall reaction
rate is of a first-order relative to HA and Cl− concentrations and current density. An appreciable effect
of ionic strength was observed, probably due to the polyanionic nature of HA molecules. A kinetic
model was proposed and successfully applied to predict the rate of HA electro-oxidation.

Supplementary Materials: Available online at http://www.mdpi.com/2073-4441/12/8/2250/s1. Table S1: Initial
oxidation rate (v0) of humic acids (HA) under different operational conditions
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