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Abstract: Mesoscale eddies play an important role in ocean circulation, material energy exchange
and variation of ocean environments. Machine learning methods can efficiently process massive
amounts of data and automatically learn the implicit features, thus providing a new approach to eddy
prediction research. Using the mesoscale eddy trajectory data derived from multimission satellite
altimetry, we propose relevant machine learning models based on long short-term memory network
(LSTM) and the extra trees (ET) algorithm for the prediction of eddy properties and propagation
trajectories. Characteristic factors, including attribute features and past eddy displacements, were
exploited to construct prediction models with high effectiveness and few predictors. To study their
effects at different forecasting times, we separately trained the models by rebuilding the corresponding
relationship between eddy samples and labels. In addition, the variation characteristics and the
predictability of eddy properties and propagation trajectories were discussed from the prediction
results. Cross-validation shows that at different prediction times, our method is superior to previous
methods in terms of the mean absolute error (MAE) of eddy properties and the root mean square error
(RMSE) of propagation. The stable variation in eddy properties makes the prediction more dependent
on the historical time series than that of a propagation forecast. The short-term propagation prediction
of eddies contained more noise than long-term predictions, and the long-term predictions revealed a
more significant trend. Finally, we discuss the effect of eddy properties on the prediction ability of the
eddy propagation trajectory.

Keywords: mesoscale eddies; eddy properties; propagation trajectory; performance evaluation;
machine learning

1. Introduction

Mesoscale eddies play an important role in the mixing and transport of momentum, heat, mass
and biogeochemical tracers in the global ocean [1–3]. In addition, eddies have a critical influence
on rainfall, near-surface wind, clouds and marine ecosystems in their vicinity [4–6]. The accurate
prediction of eddies is of great scientific and applied significance for understanding eddy propagation
and evolution characteristics and improving simulations and predictions of regional weather and
climate change [7,8].

In general, the main methods used for oceanic mesoscale prediction can be divided into
three categories: dynamic statistical methods, numerical methods and machine learning methods.
Traditionally, ocean dynamic models have been used to forecast the evolution of ocean eddies.
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Robinson et al. [9] reported the first use of a mesoscale eddy observation network in the prediction of
eddy evolution at two weeks; this model was an anisotropic statistical model for mixed spatiotemporal
target analysis. Li et al. [7] developed a multiple linear regression model to predict the eddy
propagation trajectory at 1–4 weeks. This simple empirical model combined the oceanic parameters
that mainly represent β effects and mean flow advection with eddy propagation positions. With the
development of computer technology, numerical prediction has been applied to study oceanic
eddies. In 1994, Masina et al. [10] proposed an objective analysis method and established a regular-grid
quasi-geostrophic numerical model in the initial field of the Adriatic Sea area. Based on the experimental
results, they concluded that topographic changes had a considerable impact on the prediction ability
of the model. Shriver et al. [11] combined the navy stratified ocean model (NLOM) with the optimal
interpolation (OI) method, which improved the resolution of the prediction system from 1/16◦ to 1/32◦.
The nonlinear characteristics of mesoscale eddies and the sensitivity of numerical models to the initial
conditions and background errors make forecasting difficult, which has always been a major challenge
for marine numerical models [7,8].

With the continuous advancement of artificial intelligence, machine learning has led to remarkable
achievements in many fields, such as pattern recognition and target detection, based on powerful
feature extraction and modelling capabilities [12–14]. In recent years, with the rapid acquisition of
long time series of marine remote sensing data over large areas to obtain a sufficient sample size, many
breakthroughs have been made in the study of eddies. The automatic identification and extraction
of eddies based on remote sensing data has become an effective means of studying eddies [15,16].
Chelton et al. identified and tracked global eddies on the basis of sea surface height (SSH) from remote
sensing satellites [17,18]. Ashkezari et al. used machine learning to forecast the lifetime of eddies
in stable evolution [19]. Ma et al. combined a convolutional neural network (CNN) and LSTM to
reconstruct the future field of sea level anomalies (SLAs) and applied an eddy detection algorithm
for 1–7 day eddy prediction [8]. However, the forecasts were strongly affected by the SLA noise in
each grid, and the corresponding relationship between the time before and after the target eddies
formed was ignored. Accurately tracking and predicting target eddies in a complex flow field remain
major challenges.

In this paper, we constructed a numerical vector containing the most relevant features of eddy
prediction targets according to the eddy properties and propagation trajectories. A LSTM network is
used to learn the spatiotemporal variation characteristics, and the et algorithm is applied to learn the
relevant one-dimensional characteristics at the current time. Prediction models of eddy properties and
propagation trajectories are established for the comprehensive and accurate forecasting of target eddies
at different prediction times. The experimental results show that the proposed method outperforms
those in previous studies. By comparing the LSTM method with other machine learning regression
methods, it can be concluded that the prediction of eddy properties is more dependent on the historical
time series data than the propagation trajectory. Finally, the variation characteristics and predictability
of eddy properties and propagation trajectories are discussed. The eddy properties have different
impacts on model performance in propagation prediction.

This paper is organized as follows. In Section 2, the data sources, implementation flow of the
method, and model structure used in this paper are introduced. Section 3 focuses on analyzing
and comparing the results of multiple methods, and an extended discussion is given in Section 4.
Finally, Section 5 presents some conclusions and future research prospects.

2. Data and Methodology

This paper used the global mesoscale oceanic eddy trajectory dataset published by
Chelton et al. [18], which is still being updated and available on the Archiving, Validation,
and Interpretation of Satellite Oceanographic data (AVISO) (https://www.aviso.altimetry.fr/en/data/

data-access). The trajectory dataset includes records for the eddies derived from multimission altimetry
datasets, with location, speed, radius and other associated metadata each day. A detailed description
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of the dataset was given by Chelton et al. (2011) [18] and Mason et al. (2014) [20]. The South China
Sea is a region with numerous eddies with obvious spatiotemporal variation characteristics [21–23].
In this study, the South China Sea (5◦–25◦ N, 105◦–125◦ E) was taken as the experimental area. Based
on daily eddy trajectory and attribute data over 20 years (1993–2012), eddy properties and propagation
trajectories were predicted. The overall process framework of our method in this paper is shown in
Figure 1.
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Figure 1. Framework of eddy predictions. (a) Characteristic factors, including the features of eddy
properties and propagation trajectory characteristics at time t. (b) Prediction targets, including the
properties and propagation trajectories of eddies at time t + n, where n refers to the time step of
forecasting. (c) Eddy property prediction based on the LSTM network. (d) Eddy propagation trajectory
prediction based on the integrated ET model.

The characteristic factors we selected can be divided into two categories. One category describes
the relevant properties of an eddy itself, including the amplitude (Amp), radius (Rad) and maximum
circum-average (MCA) speed (MCAs). Such characteristics reflect the real status of an eddy on the
two-dimensional sea surface. The other category involves the eddy latitude and longitude (Lon, Lat),
past zonal displacement (X_P) and meridional displacement (Y_P) associated with the propagation
positions of eddies. These parameters encompass the recent patterns of eddy propagation that are
affected by β effects and the mean advection. In the evolution process of eddies, the properties and
propagation trajectories change dynamically and are interrelated. The two-dimensional properties
of eddies are related to movement and reflect the current state and changes in eddies. Based on
the corresponding relationship ((X, t), (Y, t + n)) between a feature vector (X, t) and the predicted
values (Y, t + n) at different prediction time steps n, we built machine learning models to explore the
implicit relations between these characteristic factors and the labels for eddy prediction. The proposed
prediction algorithm includes the following steps.

(1) The characteristic factors X related to eddies at the current time t and the predicted target Y at time
t + 1 are combined to form a one-to-one corresponding relationship ((X, t), (Y, t + n)) between
eddy samples and labels. This information is then input into the model after preprocessing.

(2) If the predicted target belongs to eddy properties, the samples (X, t), (X, t− 1), (X, t− 2) . . . from
previous time series are used to learn the spatiotemporal features of the associated eddy or eddies.
An LSTM network for eddy property prediction is constructed to obtain three prediction models
for the eddy amplitude, radius and MCAs.

(3) If the predicted value Y is the eddy propagation trajectory, the characteristic factors (X, t) at the
current time t are used to learn the eddy features at the current moment, and the ET model is
built to obtain two prediction models of zonal and meridional displacement for eddies.
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(4) When the forecasting time step is n, the above steps (1), (2) and (3) are repeated. Then, the 5·n
matrices of independent models for different prediction targets are obtained, and the training
models are parallelized to form an integrated learning system for eddy prediction.

2.1. LSTM Network for Learning Temporal Features

An LSTM network is an improved version of a recurrent neural network (RNN) that successfully
solves the long-term dependence issue in prediction. LSTM methods have become the most popular
RNN models in voice recognition, natural language processing and many other fields [24–26].
The structure of LSTM is relatively complex, and a cell is added to the hidden layer of the original RNN
to preserve the long-term status. As shown in Figure 2a, LSTM has three inputs at time t: the input
value Xt of the network at the current moment and the output value ht−1 and the cell state Ct−1 at time
t− 1. There are two outputs of LSTM: the LSTM output value ht at the current moment and the current
cell Ct. The LSTM network uses a “gate” structure to control information flows. Figure 2b shows
the process of information transfer in LSTM unit A2. The input gate It of LSTM determines the
input information at the current time t and adds the information to the memory information flow.
The function of the forget gate Ft is to decide what information should be retained by memory and
passed to the next memory layer; simultaneously, other information is discarded. The update gate Ut

is used to calculate the total amount of information passed between the current input and the previous
memory output; the output gate Ot controls the amount of information used for the next update.
With this gate structure, the LSTM network can complete information transfer tasks with temporal
relationships. The main operation process of the model is as follows:

Ft = σ(W f ·[ht−1, xt] + b f ) (1)

It = σ(Wi·[ht−1, xt] + bi) (2)

Ut = tanh(Wu·[ht−1, xt] + bu) (3)

Ct = It·Ut + FtCt−1 (4)

Ot = σ(Wo·[ht−1, xt] + bo) (5)

ht = Ot·tanh(Ct) (6)

where Wi, W f , Wu and Wo are the weights of the input gate, forget gate, update gate and output gate,
respectively. bi, b f , bu and bo are the biases of the input gate, forget gate, update gate and output gate,
respectively. σ and tanh represent the activation functions.
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In this paper, an LSTM network was used to predict eddy properties. Mesoscale eddy motion
(including the speed, shape, radius, displacement, etc.) is a process with spatiotemporal variations.
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In the movement process, the positions and properties of eddies at different moments are characterized,
and these properties are related to the previous motion state. Thus, the future state of a mesoscale
eddy can be predicted by the characteristic parameters at multiple moments in the preceding sequence.
In our study, the one-dimensional characteristic parameters of an eddy at time t are taken as the inputs
of the LSTM model. For example, given a sequence of spatiotemporal variables Xt−b(b = 1, 2, 3 . . .),
the future state Yt+n of the mesoscale eddy is predicted. The time series prediction model can be
expressed as follows:

Yt+n = f (Xt, Xt−b) n, b = 1, 2, 3 . . . (7)

where Yt+n is the eddy status after n time steps from the current prediction time t, f represents the
model that needs to be learned through historical data, Xt is the vector of eddy characteristic factors at
time t, and Xt−b is the vector of eddy characteristic factors corresponding to b time steps before time t.

2.2. The Extra Trees Algorithm

Tree-based ensemble methods are popular approaches for supervised classification and
regression problems [27,28]. We use the et algorithm to establish a prediction model of the eddy
propagation trajectory and associate the property characteristics with changes in propagation positions.
The relationship between the response and explanatory variables is simulated by an ensemble learning
algorithm to evaluate the impact on eddy prediction. The ET regression algorithm is similar to
the random forest algorithm, which involves the construction of a large number of decision trees.
The random forest algorithm is an ensemble machine learning approach based on decision trees
and was jointly proposed by Leo Breiman and Adele Cutler in 2001 [29]. This model is composed
of a set of regression decision trees

{
h(x,θt), t = 1, 2, ···, T

}
, where θt is a random variable subject to

independent and identically distributed conditions, x is an independent variable and T is the number
of decision trees. A composite model of the composition is shown in Formula 8. The strategy for
each decision tree is to select an attribute that divides the sample features among nodes through the
specified measurement and determine the structure of the decision tree composed of root, child and
leaf nodes, as shown in Figure 3a. Finally, the mean of all decision trees is taken as the final regression
result based on ensemble learning:

h(x) =
1
T

T∑
t=1

{
h(x,θt)

}
(8)
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To overcome the low precision and overfitting problems of decision trees, bagging and random
subspace tasks are introduced into the random forest. Bagging refers to the random extraction of
multiple training samples from the original samples, and regression decision subtrees are constructed
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for each group of training samples. Bagging not only uses randomization to build regression decision
subtrees but also ensures a certain degree of correlation among independent trees. The random
subspace process involves constructing a decision subtree, in which each splitter node randomly
extracts the feature subspace from the total feature space as the candidate feature set of the node and
splits the optimal feature(s) from it. This method ensures that the differences in the nodes and feature
subsets among trees are different, guarantees the independence and diversity of trees, and improves
the randomness of node splitting. The extra tree algorithm includes two key improvements over
the random forest algorithm. The first improvement is complete random splitting based on nodes.
The second improvement is that each tree grows with the entire sample set rather than employing
guided sampling. In this way, the randomness of the model is stronger than that of a random forest,
which means that more complete features can be learned from the data, thus increasing its robustness.

In this paper, the extra tree algorithm has been applied to predict eddy propagation trajectories.
The training set Si = (X1, X2, . . . , Xn), where Xi = ( f1, f2, . . . , f7) is a vector containing 7 eddy features,
is considered. In each decision tree, Si represents the dataset trained at child node i. At each node
i, the model selects the best split based on Si, and random feature grouping is performed by the
algorithm described in Figure 3b to reduce the variance compared to that in other randomization
schemes. Variance is generated if a model is too sensitive to small fluctuations in the training set, and
high variance will lead to overfitting; however, explicit randomization in feature subset selection and
cutting point selection will reduce the variance [30].

3. Experiment and Results

3.1. Model Training and Evaluation

Our model was trained on two Titan Xp GPUs (NVIDIA, Santa Clara, CA, USA) with 12 GB
memory with the Ubuntu 16.04 system and Keras and Sklearn as the machine learning framework.
The LSTM network consisted of several processing layers that were used to continuously extract
abstract features from the input data and match these features with the targets learned through
regression tasks. Each layer included numerous neurons that calculated the weighted combination of
inputs and trained the model with the relevant dataset to optimize the model parameters through a
nonlinear activation function. In our model, the training started with the initialization of the weights
of the nodes between the layers and the updating of parameters through gradient descent. Based on
iterative processing with the training set and minimizing the loss function, the optimal solution was
obtained [24,25]. In the training of the ET model, the two parameters that had the biggest impact
on performance were the number of generated decision trees and the number of feature subsets.
We trained the model with default parameters combined with local fine-tuning.

For multi-time-step prediction, all models used historical observation data to establish a one-to-one
correspondence with the prediction target. The intermediate prediction results were not used for
recursive prediction or training at longer time steps to avoid the accumulation of prediction errors.
The prediction at each time step was direct and independent. The models adopted similar parameter
settings and network frameworks for different prediction times and targets. Of all the samples, 75%
were used for model training, and 25% were used for cross-validation to evaluate model performance.
To perform homogeneous comparisons with other studies, we used the MAE and RMSE in the
performance evaluation of eddy properties and propagation trajectory prediction, respectively; the
corresponding formulas are as follows:

MAE =
1
N

N∑
i=1

∣∣∣ŷi − yi
∣∣∣ (9)

RMSE =

√√√
1
N

N∑
i=1

(ŷi − yi)
2 (10)
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where N is the number of samples, ŷi is the predicted value, and yi is the real value.

3.2. The Prediction of Eddy Properties

Eddy properties are an important embodiment of the characteristic signal and evolution. Due to
the temporal availability, resolution and coverage improvements associated with satellite altimetry
data, an increasing number of studies have been performed to detect and extract the features of eddy
properties based on the SSH, which is an essential part of follow-up eddy tracking research. However,
few prediction studies have been based on eddy trajectory data. Machine learning models require large
numbers of samples to train and learn the implicit relationship between the data and the target and
convert the complex evolution process into a simple expression. In this study, we obtained numerous
effective samples based on the eddy positions and property information recorded in the eddy trajectory
dataset and used machine learning to study the evolution trend of eddies. Histograms of the attribute
information, including amplitude, radius and MCA information, from the South China Sea between
1993 and 2012 are shown in Figure 4; the means of the three attributes are 8.2 cm, 112.1 km and
30.8 cm/s, respectively.
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Figure 4. Histograms of eddy properties from 1993–2012. (a) Amplitude (cm); (b) Radius (km); (c)
MCA speed (cm/s).

In the experiment, we used the LSTM network for the prediction of eddy properties. The daily
variations in eddy properties are generally stable and small. Similarity algorithms based on the relevant
threshold of parameters, such as those corresponding to eddy properties, have been widely used in
studies of eddy tracking problems [18,20] to reflect the variation characteristics of eddy properties
and to achieve a simple learning mode. However, with increasing prediction time, the stability of
this change gradually decreases. The model can learn complex trends by using the characteristic
information and changes from previous time steps. The “gate” structure of the LSTM network can be
used for the transmission and updating of important features in the time series of historical information
and for selectively forgetting invalid information. A historical time series that is too long will waste
resources and require a long run time; thus, such series are not ideal for sample testing or the processing
of missing data. In the prediction of eddy properties, we use historical data sets with different time
series lengths to train and test the performance of the LSTM model. In eddy radius forecasting,
the model performance is best when the prediction time is short and the time series length is 5;
when the forecasting time was comparatively long, the time series length was 7, which led to the
lowest prediction error. For eddy amplitude and MCA forecasting, the prediction results were similar
for different time series lengths, which suggested that the time series length had little impact on the
performance of the model. Notably, the prediction error of the model was very small, and the slight
change in the time series length was not reflected in the overall index.

We calculated the prediction results for 14,000 eddy samples with the best parameters of the LSTM
model. Figures 5–7 show the spatiotemporal distribution of the errors in eddy properties within the
prediction time of 1–7 days. In the first two days of prediction, the error of most eddy samples is very
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small. As the prediction time increases, the number of eddies with large absolute errors increases, and
the number of eddies with small errors decreases, resulting in an increase in the average absolute error
for all tested eddies. The distribution errors of the eddy properties are also related to their absolute
values, and the errors generated by the eddies with small attribute characteristics are relatively small.
Table 1 lists the MAEs of eddy properties at different forecasting times, and a comparison of eddy
prediction studies in recent years is presented. Ma et al. [8] found that the polarity of eddies had little
impact on the prediction of eddy properties, so we did not distinguish the eddy polarity and took the
mean value of the prediction errors of cyclonic and anticyclonic eddies obtained by Ma et al. as the
measurement standard of the models in this paper.

Water 2020, 12, x FOR PEER REVIEW 8 of 17 

 

We calculated the prediction results for 14,000 eddy samples with the best parameters of the 
LSTM model. Figures 5–7 show the spatiotemporal distribution of the errors in eddy properties 
within the prediction time of 1–7 days. In the first two days of prediction, the error of most eddy 
samples is very small. As the prediction time increases, the number of eddies with large absolute 
errors increases, and the number of eddies with small errors decreases, resulting in an increase in the 
average absolute error for all tested eddies. The distribution errors of the eddy properties are also 
related to their absolute values, and the errors generated by the eddies with small attribute 
characteristics are relatively small. Table 1 lists the MAEs of eddy properties at different forecasting 
times, and a comparison of eddy prediction studies in recent years is presented. Ma et al. [8] found 
that the polarity of eddies had little impact on the prediction of eddy properties, so we did not 
distinguish the eddy polarity and took the mean value of the prediction errors of cyclonic and 
anticyclonic eddies obtained by Ma et al. as the measurement standard of the models in this paper. 

The results showed that the MAE gradually increased over time. The amplitude of the MAE 
increased gradually from 0.6 cm on the first day to 2.0 cm on the seventh day. The prediction 
performance of eddy amplitude was significantly improved compared with that of Ma et al. [8], with 
the MAE of the radius increasing from 10.6 km to 23.3 km and the MAE of the MCA speed increasing 
from 1.3 cm/s to 4.5 cm/s. The results reflect the excellent performance of the proposed model, which 
not only improved the overall MAE values but also resulted in longer prediction windows and 
different properties. These results highlight the efficiency of the proposed LSTM network in 
predicting eddy properties and mitigating traditional prediction problems. We reconstructed the 
corresponding relationship between the samples and labels at different prediction times and trained 
the model separately. Thus, the results of the model at the current prediction time had no direct 
correlation with the results at the previous prediction time, indicating that the models were 
independent and parallel. The approach avoids the accumulation of prediction errors and yields 
excellent prediction performance. 

 
Figure 5. (a) Scatterplot of the spatial distribution of the eddy amplitude (cm) in the test set. (b–h) The 
forecasting errors (cm) of eddy amplitude from the first day to the seventh day. 

Figure 5. (a) Scatterplot of the spatial distribution of the eddy amplitude (cm) in the test set. (b–h) The
forecasting errors (cm) of eddy amplitude from the first day to the seventh day.



Water 2020, 12, 2521 9 of 17
Water 2020, 12, x FOR PEER REVIEW 9 of 17 

 

 
Figure 6. (a) Scatterplot of the spatial distribution of the eddy radius (km) in the test set. (b–h) The 
forecasting errors (km) of eddy radius from the first day to the seventh day. 

 
Figure 7. (a) Scatterplot of the spatial distribution of the eddy MCAs (cm/s) in the test set. (b–h) The 
forecasting errors (cm/s) of eddy MCA speed from the first day to the seventh day. 

  

Figure 6. (a) Scatterplot of the spatial distribution of the eddy radius (km) in the test set. (b–h) The
forecasting errors (km) of eddy radius from the first day to the seventh day.

Water 2020, 12, x FOR PEER REVIEW 9 of 17 

 

 
Figure 6. (a) Scatterplot of the spatial distribution of the eddy radius (km) in the test set. (b–h) The 
forecasting errors (km) of eddy radius from the first day to the seventh day. 

 
Figure 7. (a) Scatterplot of the spatial distribution of the eddy MCAs (cm/s) in the test set. (b–h) The 
forecasting errors (cm/s) of eddy MCA speed from the first day to the seventh day. 

  

Figure 7. (a) Scatterplot of the spatial distribution of the eddy MCAs (cm/s) in the test set. (b–h) The
forecasting errors (cm/s) of eddy MCA speed from the first day to the seventh day.



Water 2020, 12, 2521 10 of 17

Table 1. Prediction errors of eddy properties in our work and the results in () are from Ma et al. [8].

Forecasting
Days 1st 2nd 3rd 4th 5th 6th 7th 14th 21th 28th

Amplitude
(cm)

0.6
(0.8)

0.9
(1.2)

1.1
(1.6)

1.4
(1.9)

1.6
(2.2)

1.8
(2.4)

2.0
(2.7) 2.8 3.2 3.5

Radius
(km)

10.6
(11.4)

14.3
(15.3)

17.1
(18.3)

19.2
(21.2)

21.1
(23.2)

22.8
(24.9)

23.3
(26.5) 27.2 28.9 29.8

MCA speed
(cm/s) 1.3 1.9 2.6 3.1 3.6 4.0 4.5 6.1 7.1 7.7

The results showed that the MAE gradually increased over time. The amplitude of the MAE
increased gradually from 0.6 cm on the first day to 2.0 cm on the seventh day. The prediction
performance of eddy amplitude was significantly improved compared with that of Ma et al. [8],
with the MAE of the radius increasing from 10.6 km to 23.3 km and the MAE of the MCA speed
increasing from 1.3 cm/s to 4.5 cm/s. The results reflect the excellent performance of the proposed model,
which not only improved the overall MAE values but also resulted in longer prediction windows and
different properties. These results highlight the efficiency of the proposed LSTM network in predicting
eddy properties and mitigating traditional prediction problems. We reconstructed the corresponding
relationship between the samples and labels at different prediction times and trained the model
separately. Thus, the results of the model at the current prediction time had no direct correlation with
the results at the previous prediction time, indicating that the models were independent and parallel.
The approach avoids the accumulation of prediction errors and yields excellent prediction performance.

3.3. Eddy Propagation Trajectory Prediction

ET is a common regression algorithm in machine learning that performs well for various datasets.
Compared with traditional regression algorithms, the training speed and prediction accuracy of the
proposed method have notable advantages. Figure 8 shows the test results for each model. From the
scatter diagram, the models show consistent prediction accuracy at almost all displacements, and
the eddies are evenly distributed on both sides of the fitting line. In the prediction in the first week,
the RMSEs obtained for zonal displacement and meridional displacement were 31.1 km and 29.4 km,
respectively. In the same forecasting time, the meridional displacement and zonal displacement showed
a consistent correlation coefficient, which indicated that the model prediction of zonal displacement is
equivalent to that of meridional displacement. With an increasing forecasting time, the correlation
coefficient of eddies increased from 0.74 to 0.90. The results indicated that the fitting ability and
predictions of the model gradually improved. These findings were verified by the motion characteristics
of the eddies in the South China Sea. Influenced by the planetary β effect and the seawater flow in the
background field, the eddies generally move southwest in the evolution process, and the trend of the
movement becomes more obvious as time increases [31,32].
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Figure 9a shows the statistical distribution of the zonal and meridional displacements of the
eddies during weeks 1–4. The quantity ratio of zonal displacement to the east and west in the first week
was 0.38:1, and this value decreased to 0.27:1 in the 4th week. During the period of weeks 1–4, more
than 72.5% of eddies shifted to the west in the zonal displacement. The quantity ratio of meridional
displacement displayed no obvious trend from 1–4 weeks. As the forecasting time increased, the RMSE
of the reverse-normalized evaluation index increased. The zonal displacement RMSE increased from
31.1 km to 48.1 km, and the meridional displacement increased from 29.4 km to 43.6 km. The results
suggest that the short-term propagation forecasts of eddies contain more noise than the long-term
forecasts and that the long-term motion trend is more significant; this result may be due to the joint
action of local oceanic environmental factors and the planetary β effect [23,32–34].
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The model measures the importance of features according to the number of times the feature
is selected in the splitting of each tree; the mean value of all trees is used as the indicator of feature
importance. After training, our model gives the importance of each variable. Figure 9b provides a
comparison of feature importance for the variables in the 1–4 week forecasting windows, and the relative
contribution of each predictor in each prediction period is shown. The larger the feature importance
value is, the greater the contribution of this feature to the individual forecasting model. Among the
two types of variables, the feature importance of the eddy property variables in the prediction steadily
changes, accounting for more than 30% of the total contribution. Overall, the importance of such
variables decreases with increasing forecasting time. Similarly, the eddy displacement information
(X_P, Y_P) from the previous week decreases in feature importance as the forecasting time increases.
The longitude contributes the most to the prediction of latitudinal displacement, and the latitude
contributes the most to the meridional displacement. This result indicates that the latitude and
longitude are important characteristic factors in our models, and the longer the prediction time is, the
closer the relationship between the positions and eddy displacement. Feature importance analysis
reflects the eddy movement in a relatively short time for the propagation of uncertainty to a certain
extent. The uncertainty increases the difficulty of producing accurate predictions, and the results verify
that the eddy properties have an impact on the prediction of the eddy propagation trajectory. If eddy
movement is treated as particle motion considering the two-dimensional property characteristics, the
actual motion status of the vortex can be accurately determined, resulting in a high prediction accuracy.

The South China Sea is a semi-enclosed sea affected by the East Asian monsoon and Kuroshio
intrusion. In this region, mesoscale eddies have an obvious geographical distribution and multiple
characteristics due to variable external forces and complex topography [21–23]. To evaluate the
predictive performance of the model, we chose the same region (12–23◦ N, 108–121◦ E) as considered
in previous studies for further comparison [7]. Table 2 shows the comparison of our ET model with
other regression methods, including LSTM, random forest and gradient boosting methods, which are
commonly applied to solve different regression problems. The results suggest that our method is
superior to the other machine learning methods, as well as the method of Li et al. (2019) [7]. Li et al.
constructed a multiple linear regression model based on eddy dynamics. However, the nonlinear
motion of eddies and the external non-uniform forces make it difficult to predict the eddy propagation
trajectory. Our ET model can effectively capture the nonlinear motion characteristics of eddies through
its unique integrated learning mode and effectively learn the patterns of eddy propagation, thereby
reducing the prediction error associated with the nonlinear characteristics of eddies.
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Table 2. Comparison of prediction performance for various methods in eddy zonal displacement
(meridional displacement).

Forecasting
Weeks LSTM Random Forest Extra Trees Gradient

Boosting
Multiple Linear
Regression [7]

1st 34.8 (28.7) 31.4 (26.7) 28.8 (23.8) 38.5 (33.2) 32.7 (29.5)
2nd 58.1 (46.8) 41.9 (36.8) 36.9 (30.6) 58.8 (49.9) 55.1 (47.3)
3rd 74.5 (53.6) 48.9 (41.6) 41.9 (34.1) 72.9 (60.8) 72.5 (61.4)
4th 86.4 (60.9) 56.3 (47.4) 47.2 (37.2) 85.4 (67.8) 89.2 (73.5)

4. Discussion

In this study, we established the corresponding relationship between historical data and the
predicted targets and used machine learning methods to learn the implicit variation patterns of the data.
LSTM network prediction and an ET model were used to predict eddy properties and propagation
trajectories, respectively. In addition, we performed a comparison experiment to identify the best
prediction models for various eddy prediction problems. The results showed that the LSTM network
is most suitable for the prediction of eddy properties and that the ET model is ideal for the prediction
of the eddy propagation trajectory. To some extent, the dependence of eddy property prediction on
multiple historical time series is greater than that on eddy propagation prediction, which may be
related to the stability variations of eddy properties and the nonlinear motion characteristics of the
eddy propagation trajectory.

We incorporated the two-dimensional property characteristics of eddies into a prediction system
for the eddy propagation trajectory and verified that eddy properties have a certain influence
on displacement forecasting. Figure 10 shows the distributions of eddy current properties and
propagation trajectory prediction performance for different prediction times. In Figure 10a, as the
amplitude increases, the prediction error of eddy propagation decreases. With increasing prediction
time, large-amplitude eddies tend to be easier to predict than other eddies, but the prediction error
of propagation fluctuates greatly for large-amplitude eddies. The impact of the eddy radius on
the propagation prediction is reflected in the fact that the prediction error decreases as the radius
increases from 40 km to 120 km (Figure 10b). The RMSE values for eddies with radii of 120–180 km
are basically unchanged. When the radius is larger than 220 km, the prediction error fluctuates
significantly, indicating that the prediction instability of the models increases with an increasing radius.
The distribution of prediction errors with eddy MCA speed is similar to that for the eddy radius
(Figure 10c): the higher eddy MCA speed are, the better the prediction performance of the model.
When the eddy MCA speed increase above 50 cm/s, the fluctuation causes prediction instability in the
model. The above results show that the local differences and fluctuations result in different sensitives
to eddy properties in propagation trajectory prediction; however, eddy properties on a smaller scale
caused greater prediction errors in the model. Notably, the weak signal of eddies was affected by
the background field and local environmental disturbances, resulting in an increase in the predicted
instability [21,35]. When eddy attributes reach maximum values, the eddies have high kinetic energy,
which makes accurate predictions more difficult to obtain. Moreover, machine learning requires a
large number of samples, and underfitting can easily occur when the training sample set is insufficient.
These eddies appear infrequently in the South China Sea (Figure 4), which makes the model sensitive
and causes the prediction quality to decline due to local noise.
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In addition to the above results, we also explore the inter-annual variability and seasonal differences
of eddy variables. For the inter-annual variation of eddy properties and trajectories, the average
amplitude, radius and MCA speed tend to decrease with the increase in time. On the contrary, the
errors of zonal and meridional displacement prediction of eddies tend to increase on the whole, which
indicates that the mode of eddy trajectories will become more complex to some extent. This may be
related to the variation of various potential factors affecting the propagation trajectories of eddies.
In the context of global climate change, whether the inter-annual variation of eddy properties leads to
the increase in the prediction error of propagation trajectories needs to be further studied. On the other
hand, we made statistics of test eddies according to different seasons, and the predicted results are
shown in Table 3. There is no significant difference between the prediction performance of summer
and winter eddies in the meridional displacement, but the prediction performance of summer is
greater than that of winter in the zonal displacement prediction. To a large extent, the performance of
the prediction model depends on the inherent difficulty of trajectory prediction. Different trajectory
patterns in summer and winter lead to differences in prediction, and other potential factors, such as the
eddy generation mechanism and interaction between eddies and topography in different seasons, may
also be affected [7,10]. The prediction performance of the model depends largely on the complexity
and nonlinear characteristics of the motion of the eddy itself, and the motion of the eddy depends on
the intensity of the motion of the ocean current field. Some studies have pointed out that the eddy
movement is related to topography, which also causes the eddies in different basins to have different
motion characteristics. In this paper, an end-to-end approach is adopted to directly establish the
correlation between the initial characteristics of the eddy and its propagation trajectory. Although more
important and complex changes such as large-scale velocity fields may be changed, the displacement
characteristics of eddies are the direct result of velocity changes and other influencing factors, which
encompass the recent patterns of eddy propagation that are affected by β effects and the mean advection.
Since the complexity of eddy motions is the result of multiple factors, the training based on machine
learning algorithm can indirectly reflect the correlation of other factors affecting the eddy propagation
trajectories, so as to effectively realize the prediction of eddy trajectories.

Table 3. Prediction errors of zonal displacement (meridional displacement) in different seasons.

Forecasting Weeks Summer Winter

1st 29.2 (23.8) 30.1 (24.2)
2nd 36.8 (29.8) 40.0 (30.7)
3rd 40.2 (31.9) 45.9 (32.6)
4th 45.1 (33.5) 50.1 (34.6)
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5. Conclusions and Prospects

In this study, only the characteristic parameters of the eddy trajectory data were used as the model
inputs to comprehensively predict eddy properties and propagation trajectories. Compared with
the existing methods, our method achieves a better prediction performance. At different prediction
times, we re-established the corresponding relationship between samples and labels and trained
the model separately. In this way, the accumulation of prediction errors was avoided to maximize
prediction performance. The distinct characteristics of eddy prediction targets were considered to
evaluate different machine learning methods. Based on an LSTM network, the prediction of eddy
properties achieved good results for multiple historical time series. The amplitude MAE increased
gradually from 0.6 cm on the first day to 2.0 cm on the seventh day, with the MAE of the radius
increasing from 10.6 km to 23.3 km and the MAE of the MCA speed increasing from 1.3 cm/s to 4.5 cm/s.
The prediction of eddy displacement based on the ET models reduced the prediction errors associated
with the nonlinear characteristics of eddies. The RMSE between the predicted and actual longitudes
(latitudes) throughout the 1–4 week horizon was 28.8–47.2 km (23.8–37.2 km).

The disturbances caused by local marine environmental factors and the planetary β effect resulted
in an increase in the predictability of eddy propagation with the extension of the forecasting time.
The short-term propagation predictions of eddies contained more noise than long-term predictions, and
the long-term predictability reflected a more significant movement trend. The predictability of zonal
displacement in the same forecasting time is equivalent to that of meridional displacement, which
is the result of the combination of the planetary β effect and self-advection of eddies. Additionally,
we verify that the two-dimensional properties of eddies affect the prediction performance of the
propagation trajectory to different degrees. With an increasing eddy amplitude, radius and MCA
speed, the prediction performance of the models improved, and the eddies characterized by maximum
properties make the prediction unstable. In the future, we can combine sea surface variables and
incorporate more features to improve eddy predictions.
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