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Abstract: Aquaponics, the water-reusing production of fish and crops, is taken as an example to
investigate the consequences of upscaling a nature-based solution in a circular city. We developed an
upscaled-aquaponic scenario for the German metropolis of Berlin, analysed the impacts, and studied
the system dynamics. To meet the annual fish, tomato, and lettuce demand of Berlin’s 3.77 million
residents would require approximately 370 aquaponic facilities covering a total area of 224 hectares
and the use of different combinations of fish and crops: catfish/tomato (56%), catfish/lettuce (13%),
and tilapia/tomato (31%). As a predominant effect, in terms of water, aquaponic production would
save about 2.0 million m3 of water compared to the baseline. On the supply-side, we identified
significant causal link chains concerning the Food-Water-Energy nexus at the aquaponic facility level
as well as causal relations of a production relocation to Berlin. On the demand-side, a ‘freshwater
pescatarian diet’ is discussed. The new and comprehensive findings at different system levels
require further investigations on this topic. Upscaled aquaponics can produce a relevant contribution
to Berlin’s sustainability and to implement it, research is needed to find suitable sites for local
aquaponics in Berlin, possibly inside buildings, on urban roofscape, or in peri-urban areas.

Keywords: water; circular city; causal loop diagram CLD; nature-based solutions NBS; water scarcity;
dietary shifts; aquaponic farming; fish/plant harvest ratio

1. Introduction

Human activities cause significant damage to nature and the consequences are already
apparent in ‘human suffering’, towering economic losses, and the accelerating erosion of
life on Earth [1]. In order to address the most pressing global issues, the UN formulated
17 sustainable development goals (SDGs) [2], but increased efforts are needed to achieve
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these SDGs, as is evidenced by the current compliance review [3]. Therefore, a ‘Decade of
Action’ has been declared to fulfil the 2030 Agenda [4]. The German Federal Government
has taken up this UN demand by revising its sustainability strategy, which now contains
six transformation areas including ‘circular economy’ and ‘sustainable agricultural and
food systems’ [5]. The food sector, which addresses both transformation areas, is the
most tremendous burden on the Earth’s ecosystems [6] and a major contributor to the
transgression of the nine planetary boundaries identified by Rockström et al. [7]. If crossed,
these boundaries could potentially endanger human existence [8].

Fisheries have already reached their limits [9] and the increase in fish consumption
over the past four decades is mainly covered by aquaculture, which is the world’s fastest-
growing food production industry [10]. This growth involves environmental problems and
animal welfare risks [11]. In 2000, a study concluded that aquaculture needs to reduce wild
fish inputs into feed [12]. A retrospective review 20 years later found that overall sustain-
ability increased but dependence on marine ingredients continued [13]. Marine aquaculture
raises environmental issues [14,15], e.g., the negative landward flux of the essential mineral
phosphorus [16]. The alternative to marine aquaculture is freshwater aquaculture; however,
freshwater aquaculture generates wastewater, especially in flow-through systems [17], and
it is estimated that over 80% of global wastewater is not adequately treated [18]. Increased
water use efficiency decouples economic growth from water use, e.g., by using less wa-
ter in agriculture through the introduction of new technologies [19]. One water-efficient
technology that reduces wastewater is aquaponics (AP), the coupled production of fish
and crops [20,21]. Additionally, AP decreases fertiliser use and greenhouse gas emissions
associated with its food production [22].

Cities are critical to the success of sustainable development [23]; thus, initiatives and
proposals set out at global, European, and municipal levels to promote the transformative
power of cities are aimed at the common good—e.g., the World Cities report [24], the New
Leipzig Charter [25,26], or the roadmap to Amsterdam Circular [27]. The circular city (CC)
is designed as a regenerative and restorative urban living system [28] by reducing, reusing,
and recovering [29]. Nature is part of the transformation [30]: nature-based solutions
(NBS) [31] can support closing the adaption gap [32] and the coupling of NBS units form
a significant part of circularity in cities [33,34]. Urban agriculture, which is attracting
increasing attention [35], contributes towards circular cities [36]. Strengthening urban and
peri-urban food production, integrating it into city resilience plans, and applying an ecosys-
tem approach that guides holistic land use planning and management are recommended
approaches by the Milan Urban Food Policy Pact [37].

There is a need for upscaling NBS and, inter alia, the promotion of sustainable agricul-
ture and food systems is suggested by the UN [38]. Aquaponic farming, which comprises
AP and trans-aquaponics [39], is considered an NBS unit [40] and should be addressed as
well in tackling the issue of whether and under what conditions it makes sense to scale up
urban aquaponics. In order to understand its system dynamics, it is necessary to investi-
gate the dependencies and causal relationships of variables by systems analysis. We use a
comparative life cycle assessment on the impact of aquaponics on the local urban environ-
ment [41] and compare environmental footprints of different scenarios with a secondary
analysis. Impact evaluation is supported by the concept of the Food-Water-Energy (FWE)
nexus, which describes the interlinkages between these three sectors and can be applied to
an urban context [42]. The relations between different methodological approaches related
to this study are shown in Figure 1.
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Figure 1. Different methodological approaches that can be applied to solve global problems; boxes indicate set relations. 

The German metropolis Berlin (DE), similar to many other cities, has signed the Mi-
lan Urban Food Policy Pact [37] and committed to establish fair and sustainable food sys-
tems. In order to know whether upscaled urban aquaponics can contribute to this objec-
tive, we use Berlin as a case study and intend to pursue the following goals: (1) supply-
side changes—to develop a scenario for meeting the demand for fish, tomato, and lettuce 
through upscaled urban aquaponics in Berlin; (2) to describe the environmental impacts 
of the scenario; (3) to investigate causal links between aquaponic variables and the FWE 
nexus sectors; (4) to analyse the supply-side causal relations of a production shift to Berlin; 
and (5) demand-side changes—to discuss the impact due to dietary shifts, e.g., pescatarian 
diet. Economic, social, and urban development implications are beyond the scope of this 
study but are considered prospective research. 

2. Materials and Methods 
2.1. System Analyses Considering Urban Food-Water-Energy Nexus 

The Food-Water-Energy Nexus (FWE nexus) is a recent paradigm that is rapidly ex-
panding in terms of policy documents and academic literature [43,44] and has also ex-
panded to other sectors such as land use or climate [45]. In general, the nexus provides a 
system-based perspective and refers to the interactions between parts of a system or sys-
tems [42]. Although the FWE nexus has been criticised for masking power relations and 
social inequalities [46], its importance as an integrated approach is widely acknowledged 
[42]. In order to explore the relationships of variables involved, a system dynamics ap-
proach utilising causal loop diagrams can be used, e.g., for constructing a FWE nexus 
model of China [47]. Many observers stress the role of cities as crucial junctures in the 
FWE nexus and for advancing sustainable development [48,49]. Due to its origin, the 
nexus represents a hybrid concept with scientific and non-scientific contributors and of-
fers three fields of application: (1) analytical approach [50,51], (2) boundary concept [46], 
and (3) governance approach [48][52]. 

The urban FWE nexus describes interlinkages and interdependencies between the 
food, water, and energy sectors with their substantial impacts on climate, environment, 
and land use in an urban context [42,53]. In the last decade, the urban nexus has gained 
more attention in research and practice, with a focus on urban metabolism [54], tools, and 
methods for nexus assessment [51,55] as well as urban governance [48]. Nonetheless, ur-
ban spaces face some specific features such as population concentration, critical infrastruc-
ture, high resource consumption, and negative environmental impacts in small areas. 
These features provide obstacles but also opportunities for sustainable urban develop-
ment [48,56]. This applies in particular to the food system, where the places of production 
and consumption have become increasingly disconnected due to the processes of indus-
trialisation and globalisation in the agri-food sector [57]. The opportunities of the urban 
space arise from urban planning and more integrated sector management at the regional 
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The German metropolis Berlin (DE), similar to many other cities, has signed the Milan
Urban Food Policy Pact [37] and committed to establish fair and sustainable food systems.
In order to know whether upscaled urban aquaponics can contribute to this objective,
we use Berlin as a case study and intend to pursue the following goals: (1) supply-side
changes—to develop a scenario for meeting the demand for fish, tomato, and lettuce
through upscaled urban aquaponics in Berlin; (2) to describe the environmental impacts
of the scenario; (3) to investigate causal links between aquaponic variables and the FWE
nexus sectors; (4) to analyse the supply-side causal relations of a production shift to Berlin;
and (5) demand-side changes—to discuss the impact due to dietary shifts, e.g., pescatarian
diet. Economic, social, and urban development implications are beyond the scope of this
study but are considered prospective research.

2. Materials and Methods
2.1. System Analyses Considering Urban Food-Water-Energy Nexus

The Food-Water-Energy Nexus (FWE nexus) is a recent paradigm that is rapidly
expanding in terms of policy documents and academic literature [43,44] and has also
expanded to other sectors such as land use or climate [45]. In general, the nexus provides
a system-based perspective and refers to the interactions between parts of a system or
systems [42]. Although the FWE nexus has been criticised for masking power relations
and social inequalities [46], its importance as an integrated approach is widely acknowl-
edged [42]. In order to explore the relationships of variables involved, a system dynamics
approach utilising causal loop diagrams can be used, e.g., for constructing a FWE nexus
model of China [47]. Many observers stress the role of cities as crucial junctures in the FWE
nexus and for advancing sustainable development [48,49]. Due to its origin, the nexus
represents a hybrid concept with scientific and non-scientific contributors and offers three
fields of application: (1) analytical approach [50,51], (2) boundary concept [46], and (3)
governance approach [48,52].

The urban FWE nexus describes interlinkages and interdependencies between the
food, water, and energy sectors with their substantial impacts on climate, environment,
and land use in an urban context [42,53]. In the last decade, the urban nexus has gained
more attention in research and practice, with a focus on urban metabolism [54], tools, and
methods for nexus assessment [51,55] as well as urban governance [48]. Nonetheless, urban
spaces face some specific features such as population concentration, critical infrastructure,
high resource consumption, and negative environmental impacts in small areas. These
features provide obstacles but also opportunities for sustainable urban development [48,56].
This applies in particular to the food system, where the places of production and consump-
tion have become increasingly disconnected due to the processes of industrialisation and
globalisation in the agri-food sector [57]. The opportunities of the urban space arise from
urban planning and more integrated sector management at the regional scale and their
potential to reduce the environmental impact per capita, create synergistic improvements in
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the urban system, and reconnect cities with their rural hinterlands [56]. Furthermore, cities
have been considered as innovation hubs where new technologies and ideas have emerged
and where localised nexus thinking and governance can be tested and implemented [48,58].

The entrance point to the FWE nexus needs to be made explicit since it determines the
perspective on, e.g., infrastructure [50,53]. For this study, we have chosen a food-centric
approach. We have performed two system analyses on the AP facility level and city level
to investigate the causal links of the most relevant system variables.

2.2. Secondary Analysis of a Comparative Life Cycle Assessment

Aquaponics is the coupling of recirculating aquaculture systems (RAS) and hydropon-
ics (HP) and a key feature is the dual use of water, which was first used to raise the fish
and then to fertigate the plants [21,39]. A recent life cycle assessment (LCA) compared AP
crop production with an available market mix in the Berlin metropolitan area consisting
of imported and locally produced lettuce and tomatoes (Mix-DE) [41] referred to in this
study as comparative-LCA. The packed and market available products originated from
various countries and the respective transports to Berlin and storage were included. For the
comparative-LCA, a simulation of an on-demand coupled AP [39] with a greenhouse size
of 5000 m2, variable RAS size, and year-round production was used. The comparative-LCA
scenario DAPS-R+ is characterised by rooftop aquaponics (here referred to as rooftop-AP)
and active waste heat recovery [59] from the building below; an example of an existing
rooftop AP is the Abattoir farm at the Anderlecht district of Brussels [60,61].

The comparative-LCA used system expansion [61,62], i.e., when allocating the envi-
ronmental impacts in complex systems between products and co-product, the first option
is to avoid allocation by subdividing or to expand the systems investigated [62,63]. In total,
12 environmental impact categories were selected and calculated by the comparative-LCA
and further processed in the present study. Each impact category denotes an indicator that
concentrates the specific environmental effects, e.g., the widely used term CO2-footprint
is summarised in the indicator CO2-equivalents (CO2 eq.), which is translated into global
warming potential (GWP). Higher water consumption per unit produced in Southern
Europe results in higher impacts of water consumption (WCO) and water scarcity (WSI) in
benchmark products. While fresh water is used for irrigation in regular HP, in a perfectly
balanced on-demand coupled system, all water consumed in the HP consists nutrient water
from the RAS subsystem. Thus, there is no fresh water consumption in the HP sub-system
in the simulated AP system [59,63].

Due to system expansion used in the comparative-LCA, negative values for WCO
and WSI could be achieved: In the case of tomato, green waste was used for biogas and
further production of heat and power and the environmental impact, according to system
expansion, is allocated to the process as negative values, i.e., withdrawn. Depending on
which energy source is replaced, negative values also resulted in the impact categories
involved.

As the basis for a secondary analysis, we have taken data from the comparative-
LCA, grouped the LCA impact categories (cf. Table 1), set the scenario Mix-DE values to
+/−100% concerning tomato respectively lettuce, and calculated the relative change of the
related rooftop-AP impact category. Thus, four values are assigned to each impact category,
which allows a direct comparison of the environmental impacts of both scenarios. In order
to visualise these relative changes of the environmental footprint, we developed a diagram
comprising all 12 impact categories and their four values (cf. Figure 2).
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Table 1. Grouped LCA impact categories; author’s work based on comparative-LCA [41].

Abbr. Unit

Global warming and land use

Global warming potential 20 GWP20 kg CO2 eq
Global warming potential 100 GWP100 kg CO2 eq

Land use ALU m2a crop eq
Terrestrial acidification TAP kg CO2 eq

Water

Water consumption WCO m3

Water scarcity WSI m3

Freshwater eutrophication FEP kg P eq

Other

Human carcinogenic toxicity HCT kg 1,4-DCB eq
Human non-carcinogenic toxicity HNT kg 1,4-DCB eq

Stratospheric ozone depletion ODP kg CFC-11 eq
Fossil resource scarcity FDP kg oil eq

Mineral resource scarcity MRS kg Cu eq
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comparative-LCA [41].

Furthermore, the absolute changes of selected impact categories were extrapolated
to city-scale in order to calculate the upscaled impact reduction in the production of fresh
tomato and lettuce on three LCA impact categories comparing the optimised aquaponics
(rooftop-AP) with the German market mix for fresh tomatoes and lettuce (Mix-DE).

2.3. Upscaling Aquaponics Scenario Berlin

The UN Food and Agriculture Organization estimates ‘that the world will need to
produce about 50% more food by 2050 to feed the growing world population, assuming
no changes occur in food loss and waste’ [64,65]. Regarding the European food system,
an international consortium has requested its sustainability to be of high priority for
policymakers at the EU, national, and municipal level [66]. One method to meet this
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request is to use sustainable production technology. Therefore, we developed a scenario
in which the whole demand for tomatoes, lettuce, and fish in Berlin is hypothetically
met by AP systems. The comparative-LCA study modelled an on-demand coupled AP
with year-round production and a greenhouse net area of 5000 m2. In order to obtain an
indication of site requirements, we estimated the aquaculture net area from 500 m2 (lettuce)
to 700 m2 (tomato), increased the net area sum of both units by 2% (construction footprint),
and rounded the gross area for the entire facility to 6000 m2. We selected two aquaponically
relevant species for fish production: Nile Tilapia (Oreochromis niloticus) and African catfish
(Clarias gariepinus). The production parameters for tilapia were used according to the AP
system modelled by Körner et al. [41] for comparative-LCA, whereas the parameters for
catfish were taken from a model case based on real production data developed by Baganz,
et al. [67] and extrapolated to year-round production. Farmed fish species determine
many parameters of the RAS, including the stocking density, which in turn significantly
determines the amount of nutrients contained in the nutrient water transferred from the
aquaculture to the hydroponic unit. In addition, the tomato has a considerably higher
nutrient requirement than the lettuce. A metric which reflects these different demands as
well as the coupling degree of AP units is the fish/plant harvest ratio (F/P ratio). This ratio
is based on the fresh harvest weight of the entire fish and crop, excluding plant leftovers. It
is a key parameter for dimensioning an AP and it can be very different.

One design goal for the upscaled AP scenario was to enforce the aquaponic princi-
ple [39] for the total demand identified in the Berlin case study conducted here. In order
to achieve this goal, fish production was balanced with vegetable production across all
professional AP facilities so that there was no excess production or unnecessary effluent on
either side. Considering these conditions, we developed an upscaled-AP scenario with four
different combinations of fish (catfish and tilapia) and plants (tomato and lettuce) with var-
ious F/P ratios: AP1 catfish/tomato (3.3), AP2 catfish/lettuce (10.2), AP3 tilapia/tomato
(11.1), and AP4 tilapia/lettuce (56.2). Catfish can be farmed at much higher stocking
density than tilapia. The maximum stocking density was 300 kg/m3 for catfish [67] and
80 kg/m3 for tilapia [59,63], which is reflected by the F/P ratios. In order to prevent a mere
catfish upscaled AP scenario, we targeted a minimum share of 30% tilapia. The proportion
of the AP setups in the upscaled-AP scenario was then calculated based on freshwater
fish requirements to meet the irrigation demands of both vegetables by considering their
respective F/P ratio.

3. Results
3.1. Berlin: Balancing Demand and Yield

German per capita (PC) consumption of fresh and processed tomatoes was 27.2 kg in
2018/19, with processed tomatoes converted to fresh weight [68]. Regarding the import
and domestic harvest of fresh tomatoes, we concluded that fresh tomatoes had a share of
9.3 kg/PC and processed tomatoes 17.9 kg/PC in 2019 based on data from BLE [69]. For
freshwater fish, the shares was 3 kg/pC and 0.9 kg/PC for freshwater fish products [70].
These data were not available for Berlin and so we assumed a similar consumption pattern
to estimate the demand of metropolitan Berlin by adding the non-marketable portion,
e.g., waste from fish processing. With a population of about 3.77 million in 2020 [71],
approximately 21 kilotonnes (kt) of freshwater fish and fish products, 108 kt of fresh
tomatoes and tomato products, and 27 kt of lettuce are required per year (cf. Table 2).
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Table 2. Annual metropolitan Berlin demand for freshwater fish/fish products, tomatoes/tomato
products (converted to fresh weight), and lettuce.

Demand Residents Berlin 2020: 3,769,962

Fresh/Fillet Products Total Netto Not Brutto

(kg/PC) (kg/PC) (kg/PC) (t) Marketable (t)

Freshwater fish 3.0 0.9 3.9 14,703 40% 20,584
Tomato 9.3 17.9 27.2 102,543 5% 107,670
Lettuce 6.8 6.8 25,636 5% 26,918

fresh tomato only 35,061 5% 36,814

The following proportions of AP setups have been calculated: catfish/tomato at 56%,
catfish/lettuce at 13%, tilapia/tomato at 31%, and tilapia/lettuce at 0% (cf. Table 3). Berlin’s
F/P demand ratio was around 6.5, while the F/P ratio of AP setup AP4 (tilapia/lettuce)
was 56.2; therefore, its proportion was set to zero (cf. Table 4).

Table 3. Upscaled-AP scenario: Four aquaponic setups as combinations of catfish/tilapia and
tomato/lettuce and their respective share to meet the freshwater fish demand of Berlin.

Fish Demand Coverage
Aquaponic Setups (AP 1 . . . AP 4)

Tomato Lettuce

Catfish AP 1 56% AP 2 13%
Tilapia AP 3 31% AP 4 0%

Table 4. Upscaled-AP scenario: The proposed annual yield of catfish, tilapia, tomato, and lettuce per aquaponic setup;
Number of AP facilities required to achieve this yield.

Yield Fish Yield (t) Plant Yield (t) AP Facilities

Aquaponic setup Catfish Tilapia F/P* Tomato Lettuce

AP 1 11,527 3.3 37,508 118
AP 2 2676 10.2 27,381 27
AP 3 6381 11.1 70,912 223

AP 4 ** 0 56.2 0 0

Total yield 14,203 6381 yield 108,420 27,381 required 368

fish yield share 69% 31% demand 107,670 26,918
delta 750 464

fish demand 20,584
fish yield 20,584 *) fish/plant harvest ratio

delta 0 **) AP 4 excluded because of the F/P ratio

3.2. Supply-Side: Impact on Berlin FWE Nexus

Food. The yield shares (fish/crop) of each AP setup within the upscaled-AP scenario
to cover the city’s demand are as follows: AP1 with 11.5 kt catfish and 37.5 kt tomato, AP2
with 2.7 kt catfish and 27.3 kt lettuce, and AP3 with 6.3 kt tilapia and 70.9 kt tomato (cf.
Table 4).

In order to produce a yield of 20.6 kt fish and 108.4 kt crop (tomato and lettuce)
per annum, approximately 370 AP facilities are needed and this requires a total area of
224 hectares (cf. Table 4). Fish feed and fertiliser should ideally be matched to the specific
AP setup. The three AP configurations should be standardised to obtain the appropriate
quantities of optimised fish feed and fertiliser needed to achieve economies of scales for
the upscaling-AP scenario.
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Water. In the present study, we extrapolated the so-called water footprint, i.e., the
LCA impact category water consumption (WCO in Table 5) from the package level to the
city scale. Compared to the WCO of the German market mix for fresh tomatoes and lettuce,
the aquaponic production of both fresh vegetables for Berlin would save about 2.0 million
cubic metres of water.

Table 5. Upscaled-AP scenario: Reduced impact of fresh tomato and lettuce production on three LCA impact categories;
author’s work and the calculation based on data from comparative-LCA [41].

LCA Impact
Category Abbr. Unit

Tomato, Fresh mio.
packs 73.6 Lettuce mio.

packs 179.5
Total

Reduction
Mix-DE Rooftop

AP Delta Less
Impact Mix-DE Rooftop

AP Delta Less
Impact

Global
warming

potential 100
GWP100 kg CO2 eq 0.5760 0.5261 0.0500 3679662 0.0769 0.0385 0.0383 2822799 6502 t

Water
consumption WCO m3 0.0142 −0.0101 0.0243 1786533 0.0033 −0.0002 0.0035 261272 2,047,805 m3

Water
scarcity WSI m3 0.0109 −0.0059 0.0168 1237314 0.0021 −0.0001 0.0022 163054 1,400,368 m3

Regarding the LCA impact category water scarcity (WSI), about 1.4 million cubic
metres of water would be saved, especially in the Almeria region of Spain where the
rapid development of greenhouse horticulture has dramatically affected the availability of
groundwater resources [72].

Energy. Replacing the German market mix of tomato or lettuce (Mix-DE) with an
optimised aquaponic scenario (rooftop-APDAPS-R+) would reduce the long-term CO2
footprint (GWP100 in Table 5) by 7691 t CO2-equivalents. This result can be significantly
improved by using aquaponics-integrated microgrids (so-called smarthoods) where all
FWE flows are circularly connected [73].

Based on data from the comparative-LCA, the relative change in environmental impact
between the scenarios Mix-DE and rooftop-AP shows a reduction in the environmental
footprint for all 12 LCA impact categories (cf. Figure 2).

Of the 12 LCA impact categories, the FWE sector energy is represented by the impact
categories GWP20 and GWP100, while the impact categories water consumption (WCO),
water scarcity (WSP), and freshwater eutrophication (FEP) represent the sector water. The
long-term CO2 footprint (GWP100) is reduced by 9% for tomatoes and 50% for lettuce. For
water consumption, the reduction is even more significant and becomes negative in the
analysis of the comparative-LCA (cf. Figure 2).

3.3. Causalities: Aquaponic Variables and Production-Location Shift

Upscaling urban AP triggers two FWE interactions simultaneously: (1) local food
production is increased and thus (2) the relocation of production occurs. Both processes
result in interactions within the FWE nexus and the associated effects become relevant for
the system as a whole. Thus, all causal dependencies take effect: on the local level, since
AP internals and location issues gain importance due to local resource demand; and on
the global level, since upscaling the shift in production-location impacts all sectors of the
FWE nexus.

In order to understand the impact of AP on the three sectors of the FWE nexus, we
identified significant AP variables and examined their causal relationships (cf. Table A1),
which are often mediated by other variables and results in causal chains (cf. Figure 3).
However, neither the complete functional scheme of an AP nor processes outside the AP sys-
tem boundary (except for phosphorus) are considered when examining these AP-internal
causal chains. For example, the AP nutrient coupling degree reduces fertiliser consumption,
but the environmental impacts of the production and transport of the fertiliser are not
considered in the causalities unlike in the comparative-LCA.
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The variables listed in Table A1 influence the three sectors of the FWE nexus directly
or via causal chains. These are the variables through which the designer/operator of
an AP can influence the environmental impacts. General factors for increasing energy
efficiencies such as solar panels, low-energy greenhouses, or energy-efficient pumps are
not included in the scope of this consideration but must be taken into account as part of
an overall concept. Ideally, this concept then considers future GHG attributions next to
the current ones. Future GHG emission changes are expected to result from the process of
decarbonisation, such as a changed electricity mix or biogas-fuelled combined heat and
power unit (CHP). Figure 3 is a graphical representation of the causal chains formed by the
AP variables.

The connectors in Figure 3 are causal links, but can easily be confused with flows. For
example, the variable ‘plants’ affects the variable ‘water’ in that water demand increases
with the number of ‘plants’, but the water needed flows from RAS to HP. We adopted the
syntax of causal loop diagrams and extended it by adding case-specific considerations
(ambiguous) that can results in positive or negative link polarity. The FWE nexus influences
the AP parameters and creates causal loops, but these are beyond the scope of this study.

As local food production increases, the location of production simultaneously shifts
across national borders. This fact touches on the problem of domestic and imported
resource use and is, thus, a system boundary problem.

For example, the emission of greenhouse gases (GHG), for which its impact is indicated
as GWP in the LCA approach, is an essential indicator for measuring climate sustainability.
However, a country-specific CO2 balance has some weaknesses: Germany emitted an
estimated total of 805 Mt CO2 equivalents in 2019, but almost as much (an estimated
797 Mt CO2 equivalents) was emitted in the production of German imported goods in
2015 [74]. Offshoring environmental damages were also criticised concerning Europe’s
Green Deal [75], but, currently, the EC 2021 proposals for making the EU’s policies fit for
reducing net greenhouse gas emissions by at least 55% by 2030 [76] include a carbon border
adjustment mechanism [77].

Comparably, local food production increases local resource use and thus impairs
the ‘local ecological footprint’ while simultaneously reducing the footprint of distant
production and possibly the overall ecological footprint.

The same applies to the water sector. A significant proportion of the tomatoes con-
sumed in Berlin are produced on the Spanish Almeria peninsula around the town, El
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Ejido. In this region, the rapid development of greenhouse horticulture since the 1950s
has dramatically affected the availability of groundwater resources [78], which causes
aquifer overexploitation. In addition, water quality deterioration occurs due to an increase
in water salinity in aquifers as a result of marine intrusion processes and unsustainable
aquifer management [72]. However, the share of water needed under these troublesome
circumstances to cultivate tomato for export to Germany does not appear in the German
water consumption statistics.

This study examines the boundary conditions for a production-location shift from
other countries to Berlin based on year-round production. Compared to fish and lettuce,
tomatoes have the quantitatively highest share of food production in the upscaled AP
scenario (cf. Table 4), which is why tomato production is used to illustrate the dependencies
of a production shift to Berlin as visualised in Figure 4.
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Figure 4 contains subdivisions such as the so-called swim lanes which are explained
in more detail in Table 6. The swim lane ‘local AP’ comprises urban and peri-urban AP, as
they are both within the system boundaries of the circular city (CC). Baganz et al. [79] noted
the potential for integrating AP into the CC through resource streams such as greywater,
plant leftovers, and sewage; the diagram element ‘heat coupling’ in Figure 4 is related
to this.

In terms of global environmental impacts and only these are considered in this study;
relocation of production only makes sense if it reduces these impacts.
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Table 6. Causal relations of significant tomato production-location variables.

Production Variables Selected Causal Relationships

Demand Berlin In 2018/2019, 9.3 kg/PC fresh tomatoes and 17.9 kg/PC processed tomatoes were consumed in
Germany (DE); we assumed the same for Berlin.

Supply for Berlin

In 2019, the production shares on fresh tomatoes for Germany (DE) include the following: The
Netherlands (NL) 48.1%, Spain (ES) 23.5%, DE 11.5%, and Italy (IT) 2.3% [80]. We assume that these
values also apply to Berlin. The share of tomatoes produced in Berlin is not known. The footprint
evaluation of processed tomato products is not the subject of this study; nevertheless, an LCA of
packaged tomato puree exists in the literature [81]. All deliveries result in an import of embodied
CO2. It should be noted that China is the globally most significant producer of tomatoes—some
tomato products are distributed in the EU under an Italian label [82].

FWE nexus

The FWE ranking in Figure 4 indicates the main dependencies of the sectors: the climate crisis (CO2,
energy) is the greatest global challenge. If it is not solved, the global water balance will face
significant problems and water scarcity will increase. Water, in turn, is the basis for all forms of
food production.

Local aquaponic

Concerning urban AP, increasing building integration will reduce land consumption, which is
required to achieve zero net land take by 2050 [83]. On the other hand, increasing competition for
urban space will decrease urban AP applications. Peri-urban AP results in the conflict of objectives
that, on the one hand, mitigates competition for use in the city but, on the other hand, is usually built
as a standalone facility that results in increased land consumption. The high standard of the Dutch
(NL) greenhouse production is the energy-related benchmark concerning greenhouse production in
Berlin. Heat coupling and/or low-energy greenhouse are required for production in Berlin to have a
lower impact on the energy sector than production in the Netherlands. Increasing local AP will
induce the following: decrease imports, reduce embodied CO2, mitigate water scarcity in Almeria,
and increase local food production. Due to the double use of water by AP, the overall water
consumption will decrease (WCO in Table 5) but local water demand will increase.

4. Discussion
4.1. Food: Demand-Side Impact of Dietary Shifts

AP based food production meets the EU and global circular economy trends and
creates possibilities for green entrepreneurship development [84]. The causal relationships
shown so far are only a small part of the aquaponics-related impact structure. Two causali-
ties shall be highlighted: (1) the impact of a ‘human’ pescatarian diet on GHG emissions
and (2) the mitigation of phosphorus depletion by recycling the element by AP.

Agriculture is the primary driver of land system change, e.g., through tropical defor-
estation [85]. The food system also impacts biodiversity loss [86]—related to the biosphere
integrity planetary boundary—and while domestic livestock currently has an estimated
biomass of 100 Mt C, all wild mammals globally account for only about 7 Mt C [87]. Food
systems are currently threatening human health and environmental sustainability [6] and
environmental impacts can be reduced on the supply as well as on the demand side [88].
At the EU level, rapid changes in our habits and behaviour are requested [89] in order to
reduce the environmental and climate footprint of the EU food systems [90]. The negative
impact of meat consumption on the environment is well known [91]. Fish represents an
alternative: global aquaculture has a rather modest share of approximately 0.49% of an-
thropogenic GHG emissions in 2017 [92] than terrestrial livestock farming (approximately
15%). Other alternatives include insects, which can be used both as fish feed [93] and as
human feed, e.g., dried yellow mealworms [94]. A GHG emission tax on food products
can support dietary shifts but must be introduced globally or trade restrictions must be
considered to be fully efficient [95]. Concomitantly, environmentally harmful subsidies
should be avoided [1]. The IPCC [96] investigated the role of dietary preferences and
the demand-side GHG mitigation potential of different diets by 2050. A pescatarian diet
consisting of seafood could save about 4.0 GtCO2-eq a−1, whereas a vegan diet without
animal source food has a doubled effect of about 7.9 GtCO2-eq a−1 [96]. The GHG savings
potential of a pescatarian diet with a high share of freshwater fish would be between
these two values. None of these scenarios will fully unfold, but one crucial aspect of the
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food environment and the desirability of food is inter alia embossed by socio-cultural
aspects [97], which can be changed.

However, changes in the diet affect not only CO2 emissions but also many other
components of the food system. Modern food production is entirely dependent on the
non-renewable resource phosphorous (P) [98,99]: Biogeochemical flows—mainly nitrogen
and phosphorous fluxes—are seen as a planetary boundary [100] and agriculture is a major
driver exceeding it [8]. The use of phosphate causes the phosphorous dilemma: while
mineral fertiliser facilitated the intensification of plant production [101,102], it has results in
an enormous P-input into the biosphere [16] with P as a dominant driver of eutrophication
with all its adverse effects [16]. Without P recycling, food security will inevitably be
violated in the long run [103], preventing us from ‘living well, within the limits of our
planet’ [104]. P recycling is also becoming increasingly crucial concerning circular cities and
urban farming. In aquaculture and aquaponics, the treatment and recycling of potential
P-sources are also of interest. After fish feeding, a considerable fraction of dietary P is not
retained in fish but excreted and dissolved P is strongly adsorbed onto particles [105]. In
RAS, solid waste from faeces and uneaten feed pellets represents a substantial reservoir of
nutrients, especially P, and needs to be captured [106], e.g., by using drum filters or passive
sedimenters. Therefore, efforts are focused on increasing nutrient retention in fish or using
sludge as a nutrient sink in RAS [107]. Another possibility to increase the effectiveness of
aquaponics in terms of P is the substitution of fishmeal and fish oil with other ingredients
(algae and poultry meal). Such fish diets reduce the footprint for carnivorous finfish
production [108], also regarding P [109].

4.2. Water: Trans-Aquaponics

Concerning human food production, AP impacts the circular economy in a positive
manner [60,61]. Following the circular economy concept, the CC consists of loops formed
by NBS, which are defined as concepts derived from nature and focused on resource
recovery [29]. AP is itself an NBS and the wastewater generated in the RAS, instead of
being treated, can be provided as nutrient water for, e.g., a vertical green system (VGS) [79].
Systems based on the aquaponic principle that extend crop production from hydroponic
to soil-based methods are referred to as trans-aquaponics [39]. Such a trans-aquaponic
solution emerges when the two NBS units, in this case aquaculture and VGS, are coupled
to tackle circularity challenges in cities [40].

While horizontal space is scarce and under tremendous utilisation pressure for use in
densely built urban regions, vertical space—facades and walls—is rarely used apart from
billboards and photovoltaic applications. VGS including expensive green walls, modular
wall-mounted plant beds, or low-cost and sustainable facade greening including ground-
based climbing plants are promoted for several ecosystem services and are simultaneously
an aesthetic upgrade of buildings or passive cooling [110,111]. Food production is even
possible on several height zones of the building facades and could include host vine-crops
(i.e., climber species) such as kiwifruits or grapes and other suitable crops with artificial
cropping adjustments for vegetables such as beans, tomatoes, cucumbers, and peppers;
or fruits such as blackberries, blueberries, pears, or apples. Due to the negative climatic
water balance, especially in the summer season, irrigation water sources and volumes
are a significant factor in determining the sustainability of VGS. In Berlin, VGS would
require 240 (north exposure) to 400 L m−2 (south exposure) of water in summer, of which
only 330 L m−2 can be collected from the roof [112]. For the remaining 70 L m−2, the
aquaculture wastewater from a RAS can be used because it does not contain any human
faeces or human-active pharmaceuticals. Vertical green could also be integrated into
the aquaculture system itself by mostly bringing closed production into open space and
allowing the multi functionalities described above. Transporting water through pumps
may reduce the sustainability benefits of aquaculture water compared to tap water and
fertiliser. The biggest challenge in irrigation is the storage of AP waters in terms of fouling
and space demand.
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In 2040, the expected water consumption of Berlin amounts to 806 million m3 (cf.
Table 7) out of which 103 million m3 are attributable to industry and trade. The reduction
in water consumption by 2.0 million m3 (cf. Table 5) corresponds to about 2% of the latter
demand. This value could be further increased if water losses due to evapotranspiration
were regained and condensed by cooling traps and eventually fed into the aquaculture
unit [113].

Table 7. Estimated water consumption in Berlin in the year 2040, author’s work based on water
supply concept for Berlin [114].

Water 2040 (Million m3)

Households 551.0
Industry and trade 102.6

Others 140.6
Environment 11.4

Total 805.6

The implementation process for upscaled aquaponics will take some time and result in
higher water demand in the future due to AP water demand. Berlin’s water management
faces challenges, e.g., concerning groundwater extraction as shown by a lawsuit filed
by the Berlin State Working Group for Nature Conservation to protect peatlands and
wetlands [115]. In the future, these challenges will increase and new concepts and courses
of action will be required [116]. AP upscaling mitigates the water problem in the Almeria
region but exacerbates it in the Berlin area. As urban agriculture, including aquaponics,
claims access to water as a resource, care must be taken and the use of modern semi-closed
greenhouses with condensation regaining [117] can contribute to care.

4.3. Energy: Low-Energy Greenhouses and Transport Trade-Offs

The comparative-LCA has revealed the energetic disadvantages of greenhouse pro-
duction in the moderate continental climate of the Berlin area, especially during the winter,
compared to the Mediterranean climate in southern Europe. However, in cooler regions,
the crop can be cultivated year-round without the need for a summer break or intensive
and water consuming cooling as is required in southern Europe. Energy savings from
upscaled urban aquaponics are limited when using a standard greenhouse. Winter heating
in regions such as Berlin can be supported by excess heat. On the other hand, there are
technical solutions for greenhouse crop production for almost all climatic situations [118].
Upgrading greenhouses with a package of high-technological equipment such as combined
heat and power units, heat pumps, underground seasonal and daytime energy storage
systems, and air treatment units as used in the closed greenhouse concept [119] can strongly
reduce energy consumption [117]. In order to achieve optimal energy saving and plant
production, smart decision support systems and/or model-based climate control systems
for the greenhouse crop production units (or closed units) are needed [120].

Another energy-related aspect is that the environmental impact of food transport is
often reduced to its CO2 emissions, which are the so-called food miles, and this accounts
for only a tiny part of its environmental impact [121]. Here, trade-offs between energy,
water, and food transport (FWE nexus) must be considered. For example, an LCA case
study of tomatoes originating in Morocco and imported into France reveals that a compre-
hensive method for assessing freshwater use impacts is lacking for the energy and water
trade-off [122]. Furthermore, traffic-related non-exhaust particulate matter contributes sig-
nificantly to the flux of microplastics into the environment [123] and tire and brake abrasion
particles are transported globally through the atmosphere to distant regions [124]. Nota
bene: these problems are not addressed by a tax on GHG emissions from transportation.
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4.4. Strategy: Using Climate Zones Advantages

Up to this point, we have considered a scenario that assumes full coverage of fish/tom-
ato/lettuce demand by Berlin-based production. Consequently, Spain’s share of 23.5% of
fresh tomatoes available in Berlin in 2019 would be reduced to zero. However, this leaves
untapped opportunities that could arise from the different climate zones in which the
Almeria peninsula and Berlin are located. The comparative-LCA covers a year but even
when including the cold season, the exploitation of AP achieves an environmental impact
improvement in all 12 categories (cf. Figure 2). This impact could be further reduced if
climatic conditions were exploited locally on a seasonal basis, i.e., produced in the natural
production season and consumed within the same climatic zone [125]. An LCA of vegetable
production in Switzerland found significant seasonal effects due to the different methods
in which tomatoes are produced: 0.2 kg CO2/kg when grown outdoors in Switzerland in
summer, 0.5 kg CO2/kg when grown in Almeria and transported to Switzerland, and 5 kg
CO2/kg (25 times as much) in a greenhouse in Switzerland heated with fossil fuels [126].

A scenario that assumes that not all tomato production takes place in Berlin should
consider the following points for trade-offs: (1) in Almeria, water stress increases signifi-
cantly in summer and production breaks are common; (2) in Berlin, heating and lighting
requirements increase significantly in winter and results in high heat and power con-
sumption; and (3) fresh tomato cultivars contain over 95% water and so tomato transport
becomes water transport. Tomato products were not included in the calculation of the
impact of upscaled-AP scenario because the underlying comparative-LCA did not cover
them, but it can be assumed that the water content of processed tomatoes is lower than
that of fresh tomatoes and thus transportation has a lower environmental impact.

A strategy that optimally adapts consumption patterns, thereby taking advantage
of climatic zones, would decrease total tomato production in Almeria and, consequently,
exports to Germany. Fresh tomatoes from Almeria would be supplied in winter, while
tomato products would be produced and exported in summer. In turn, fewer fresh tomatoes
but more tomato products would be produced and consumed in Berlin during the winter,
while in summer all fresh tomato demand would be produced in the city. Trans-aquaponic
VGSs operated by urban gardening communities would complement the seasonal fruit
and vegetable supply.

5. Conclusions

This study uses aquaponics (AP) as an example to examine in detail what it means
when a nature-based solution (NBS) is upscaled in the circular city (CC). Both the internal
processes of the AP (NBS are often considered black boxes in CC context) and the effects of
a production-location shift are examined to unveil and understand causal relations and
dependencies of this part of the food system. The focus is on two goals: Reducing global
environmental impact and zero net land take by 2050 in Germany.

Using the metropolis of Berlin as a case study, an upscaled-AP scenario was modelled
based on the total fish demand to meet the required annual yield, with four different
combinations of fish (catfish and tilapia) and plants (tomato and lettuce). The resulting
fish/plant harvest ratios were catfish/tomato (1:3.3), catfish/lettuce (1:10.2), tilapia/tomato
(1:11.1), and tilapia/lettuce (1:56.2). The share of each aquaponic setup in the upscaled-AP
scenario was balanced such that the aquaponically produced fish and vegetables met the
total demand of the city of Berlin. It was shown that the city’s needs could be met locally.
In order to produce these foods, about 370 AP facilities are required which requires a total
area of 224 hectares.

The upscaled-AP scenario can make a relevant contribution to sustainability in Berlin.
Increasing local AP will increase local food production, reduce environmental impacts
associated with importing food, and decrease overall water consumption. Local AP
mitigate water scarcity in Almeria but concomitantly increases local water demand in
Berlin. As a predominant effect in terms of water, AP production of fresh tomatoes and
lettuce in Berlin would save about 2.0 million m3 of water compared with the German
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import mix of tomato/lettuce. This corresponds to about 2% of Berlin’s expected water
consumption of 103 million m3 related to industry and trade in 2040. If processed tomatoes
were considered here, the effect would be even higher. An essential prerequisite for this
year-round production scenario is building integration for the thermal coupling needed in
the colder season. The heating demand can be significantly reduced by using low-energy
greenhouses.

We identified significant AP variables which affect the three sectors of the FWE nexus,
either directly or through causal chains, which are useful for controlling environmental
impacts when planning or operating an AP. In order to analyse the supply-side causal
relations of a production shift to Berlin, we elaborated production-site dependent causal
links to the FWE nexus, which mainly include climatic conditions, water availability, and
transportation. A moderate ‘climate zones advantage scenario’ with FWE nexus related
trade-offs (winter tomatoes from Spain, summer tomatoes from Berlin) is discussed. A
production-locations shift should reduce environmental impacts and, to achieve this, many
boundary conditions must be taken into account. These conditions include the following:
The impact on climate should be at least at the same level as abroad, embodied CO2 should
be included, and the environmental impact of food transport (food miles) should not only
be reduced to CO2 emission but should also comprise other effects, e.g., abrasion of tire
particles. Concerning spatial impacts, it can be stated that ‘building integration’ of urban
AP (inside buildings or on the rooftop) reduces land consumption while peri-urban AP
mitigates competition for urban space. On the other hand, peri-urban AP results in a
conflict of objectives: if realised as standalone facilities, it will increase land consumption,
which contradicts the zero net land take by 2050.

There is a possibility that an upscaled-AP scenario will boost the demand for freshwa-
ter fish in Berlin. The approximate global GHG savings potential according to IPCC [96]
is calculated to be 4.0 GtCO2-eq a−1 for seafood diets and 7.9 GtCO2-eq a−1 for a vegan
diet. A pescatarian diet with a high share of freshwater fish would fall between these two
values and could have a more substantial impact than the relocation of production sites or
the application of aquaponics technology.

However, in order to decide whether urban AP makes sense or not, a close look at
other factors beyond environmental considerations is required, e.g., redirecting some of
the EU’s substantial agricultural subsidies to urban agriculture would positively impact on
the economics of AP.

An external perspective may also be helpful, e.g., regulations on AP in the UK should
be monitored and positive developments adopted in the EU [127]. Urban AP supports the
circular city concept but competes with other uses for limited space. Therefore, further
research is required to find suitable sites for local AP in Berlin, in proximity of CC resources,
possibly on the urban roofscape, or in peri-urban areas. From a broader perspective, the
presented research and case study outcomes can contribute to the conceptual approach
of international pilot projects for urban socio-economic innovative and inclusive network
development based on green circularity and sustainability.
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Appendix A

Table A1. Causal relations of significant aquaponic variables.

Aquaponic Variables Selected Causal Relationships

Cooling Cooling lowers the greenhouse temperature, which requires energy and generates excess heat
depending on the technology.

Coupling degree—energy Thermal connections between the AP units can reduce the total energy demand of the AP.
Coupling degree—nutrient In a well-balanced AP, a high nutrient coupling degree reduces fertiliser consumption to a minimum.

Coupling degree—water
The double use of water is at the core of the aquaponic principle and a high water coupling degree is
the objective of a well-balanced AP. It reduces both the external water consumption of the HP and the
wastewater generation of the facility.

Electricity
Electricity is mainly used for pumps, control systems, lighting, and heating of RAS process water.
Thus, these components directly affect the energy sector of the nexus through their operating times
and energetic efficiency.

Feed conversion rate Feed conversion rate (FCR) describes the conversion of feed into biomass.
Fertiliser Fertiliser is essential for optimal plant growth; over-fertilisation defects are not considered here.

Freshwater fish

Fish production contributes to the food sector; its farming generates sludge. The amount of
wastewater should be as low as possible, but zero is a difficult goal to achieve. If the production of
freshwater fish in RAS were to replace marine fish production in net-cages then the phosphorus flux
into the sea could be reduced.

Fish feed Fish feed is the prerequisite for fish growth and the type and quality of feed also affect FCR.

Fish species

Freshwater fish can be divided into three groups according to their temperature requirements:
tropical, warm water, and cold-water fish, which determines the water temperature of the
aquaculture unit. For different fish species, different stocking densities are allowed: e.g., tilapia max.
100 kg/m3 or catfish with up to 400 kg/m3. In addition, the species influences the FCR.

Fish-free feed
Fish feed without fish meal and fish oil reduces phosphorus removal from the oceans by wild
fisheries among other positive environmental aspects [108]; insects can be part of fish diets [128]; and
the impact on the quality of fish feed is case-specific.

Gas: CO2 and O2

O2 is used in RAS to increase yield and ensure the minimum oxygen content in the water in critical
situations. CO2 is used in HP greenhouse production to increase yield. The gases can be exchanged
between both AP units [129].

Greenhouse temperature Greenhouse temperature influences plant growth with positive link polarity.
Heating Heating is needed for tropical fish and greenhouses, especially in the colder season.

Lighting
Greenhouse lighting requires electrical energy; it can also contribute to heating if, e.g., heat-emitting
sodium vapour lamps are used. LED lamps do not emit long-wave heat and contribute to greenhouse
heating to a lesser extent.

Plant productionwinter
break

In the winter season, plant production in the greenhouse can be suspended, which saves energy for
lighting and heating, but at the same time reduces the yield of crop production.

Plant species The plant species affects the type and quantity of fertiliser needed, the required greenhouse
temperature, the water uptake, the harvest yield, and their dynamics.

Plants
Increased harvest contributes positively to the food sector. Plants take up water, transpire it, and the
water vapour can be regained in modern greenhouse systems. Depending on the irrigation method,
wastewater is produced, e.g., for flushing the plant troughs.
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Table A1. Cont.

Aquaponic Variables Selected Causal Relationships

Sludge The quantity and composition of the sludge determine how much of it can be recycled.

Sludge recycling Sludge removal and mineralisation can save fertiliser and thus reduce the use of phosphorous as a
supplemental fertiliser.

Stocking density Stocking density affects both FCR and the amount of fish that can be harvested and the requirements
for additional oxygen or improved water treatment.

Wastewater Wastewater is the water leaving the facility. All internal water flows are not included. In particular,
the nutrient water is not considered wastewater, as suggested by Baganz et al. [39].

Water regain for reflux The more plants are cultivated, the more energy is needed to regain the evapotranspired water in the
greenhouse, which in turn saves the water needed in the aquaculture unit.

Water temperature

Fish are poikilothermic; unlike homoeothermic animals, they do not use their metabolisms to heat or
cool themselves. They can therefore invest more energy into growth, resulting in a higher FCR.
However, in a temperate climate zone, the water for tropical fish must be heated, which means that
the energy saved internally by fish must be supplied externally.
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