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Abstract: Landform classification is important for representing soil physical properties varying
continuously across the landscape and for understanding many hydrological processes in watersheds.
Considering it, this study aims to use a geomorphology map (Geomorphons) as an input to a
physically based hydrological model (Distributed Hydrology Soil Vegetation Model (DHSVM)) in a
mountainous headwater watershed. A sensitivity analysis of five soil parameters was evaluated for
streamflow simulation in each Geomorphons feature. As infiltration and saturation excess overland
flow are important mechanisms for streamflow generation in complex terrain watersheds, the model’s
input soil parameters were most sensitive in the “slope”, “hollow”, and “valley” features. Thus,
the simulated streamflow was compared with observed data for calibration and validation. The
model performance was satisfactory and equivalent to previous simulations in the same watershed
using pedological survey and moisture zone maps. Therefore, the results from this study indicate
that a geomorphologically based map is applicable and representative for spatially distributing
hydrological parameters in the DHSVM.

Keywords: DHSVM; fully distributed; complex terrain; landscape patterns

1. Introduction

Hydrological models have been widely used in the literature to study watersheds
and to predict future impacts caused by environmental changes [1–4]. These models are
developed according to specific purposes. To accurately represent watershed processes,
the choice of the model should rely both on data availability and on its ability to address
research goals [5]. Distributed physically based models have a large set of parameters and
mathematical equations to quantify water balance [6]. As an example, models such as the
DHSVM (Distributed Hydrology Soil Vegetation Model) [7] require information on the
spatial distribution of hydrological parameters at a fine scale [8]. These models should
be able to create realistic simulations when properly parameterized. However, in many
regions, their application is limited due to the required data, so in case of data deficiency
conditions, conceptual methods are commonly used [9].

Considering that physically based models have parameters with spatial variability and
physical interpretation [10], and sufficient good-quality data are not frequently available,
calibration processes can lead to overparameterization or equifinality [11]. These refer
to, respectively, when the model has more parameters than can be identified by available
data [12] and to when more than one set of parameter values can lead to similar model
outputs [13].
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In hydrological modelling, two strategies can be used: “bottom-up” and “top-down”
approaches. In “bottom-up”, field investigations and experiments are conducted at smaller
scales [14]. On the other hand, “top-down” is based on process simplifications, such as
those proposed by Savenije [15] using “Height Above the Nearest Drainage” (HAND). In
the case of distributed modelling, unavailable quality data representing physical proper-
ties’ heterogeneity can lead to simulations with high predictive uncertainty. Despite the
complexity of the representation of hydrological processes, simpler conceptual models
often outperform complex ones [15].

Among the limitations for the application of physically based hydrological models,
there is the scarcity of field data to develop soil maps through a pedological survey in small
watersheds [16]. To overcome such constraints, terrain models’ products derived from the
digital elevation model (DEM) [17–19] have been used for hydrological simulations. In
this context, Cuartas et al. [8] and Alvarenga et al. [16] tested an elevation zone map from
the HAND model as input for hydrological modelling with the DHSVM on headwater
watersheds in Brazil in the Amazon and Atlantic Forest, respectively. The HAND calculates
the vertical distance of a DEM cell to the nearest drainage point, creating a normalized
elevation map [18]. From this, wetland areas, hill slopes, and plateaus can be identified by
a user-defined height threshold, and the result can be used in hydrological modelling as
these features exhibit closer characteristics in slope, soil pedogenesis, runoff mechanisms,
among others [15].

Different from the HAND, Geomorphons’ products consider the terrain geomor-
phology. They classify the landform from a DEM based on a simple ternary pattern
recognition [19]. The advantage of this method over a simple pixel-by-pixel elevation anal-
ysis is that it allows classification on larger scales without changing the product’s spatial
resolution [19]. Previous studies have successfully used Geomorphons for soil pedological
identification (digital soil mapping) [20], for correlating landforms with soil texture [21],
and for predicting the spatial distribution of soil saturated hydraulic conductivity [22,23].
As these characteristics are related to hydrological processes in watersheds, this tool can
potentially represent the spatial distribution of soil properties in hydrological modelling.

Previous studies have used the DHSVM to simulate a small-scale headwater water-
shed in the Mantiqueira Range using both pedological survey [4] and HAND maps [16].
The Mantiqueira Range is located in southeastern Brazil. This is an important upland
region from a hydrological point of view since it hosts the headwater streams of many
important and strategic basins of Brazil [24]. Specifically, the Lavrinha Creek Watershed
(LCW) is an experimental mountainous watershed and has been a study location for field
experiments [23,25–28] and Geomorphons applications [21–23].

According to Gao et al. [29], the discretization of catchments into small interacting
cells in physically based models breaks patterns of landscapes. In this context, a landform
map can overcome such constraints. Thus, considering a model previously calibrated in a
small-scale largely studied watershed, it enables a “bottom-up” approach in modelling.
Accordingly, the hypothesis that the Geomorphons map should improve a fully distributed
physically based model performance can be tested by representing landform heterogeneity
in soil parametrization. This is an attempt to maintain large-scale patterns in the landscape
while modelling a small headwater watershed. For this, the DHSVM was chosen to test
this hypothesis based on the fact that it considers the spatial variability of soil parameters
and can simulate small headwater watersheds considering spatial heterogeneity.

In this context, the objective of this study is to investigate a fully distributed physically
based model (DHSVM) performance when using a landform map from Geomorphons
as an input for a headwater watershed in the Lavrinha Creek Watershed. Additionally,
to analyze the parametrization effects of landform features for the model’s outputs, a
sensitivity analysis of soil parameters in relation to the landforms was executed. This study
can be particularly important for improving the assessment of hydrological responses in
small-scale watersheds using the DHSVM.
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2. Materials and Methods
2.1. Study Area

The Lavrinha Creek Watershed (LCW) is located in the Mantiqueira Range, southeast-
ern Brazil, at the coordinates 22◦08′28′′ S and 44◦26′30′′ W (Figure 1). Its drainage area
is 7.67 km2, between altitudes of 1137 and 1732 m above sea level. The watershed is a
headwater tributary of the Grande River Basin, which supplies water for a population of
approximately 8 million and has a potential installed electricity capacity of 7672 MW [30].
Inserted in the Atlantic Forest biome, the preserved Atlantic Forest occupies 63% of the
LCW’s area, and pasture mainly occupies the rest. Pasture expansion occurred because the
region is traditionally used for dairy and beef cattle production.
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Figure 1. The geographical location of the Lavrinha Creek Watershed (LCW), digital elevation model (DEM), stream channel,
and location of meteorological and streamflow gauge stations.

2.2. Data

Weather data were monitored from 2005 to 2010 by a Campbell automatic meteoro-
logical station (Figure 1). The average annual rainfall through this period was 2046 mm,
averaging maximum and minimum temperatures of 23 and 10 ◦C, respectively. According
to the Köppen climate classification, the LCW has a Cwb climate (temperate subtropical
highland climate): mild summers, along with dry and cold winters [28]. The rainy season
occurs between October and April, while the wet season occurs between May and Septem-
ber. From 2006 to 2010, the water level was measured by a Global Water Instrumentation
linigraph, model WL16, and a stage-discharge rating curve was fitted from measured
streamflow data in a potential model [4].
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The forested areas in the watershed have a mean leaf area index (LAI) of 4.05 m2 m−2,
a basal area of 24.5 m2 ha−1, and a canopy height of 9.58 m [28]. The pedological survey of
Menezes et al. [26] identified three soil classes at the LCW: Haplic Cambisol (92%), Haplic
Gleysol (7%), and Fluvisol (1%). Junqueira Júnior et al. [25] found values of saturated
hydraulic conductivity ranging from 0.01 to 32.4 m day−1, total pore volume between 44%
and 76%, field capacity between 19% and 50%, and wilting point between 9% and 25%.

2.3. Geomorphons

“Geomorphons” is an algorithm that classifies the landscape according to the patterns
of landforms based on the digital elevation model (DEM). This model uses the ternary
pattern recognition principle [31], identifying the morphology of the terrain according
to zenith and nadir angles within a user-defined look-up distance. The last refers to the
number of pixels within the search radius, in which neighbor pixels in eight directions
are labeled as 1 if its elevation is above the central pixel plus a flatness threshold (t),
−1 if it is below the central pixel less t, and 0 if it is between ±t. From these patterns,
landform can be classified into 1 of 10 most commonly recognizable Geomorphons: flat,
peak, ridge, shoulder, spur, slope, hollow, footslope, valley, and pit [19]. Further details on
Geomorphons calculations can be found in Jasiewicz and Stepinski [19].

Look-up distances and DEM resolutions do considerably change the resulting map.
Therefore, an adequate look-up distance can be selected by comparing with a reference soil
classification survey [20,21], or by validating the results with experimental data [22,23].

2.4. Distributed Hydrology Soil Vegetation Model (DHSVM)

The DHSVM [7] is a physically distributed-based model commonly used in small
mountainous watersheds. Among its applications, the DHSVM has been used in tropical
areas to study land use and land cover changes [1,4,32] and climate changes [2,3].

The spatial variability of physical parameters is defined by maps with grid cells of the
same resolution as the DEM, where soil and vegetation parameters are assigned to each.
Based on meteorological data, cell-to-cell water and energy balance are calculated at each
time step. The stream channel is represented as a series of connected pixels, where surface
and subsurface waters are intercepted and routed through the channel [33].

The DHSVM simulates evapotranspiration, water movement in unsaturated and
saturated soils, groundwater recharge, and streamflow [33]. Percolation (qv) in unsaturated
zones is calculated by Darcy’s law using Brooks–Corey Equation (1) [33]:

qv(θ) = KS

[
θ − θr

φ− θr

] 2
m +3

(1)

where Ks is the soil vertical saturated hydraulic conductivity, φ is the soil porosity, θr
is the residual soil moisture content, and m is the pore size distribution index. Soil
transmissivity is calculated assuming that soil lateral saturated hydraulic conductivity
decreases exponentially with depth [33]. Version 3.1.2 was used in this study.

2.5. DHSVM Input Data

The meteorological data required by the DHSVM are precipitation (m), air temperature
(◦C), wind speed (m s−1), short- and longwave radiation (W m−2), and relative humidity
(%). The wind speed at 30 m was estimated using the Bras [34] equation and the shortwave
radiation according to Swinbank [35]. Input meteorological data for simulation ranged
from 2005 to 2010 at hourly time steps.

The DEM was derived from interpolating contour line maps from the Brazilian Insti-
tute of Geography and Statistics (IBGE). Since simulations were performed at an hourly
time step, and overland flow is estimated in the model as a ∆x/∆t ratio, being ∆x the
spatial resolution and ∆t the time resolution, DEM resolution was defined as 30-m to avoid
overestimation of peak flows [36]. A land use map (Figure 2a) accounts for 63% of the
area with the Atlantic Forest and 37% with pasture. The watershed’s stream channel was
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delimited by a threshold of the drainage area of 60,000 m2. A soil depth map was created
based on the experimental results of Oliveira et al. [37].
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Figure 2. Land cover map in the Lavrinha Creek Watershed (a) and soil depth map (b).

The feature map resulting from Geomorphons was used to represent the geomor-
phology of the LCW. According to Silva et al. [21], there are similarities between the Geo-
morphons maps and the pedological survey at the LCW [26]. Thus, to analyze drainage
porosity, Pinto et al. [23] used Geomorphons maps with a fuzzy logic methodology to
interpolate observed field data, determining that a 30-m DEM resolution and a 750 m
(25 pixels) look-up distance provided the best representation of that soil physical property.
Therefore, for this study, a Geomorphons map was also generated by using a 25-pixel
look-up distance from a 30-m spatial resolution DEM.

2.6. DHSVM Calibration and Validation

Hourly meteorological data from January 2005 to September 2006 were used to warm
up the model, followed by 2 years for calibration (October 2006 to September 2008) and
2 years for validation (October 2008 to September 2010). Alvarenga et al. [4] calibrated
the DHSVM for the LCW considering vegetation parameterization as shown in Table 1.
As there were no changes in representing vegetation for this study, these values were
not altered.

Interaction among parameters was not considered in this study; the values were set
for each soil parameter individually, after sensitivity analysis. Parameter value ranges were
obtained by field experiments in the primary literature. The following soil parameters were
refined to improve the simulation of streamflow: lateral saturated hydraulic conductivity
(LSHC), vertical saturated hydraulic conductivity (VSHC), exponential decay of LSHC
(ED), porosity (PR), field capacity (FC), and wilting point (WP). These parameters were
selected based on previous sensitivity analyses of the DHSVM [4,8,38] and the availability
of field observations [23,25] (Figure 3).
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Table 1. Final vegetation parameters used in the DHSVM simulations [4].

Parameters
Atlantic Forest Pasture

Overstory Understory

Fractional coverage 0.95 - -
Trunk space 0.50 - -

Aerodynamic attenuation 2.50 - -
Radiation attenuation coefficient 0.71 - -

Height (m) 20.00 1.00 0.60
Maximum stomatal resistance (s m−1) 3600.00 2787.50 5000.00
Minimum stomatal resistance (s m−1) 185.70 185.70 120.00

Soil moisture threshold (cm3 cm−3) 0.10 0.10 0.14
Vapor deficit pressure (Pa) 4000 4000 4202

Fraction of photosynthetically active shortwave
radiation (W m −2) 0.43 0.17 0.43

Number of root zones (equal to soil layers) 3 3 3

Root zone depths (equal to thickness soil in m)
0.20 0.20
0.70 0.30
0.90 0.30

Root fraction for layer (%)
0.40 0.40 0.50
0.40 0.60 0.50
0.20 0.00 0.00

Monthly leaf area index (m2 m−2)

5.00 1.70 2.90
4.64 1.58 2.40
3.93 1.34 2.60
3.90 1.33 1.70
4.89 1.66 1.60
2.66 0.90 1.40
4.15 1.41 1.55
4.44 1.51 1.50
4.81 1.63 2.20
4.50 1.53 2.30
3.81 1.30 2.18
5.00 1.70 3.00

Monthly albedo 0.12 0.12 0.20
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The statistical performance indexes used as objective functions for calibration were the
Nash–Sutcliffe coefficient (NSE) (Equation (2)), the NSE calculated in logarithmic values
(lNSE) (Equation (3)), the percentage bias (PBIAS) (Equation (4)), and the root mean square
error (RMSE) (Equation (5)).

NSE = 1− ∑n
i=1(Oi − Si)

2

∑n
i=1
(
Oi −O

)2 (2)

lNSE = 1− ∑n
i=1(log(Oi)− log(Si))

2

∑n
i=1
(
log(Oi)− log

(
O
))2 (3)

PBIAS =
∑n

i=1(Si −Oi)

∑n
i=1(Oi)

·100 (4)

RMSE =

√√√√ n

∑
i=1

(Si −Oi)
2

n
(5)

where n is the total number of data, Oi is the observed streamflow at time i, O is the
average observed streamflow, and Si is the simulated streamflow at time i. According to
Moriasi et al. [39], statistical values of NSE greater than 0.5 and PBIAS of ±15% can be
considered a satisfactory model performance.

2.7. DHSVM Sensitivity Analysis

In this study, the sensitivity analysis was performed by the single parameter pertur-
bation method, also used in previous studies with the DHSVM [4,8,16,38,40]. To evaluate
the parameter sensitivity in the simulated streamflow, soil parameter perturbations were
simulated individually for each Geomorphons feature. According to Du et al. [38], the
most sensitive soil parameters of the DHSVM on streamflow are LSHC, ED, PR, FC, and
WP. Thus, simulations started with the parameter values reported in Table 2, obtained from
field measurements.

Table 2. Parameters, respective reference values, perturbations, and literature references for
reference values.

Parameter

Reference Value
Perturbation
(Multipliers)

Literature
ReferencesHaplic

Cambisol
Haplic

Gleysol Fluvisol

ED 1 1 1 0.01, 0.1, 0.5, 0.7, 1.3,
2, 10, 100 [8]

LSHC
(10−4 m s−1) 0.19 0.33 0.28 0.7, 0.8, 0.9, 0.95,

1.05, 1.1, 1.2, 1.3 [25]

PR 0.58 0.60 0.55 0.7, 0.8, 0.9, 0.95,
1.05, 1.1, 1.2, 1.3 [25]

FC 0.32 0.32 0.32 0.7, 0.8, 0.9, 0.95,
1.05, 1.1, 1.2, 1.3 [25]

WP 0.12 0.12 0.12 0.7, 0.8, 0.9, 0.95,
1.05, 1.1, 1.2, 1.3 [25]

ED: exponential decrease of lateral saturated soil hydraulic conductivity; LSHC: lateral saturated soil hydraulic
conductivity; PR: soil porosity; FC: field capacity; WP: wilting point.

Due to spatial similarities with the soil classes [21], initial soil parameters in Geo-
morphons features followed the referenced values (Table 2): (I) “valley” feature corre-
sponded to Haplic Gleysol, (II) “pit” feature to Fluvisol, (III) and the remaining features to
Haplic Cambisol.

Following the range of soil parameter values observed in situ by Junqueira
Junior et al. [25], the LSHC, PR, FC, and WP parameters varied from 0.7 to 1.3 times the
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reference value. Due to lack of experimental data of ED, this parameter varied from 0.01 to
100 times (Table 2).

For each perturbation, the variation of the simulated streamflow associated with an
exceeding probability of 5% (Q5%) and 95% (Q95%) was calculated from the flow duration
curve. Thus, the effects of parameter variation on the statistical performance coefficients
NSE and lNSE were determined in the simulated period: 2006 to 2010 [41].

3. Results and Discussion
3.1. Surface Map Geomorphons

Figure 4 shows the landform surface map generated by the Geomorphons algorithm
for the LCW. Six different features were identified by landform pattern recognition in
DEM data—“ridge” (C1), “spur” (C2), “slope” (C3), “hollow” (C4), “valley” (C5), and “pit”
(C6)—which occupy, respectively, 10%, 20%, 32%, 22%, 14%, and 2% of the LCW’s drainage
area. “Ridge” and “spur” occur mainly in elevated areas of the watershed, and “slope”
and “hollow” occur along slopes, while “valley” and “pit” features are characteristic of the
valley area of the catchment.
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Because of soil erosion processes in different landscapes, geomorphology plays an
important role in soil’s physicochemical properties’ spatial distribution [42]. In the LCW,
Silva et al. [21] evaluated the spatial soil texture variability of the surface layer (0 to 20 cm)
overlapped to the Geomorphons feature map, and found a significant increase in sand and
a decrease in clay content in the “valley” and “pit” features. Thus, these areas spatially
correspond to, respectively, the Haplic Gleysol and Fluvisol soil classes.
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3.2. Sensitivity Analysis

Figure 5 shows the bias variation of Q5%, Q95%, NSE, and lNSE of the simulated data
when soil parameters (ED, LSHC, PR, FC, and WP) are modified in each Geomorphons
feature. The horizontal axis indicates the perturbation of each parameter (Table 2), while
the vertical axis indicates the percent variation of Q5%, Q95%, NSE, and lNSE obtained
from parameter perturbation responses.

High (Q5%) and low (Q95%) streamflow regimes were significantly sensitive for four
soil parameters (ED, LSHC, PR, and FC), except WP, because the local climate is mostly
humid and the wilting point is rarely reached. Thus, according to the results shown in
Figure 5, Q5% and Q95% simulated by the DHSVM were more sensitive to variations of
the ED parameter. Responses to these parameter perturbations in Q5% ranged from −12%
to 20%, while Q95% ranged from −52% to 21%. The low streamflow regime, indicated
by Q95%, responded to LSHC and FC perturbations varying from −5% to 5%, while
PR modifications reached a 10% increase in Q95%. These results agree with those of
Du et al. [38], which also concluded that Q5% is more sensitive to PR variations since
lower soil porosities, in general, reduce infiltration capacity, inducing infiltration excess
overland flow.

It is important to highlight that parameter interactions may alter the output in the
model. For this analysis, the parameter value was modified after the simulations of each
parameter and class, seeking the highest NSE and lNSE values.

Figure 6 shows a boxplot of the variations of Q5% and Q95% to the perturbations
of the ED, LSHC, PR, FC, and WP parameters for each Geomorphons feature. The x-axis
is each Geomorphons feature, and the y-axis represents the variation of Q5% and Q95%
values simulated during sensitivity analysis of soil parameters. Boxplot amplitudes closer
to 0 indicate a low degree of sensitivity of soil parameters in this feature. It is noticeable
that “slope” (C3) and “hollow” (C4) features, followed by “valley” (C5), significantly
affect Q5% responses. The Q95% streamflow simulation was more sensitive to parameter
perturbations in “slope” (C3), followed by the “hollow” (C4) and “spur” (C2) features.

The “slope” and “hollow” features occur in complex terrain areas of the watershed,
and this facilitates the formation of infiltration excess overland flow [43]. Therefore, it
explains their influence in both high and low simulated streamflow regimes. “Valley”, on
the other hand, is characteristic of lowland areas and favors saturation excess overland
flow [44]. The “spur” feature occurs in highland areas, important for recharging the water
table. For this, soil parameters mostly changed the high streamflow regime. However, this
feature was very influential in terms of statistical NSE and lNSE coefficients.

According to Gao et al. [44], mean values and variations of model parameters could be
used to find a middle space between complexity and simplifications in the level of segmen-
tation of landscape representativeness. Because several Geomorphons features exhibited a
close response to soil parameter perturbation during sensitivity analysis, those features
can be merged to reduce uncertainties of parameter estimation when data are unavailable.
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3.3. DHSVM Calibration and Validation Using Geomorphons

The final soil parameters in DHSVM simulation that provided the best fitting to the
observed daily averaged streamflow in the LCW are presented in Table 3. Thus, simulated
and observed hydrographs are shown in Figure 7a,b for calibration and validation, as
well as the scattered points around the 1:1 line (Figure 7b,d). DHSVM simulation was
able to capture the seasonal streamflow behavior in the LCW. However, it showed a spiky
behavior around streamflow peaks, mainly during the validation period. In general, the
observed streamflow presented a more rapid recession after the wet season.

Table 3. Parameterization of the soil parameters in the DHSVM for the LCW using Geomorphons features.

Parameter

Soil Features

C1 C2 C3 C4 C5 C6
Ridge Spur Slope Hollow Valley Pit

Area fraction (%) 10 20 32 22 14 2
Lateral conductivity—LSHC (10−4 m s−1) 0.15 0.13 0.13 0.27 0.31 0.33

Exponential decay of LSHC—ED 0.7 0.1 0.1 0.01 0.001 0.001
Porosity—PR 0.58 * 0.63 * 0.67 * 0.64 * 0.55 * 0.60 *

0.60 ** 0.65 ** 0.69 ** 0.66 ** 0.57 ** 0.62 **
0.62 *** 0.67 *** 0.71 *** 0.68 *** 0.59 *** 0.64 ***

Field capacity—FC 0.21 * 0.21 * 0.21 * 0.21 * 0.19 * 0.29 *
0.22 ** 0.22 ** 0.22 ** 0.22 ** 0.20 ** 0.30 **
0.24 *** 0.24 *** 0.24 *** 0.24 *** 0.21 *** 0.32 ***

Permanent wilting point— 0.09 * 0.09 * 0.09 * 0.09 * 0.12 * 0.14 *
WP 0.09 ** 0.09 ** 0.09 ** 0.09 ** 0.12 ** 0.14 **

0.09 *** 0.09 *** 0.09 *** 0.09 *** 0.12 *** 0.14 ***
Vertical conductivity— 0.15 * 0.13 * 0.13 * 0.27 * 0.31 * 0.33 *

VSHC (10−4 m s−1) 0.14 ** 0.12 ** 0.12 ** 0.26 ** 0.305 ** 0.32 **
0.13 *** 0.11 *** 0.11 *** 0.25 *** 0.30 *** 0.31 ***

* Top soil layer; ** intermediate soil layer; *** lower soil layer.
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Table 4 presents the results of the performance statistics for the simulated streamflow,
indicating a satisfactory fitting for both the calibration and validation with an NSE of,
respectively, 0.68 and 0.63 and an lNSE of 0.53 and 0.70. PBIAS suggests an underestimation
of 4% and an overestimation of 13%, while RMSE indicates an index error of 0.10 m3 s−1

for calibration and 0.11 m3 s−1 for validation. In a previous study at the LCW using a
pedological survey map, Alvarenga et al. [4] found an NSE of 0.52 in both calibration and
validation periods and an lNSE of 0.06 and 0.58, respectively. Regarding simulation using
moisture zone features from the HAND, Alvarenga et al. [16] improved the DHSVM’s
performance in the LCW, with an NSE in calibration and validation of 0.57 and 0.55 and an
lNSE of 0.10 and 0.60, respectively. However, by using Geomorphons features as input in
the DHSVM, model performance increased considerably, especially in the lNSE coefficient
for calibration, as a result of the detailed spatial variability of a Geomorphons map and
previous sensitivity analysis of soil parameters.

Table 4. DHSVM performance during calibration and validation by different input soil maps.

Procedure Interval NSE lNSE PBIAS (%) RMSE

Geomorphons Calibration 0.68 0.53 −4 0.10
Validation 0.63 0.70 13 0.11

Pedological [4] Calibration 0.52 0.06 −2 0.12
Validation 0.52 0.58 13 0.13

HAND [16] Calibration 0.57 0.10 −2.1 0.12
Validation 0.55 0.60 13 0.12

Figure 8 shows the observed and simulated flow duration curves (FDCs) from different
soil map inputs. The simulated streamflow with Geomorphons features underestimates the
observed streamflow below a frequency of 10%. In this case, the simulated streamflow at
5% exceedance probability underestimates the observed streamflow by 0.11 m3 s−1. At 90%
and 95% exceedance probabilities, the differences between observed and simulated values
were 0.02 and 0.03 m3 s−1, respectively. In comparison with simulations using pedological
and HAND maps, Geomorphons simulation at 90% and 95% probabilities was greater by
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0.02 m3 s−1, while at 5%, probability was less by 0.06 m3 s−1. However, by comparing
the maximum simulated streamflow, simulation with Geomorphons overestimated the
observed data by 0.04 m3 s−1, while with a pedological map overestimated by 0.36 m3 s−1,
and HAND map by 0.29 m3 s−1.
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Beckers and Alila [45] highlighted the DHSVM’s limitations in capturing preferential
flow path in soil layers that contribute to subsurface streamflow. The ED parameter is
used to account for the saturated hydraulic conductivity difference in relation to soil depth.
However, while increasing this parameter, the magnitude of the simulated peak streamflow
increases, and recession is accelerated, causing underestimation of baseflows. Other
studies have also reported a similar behavior in DHSVM simulations [4,8]. Despite this,
simulations with the DHSVM improved using Geomorphons features when compared with
previous studies [4,16] in terms of simulated peak and base streamflow (Figure 8). These
results indicate that an increasing spatial variability of soil parameters can be beneficial for
simulating extreme events in the watershed.

For exceeding probabilities between 20% and 70%, DHSVM simulations with Geomor-
phons, pedological, and HAND maps exhibited a similar behavior: all of them produced
FDCs with a slope greater than the observed. For this range of probabilities, the FDC is
determined by percolation rates: a mild slope of this segment indicates a larger soil storage
capacity and, consequently, sustained groundwater flow [46]. Therefore, although there
is an improvement in performance statistics and peak and base streamflow simulations,
the increased spatial variability of soil parameters did not affect the simulated watershed
storage capacity.

In addition to streamflow analysis, evapotranspiration (ET) was monitored by water
balance. However, during the calibration and sensitivity analysis, no significant changes
in evaporation estimations were detected. DHSVM simulations in terms of the annual
water balance (ET = P − Runoff) indicated that evapotranspiration was 47.4% of the total
precipitation (P). Alvarenga et al. [4,16] found a value of 48.1% using both pedological
and HAND maps. Mello et al. [28] estimated the ration ET/P to be 49% for the whole
catchment, and approximately 50% for the forested portion of the drainage area.
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3.4. Soil Moisture Spatial Distribution

The spatial variability of simulated soil moisture and water table depth for wet and
dry events are presented in the panels of Figure 9. The left column maps correspond to
an event in 3 February 2008, at 15 h local time, after 109 mm of antecedent precipitation
during the previous 12 h, and 260 mm throughout the previous 7 days (wet event). As an
example of the conditions in the dry season, the right column of Figure 9 shows the maps
for 11 August 2007, at 15 h, with no recorded precipitation in the previous 14 days (dry
event). In addition, the black contour line of Figure 9 outlines the Geomorphons features
“hollow”, “valley”, and “pit” also depicted in Figure 4.
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by the DHSVM in the LCW, black contour line outlines the Geomorphons features “hollow”, “valley”,
and “pit”.

The simulated soil moisture at the surface layer (0 to 20 cm) varied from 0.23 to
0.67 m3 m−3 in the wet event, and from 0.12 to 0.67 m3 m−3 in the dry event, averaging
0.35 and 0.19 m3 m−3, respectively. These results are in accordance with Ávila et al. [47],
who carried out an observational study on this layer (0 to 20 cm) and found an average
soil moisture value of 0.32 m3 m−3 in February 2008 (wet event) and 0.23 m3 m−3 in
August 2007 (dry event). Additionally, in the intermediate layer (20 to 70 cm), soil moisture
varied from 0.20 to 0.69 m3 m−3 in the wet event and from 0.09 to 0.69 in the dry event.
Results showed a higher soil moisture and a shallower water table depth close to the stream
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channel due to the saturation of top soil layers [4,32]. Soil moisture was greater near the
“pit” feature (Figure 4) for both the wet and dry events, which explains the low sensitivity
of soil parameters in this feature. The shallow soil depth and smaller LSHC parameter
values for the “ridge” and “spur” features explain the higher soil moisture and water table
depth during a wet event.

Soil moisture and landforms are important characteristics for studying not only
the water regime in watersheds. Soil moisture modelling in physically based mod-
els can be used for predicting empirical thresholds associated with triggering shallow
landslides [48,49], as the precedent soil moisture content, associated with rainfall intensity,
helps improve the predictive accuracy of shallow landslides [49]. Therefore, the relation-
ships between geomorphology and soil moisture content in physically based modelling
should be further explored.

4. Conclusions

The streamflow and soil moisture simulations of a headwater mountainous watershed
in the DHSVM using Geomorphons map were satisfactory. The patterns in geomorphology
were accounted for in the model, representing heterogeneity in soil properties.

Sensitivity analysis indicated a strong influence of the ED, LSHC, and PR parameters
on the NSE coefficient. Streamflows at 5% (Q5%) and 95% (Q95%) probabilities were
sensitive to the ED, PR, LSHC, and FC parameters. The Geomorphons feature with
the greatest influence on the sensitivity parameters was “slope”, followed by “hollow”
and “valley”, which are related to the streamflow generation processes of infiltration and
saturation excess overland flow, which are important mechanisms of streamflow in complex
terrain watersheds.

The DHSVM performance statistics using a Geomorphons map in terms of streamflow
improved from previous studies using pedological and HAND maps. Thus, the simulated
soil moisture content is in accordance with experimental data. Based on these results in the
LCW, a geomorphological map is an accurate tool for spatially distributing soil parame-
ters in distributed models and for simulating the spatial variability of runoff generation
processes in the catchment.

Therefore, the use of Geomorphons maps in a complex terrain headwater watershed
offers an alternative for efficiently applying the DHSVM as a water resource management
tool. However, the large number of Geomorphons features can lead to over-parametrization
if there are no sufficiently available data for calibration. As an alternative, future studies
may analyze model performance by merging similar Geomorphons features to reduce
parameterization uncertainties in a “top-down” approach.

Author Contributions: Conceptualization, P.A.M. and L.A.A.; methodology, P.A.M.; validation,
P.A.M. and L.A.A.; formal analysis, J.T. and C.R.M.; writing—original draft preparation, P.A.M.;
writing—review and editing, L.A.A., J.T., C.R.M., M.A.M. and G.C.; funding acquisition, L.A.A. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by a Coordenação de Aperfeiçoamento de Pessoal de Nível Su-
perior (CAPES) scholarship program and the Conselho Nacional de Desenvolvimento Científico e
Tecnológico (CNPq) (Process 429247/2018–4).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: We would like to thank the CAPES Foundation for the master’s degree schol-
arship provided to the first author. We would also like to acknowledge the CNPq for a partial
funding through the 429247/2018–4 project. The authors also thank UFLA and INPE for the
institutional support.

Conflicts of Interest: The authors declare no conflict of interest.



Water 2021, 13, 2032 16 of 17

References
1. Chu, H.J.; Lin, Y.P.; Huang, C.W.; Hsu, C.Y.; Chen, H.Y. Modelling the Hydrologic Effects of Dynamic Land–Use Change Using a

Distributed Hydrologic Model and a Spatial Land–Use Allocation Model. Hydrol. Process. 2010, 24, 2538–2554. [CrossRef]
2. Alvarenga, L.A.; Mello, C.R.; Colombo, A.; Chou, S.C.; Cuartas, L.A.; Viola, M.R. Impacts of Climate Change on the Hydrology of

a Small Brazilian Headwater Catchment Using the Distributed Hydrology–Soil–Vegetation Model. Am. J. Clim. Chang. 2018, 7,
355–366. [CrossRef]

3. Safeeq, M.; Fares, A. Hydrologic Response of a Hawaiian Watershed to Future Climate Change Scenarios. Hydrol. Process. 2012,
26, 2745–2764. [CrossRef]

4. Alvarenga, L.A.; de Mello, C.R.; Colombo, A.; Cuartas, L.A.; Bowling, L.C. Assessment of Land Cover Change on the Hydrology
of a Brazilian Headwater Watershed Using the Distributed Hydrology–Soil–Vegetation Model. Catena 2016, 143, 7–17. [CrossRef]

5. Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.;
Bauer, P.; et al. The ERA–Interim Reanalysis: Configuration and Performance of the Data Assimilation System. Q. J. R. Meteorol.
Soc. 2011, 137, 553–597. [CrossRef]

6. Horan, R.; Gowri, R.; Wable, P.S.; Baron, H.; Keller, V.D.J.; Garg, K.K.; Mujumdar, P.P.; Houghton–Carr, H.; Rees, G. A Comparative
Assessment of Hydrological Models in the Upper Cauvery Catchment. Water 2021, 13, 151. [CrossRef]

7. Wigmosta, M.S.; Vail, L.W.; Lettenmaier, D.P. A Distributed Hydrology–vegetation Model for Complex Terrain. Water Resour. Res.
1994, 30, 1665–1679. [CrossRef]

8. Cuartas, L.A.; Tomasella, J.; Nobre, A.D.; Nobre, C.A.; Hodnett, M.G.; Waterloo, M.J.; de Oliveira, S.M.; von Randow, R.d.C.;
Trancoso, R.; Ferreira, M. Distributed Hydrological Modeling of a Micro–Scale Rainforest Watershed in Amazonia: Model
Evaluation and Advances in Calibration Using the New HAND Terrain Model. J. Hydrol. 2012, 462–463, 15–27. [CrossRef]

9. Srivastava, A.; Deb, P.; Kumari, N. Multi–Model Approach to Assess the Dynamics of Hydrologic Components in a Tropical
Ecosystem. Water Resour. Manag. 2020, 34, 327–341. [CrossRef]

10. Darbandsari, P.; Coulibaly, P. Inter–Comparison of Lumped Hydrological Models in Data–Scarce Watersheds Using Different
Precipitation Forcing Data Sets: Case Study of Northern Ontario, Canada. J. Hydrol. Reg. Stud. 2020, 31, 100730. [CrossRef]

11. Moustakas, S.; Willems, P. Testing the Efficiency of Parameter Disaggregation for Distributed Rainfall–Runoff Modelling. Water
2021, 13, 972. [CrossRef]

12. Seibert, J.; Staudinger, M.; van Meerveld, H.J. (Ilja) Validation and Over–Parameterization—Experiences from Hydrological
Modeling. In Computer Simulation Validation: Fundamental Concepts, Methodological Frameworks, and Philosophical Perspectives;
Beisbart, C., Saam, N.J., Eds.; Simulation Foundations, Methods and Applications; Springer International Publishing: Cham,
Switzerland, 2019; pp. 811–834. ISBN 978–3–319–70766–2.

13. Beven, K. Prophecy, Reality and Uncertainty in Distributed Hydrological Modelling. Adv. Water Resour. 1993, 16, 41–51. [CrossRef]
14. Antonetti, M.; Scherrer, S.; Kienzler, P.M.; Margreth, M.; Zappa, M. Process–Based Hydrological Modelling: The Potential of a

Bottom–up Approach for Runoff Predictions in Ungauged Catchments. Hydrol. Process. 2017, 31, 2902–2920. [CrossRef]
15. Savenije, H.H.G. HESS Opinions “Topography Driven Conceptual Modelling (FLEX–Topo)”. Hydrol. Earth Syst. Sci. 2010, 14,

2681–2692. [CrossRef]
16. Alvarenga, L.A.; de Mello, C.R.; Colombo, A.; Cuartas, L.A. Performance of a Distributed Hydrological Model Based on Soil and

Moisture Zone Maps. Rev. Bras. De Cienc. Do Solo 2017, 41. [CrossRef]
17. Iwahashi, J.; Pike, R.J. Automated Classifications of Topography from DEMs by an Unsupervised Nested–Means Algorithm and

a Three–Part Geometric Signature. Geomorphology 2007, 86, 409–440. [CrossRef]
18. Rennó, C.D.; Nobre, A.D.; Cuartas, L.A.; Soares, J.V.; Hodnett, M.G.; Tomasella, J.; Waterloo, M.J. HAND, a New Terrain

Descriptor Using SRTM–DEM: Mapping Terra–Firme Rainforest Environments in Amazonia. Remote Sens. Environ. 2008, 112,
3469–3481. [CrossRef]

19. Jasiewicz, J.; Stepinski, T.F. Geomorphons—A Pattern Recognition Approach to Classification and Mapping of Landforms.
Geomorphology 2013, 182, 147–156. [CrossRef]

20. Pinheiro, H.S.K.; Owens, P.R.; Chagas, C.S.; Carvalho Júnior, W.; Anjos, L.H.C. Applying Artificial Neural Networks Utilizing
Geomorphons to Predict Soil Classes in a Brazilian Watershed. In Igital Soil Mapping Across Paradigms, Scales and Boundaries;
Springer: Singapore, 2016.

21. Silva, S.H.G.; de Menezes, M.D.; de Mello, C.R.; de Góes, H.T.P.; Owens, P.R.; Curi, N. Geomorphometric Tool Associated with
Soil Types and Properties Spatial Variability at Watersheds under Tropical Conditions. Sci. Agric. 2016, 73, 363–370. [CrossRef]

22. Pinto, L.C.; Mello, C.R.; Norton, L.D.; Owens, P.R.; Curi, N. Spatial Prediction of Soil–Water Transmissivity Based on Fuzzy Logic
in a Brazilian Headwater Watershed. Catena 2016, 143, 26–34. [CrossRef]

23. Pinto, L.C.; de Mello, C.R.; Norton, L.D.; Silva, S.H.G.; Taveira, L.R.S.; Curi, N. Land–Use Effect on Hydropedology in a
Mountainous Region of Southeastern Brazil. Ciência E Agrotecnologia 2017, 41, 413–427. [CrossRef]

24. Viola, M.R.; Mello, C.R.; Beskow, S.; Norton, L.D. Impacts of Land–Use Changes on the Hydrology of the Grande River Basin
Headwaters, Southeastern Brazil. Water Resour. Manag. 2014, 28, 4537–4550. [CrossRef]

25. Junqueira Júnior, J.A.; da Silva, A.M.; de Mello, C.R.; Pinto, D.B.F. Continuidade Espacial de Atributos Físico–Hídricos Do Solo
Em Sub–Bacia Hidrográfica de Cabeceira. Cienc. E Agrotecnologia 2008, 32, 914–922. [CrossRef]

http://doi.org/10.1002/hyp.7667
http://doi.org/10.4236/ajcc.2018.72021
http://doi.org/10.1002/hyp.8328
http://doi.org/10.1016/j.catena.2016.04.001
http://doi.org/10.1002/qj.828
http://doi.org/10.3390/w13020151
http://doi.org/10.1029/94WR00436
http://doi.org/10.1016/j.jhydrol.2011.12.047
http://doi.org/10.1007/s11269-019-02452-z
http://doi.org/10.1016/j.ejrh.2020.100730
http://doi.org/10.3390/w13070972
http://doi.org/10.1016/0309-1708(93)90028-E
http://doi.org/10.1002/hyp.11232
http://doi.org/10.5194/hess-14-2681-2010
http://doi.org/10.1590/18069657rbcs20160551
http://doi.org/10.1016/j.geomorph.2006.09.012
http://doi.org/10.1016/j.rse.2008.03.018
http://doi.org/10.1016/j.geomorph.2012.11.005
http://doi.org/10.1590/0103-9016-2015-0293
http://doi.org/10.1016/j.catena.2016.03.033
http://doi.org/10.1590/1413-70542017414002017
http://doi.org/10.1007/s11269-014-0749-1
http://doi.org/10.1590/S1413-70542008000300032


Water 2021, 13, 2032 17 of 17

26. Menezes, M.D.; Junqueira, J.A.; De Mello, C.R.; Da Silva, A.M.; Curi, N.; Marques, J.J. Dinâmica Hidrológica de Duas Nascentes,
Associada Ao Uso Do Solo, Características Pedológicas e Atributos Físico—Hídricos Na Sub–Bacia Hidrográfica Do Ribeirão
Lavrinha—Serra Da Mantiqueira (MG). Sci. For. For. Sci. 2009, 37, 175–184.

27. de Castro Nunes Santos Terra, M.; de Mello, J.M.; de Mello, C.R.; dos Santos, R.M.; Nunes, A.C.R.; Raimundo, M.R. Influência
Topo–Edafo–Climática Na Vegetação de Um Fragmento de Mata Atlântica Na Serra Da Mantiqueira, MG. Rev. Ambiente E Agua
2015, 10, 928–942. [CrossRef]

28. Mello, C.R.; Ávila, L.F.; Lin, H.; Terra, M.C.N.S.; Chappell, N.A. Water Balance in a Neotropical Forest Catchment of Southeastern
Brazil. Catena 2019, 173, 9–21. [CrossRef]

29. Gao, H.; Hrachowitz, M.; Fenicia, F.; Gharari, S.; Savenije, H.H.G. Testing the Realism of a Topography–Driven Model (FLEX–Topo)
in the Nested Catchments of the Upper Heihe, China. Hydrol. Earth Syst. Sci. 2014, 18, 1895–1915. [CrossRef]

30. ANA. SPR O Plano Integrado de Recursos Hídricos Da Bacia Hidrográfica Do Rio Grande; Agência Nacional de Água: Brasilia, Brasil,
2017; p. 310.

31. Yokoyama, R.; Shirasawa, M.; Pike, R.J. Visualizing Topography by Openness: A New Application of Image Processing to Digital
Elevation Models. Photogramm. Eng. Remote Sens. 2002, 68, 257–266.

32. Thanapakpawin, P.; Richey, J.; Thomas, D.; Rodda, S.; Campbell, B.; Logsdon, M. Effects of Landuse Change on the Hydrologic
Regime of the Mae Chaem River Basin, NW Thailand. J. Hydrol. 2007, 334, 215–230. [CrossRef]

33. Wigmosta, M.S.; Nijssen, B.; Storck, P. The distributed hydrology soil vegetation model. In Mathematical Models of Small Watershed
Hydrology and Applications; Water Resources Publications: Chelsea, Michigan, 2002; pp. 7–42. ISBN 1–887201–35–1.

34. Bras, R.L. Hydrology: An Introduction to Hydrologic Science; Addison Wesley Publishing Company: Boston, MA, USA, 1990.
35. Swinbank, W.C. Long–wave Radiation from Clear Skies. Q. J. R. Meteorol. Soc. 1963, 89, 339–348. [CrossRef]
36. de Mendes, H.A.; Cecílio, R.A.; Zanetti, S.S. Influence of Soil Depth and Spatial Resolution on the Performance of the DHSVM

Hydrological Model in Basins with Low Input Data Availability. J. South. Am. Earth Sci. 2020, 105, 102993. [CrossRef]
37. Oliveira, A.S.; Silva, A.M.; Mello, C.R.; Alves, G.J. Stream Flow Regime of Springs in the Mantiqueira Mountain Range Region,

Minas Gerais State. CERNE 2014, 20, 343–349. [CrossRef]
38. Du, E.; Link, T.E.; Gravelle, J.A.; Hubbart, J.A. Validation and Sensitivity Test of the Distributed Hydrology Soil–Vegetation Model

(DHSVM) in a Forested Mountain Watershed. Hydrol. Process. 2014, 28, 6196–6210. [CrossRef]
39. Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and Water Quality Models: Performance Measures and Evaluation

Criteria. Trans. ASABE 2015, 58, 1763–1785. [CrossRef]
40. Kruk, N.; Chou, S.C.; Ladeira, F.; Vendrame, I. Análise de Sensibilidade Do Modelo Hidrológico Distribuído DHSVM Aos

Parâmetros de Vegetação. Rev. Bras. De Recur. Hídricos 2009, 14, 75–84. [CrossRef]
41. Tegegne, G.; Park, D.K.; Kim, Y.O. Comparison of Hydrological Models for the Assessment of Water Resources in a Data–Scarce

Region, the Upper Blue Nile River Basin. J. Hydrol. Reg. Stud. 2017, 14, 49–66. [CrossRef]
42. Conforti, M.; Longobucco, T.; Scarciglia, F.; Niceforo, G.; Matteucci, G.; Buttafuoco, G. Interplay between Soil Formation and

Geomorphic Processes along a Soil Catena in a Mediterranean Mountain Landscape: An Integrated Pedological and Geophysical
Approach. Environ. Earth Sci. 2020, 79, 1–16. [CrossRef]

43. Reli, S.N.; Yusoff, I.M.; Lateh, H.; Ujang, M.U. A Review of Infiltration Excess Overland Flow (IEOF): Terms, Models and
Environmental Impact. J. Adv. Humanit. 2016, 4, 490–502. [CrossRef]

44. Gao, H.; Sabo, J.L.; Chen, X.; Liu, Z.; Yang, Z.; Ren, Z.; Liu, M. Landscape Heterogeneity and Hydrological Processes: A Review
of Landscape–Based Hydrological Models. Landsc. Ecol. 2018, 33, 1461–1480. [CrossRef]

45. Beckers, J.; Alila, Y. A Model of Rapid Preferential Hillslope Runoff Contributions to Peak Flow Generation in a Temperate Rain
Forest Watershed. Water Resour. Res. 2004, 40. [CrossRef]

46. Yilmaz, K.K.; Gupta, H.V.; Wagener, T. A Process–Based Diagnostic Approach to Model Evaluation: Application to the NWS
Distributed Hydrologic Model. Water Resour. Res. 2008, 44. [CrossRef]

47. Ávila, L.F.; de Mello, C.R.; da Silva, A.M. Continuidade e Distribuição Espacial Da Umidade Do Solo Em Bacia Hidrográfica Da
Serra Da Mantiqueira. Rev. Bras. De Eng. Agrícola E Ambient. 2010, 14, 1257–1266. [CrossRef]

48. Lazzari, M.; Piccarreta, M.; Manfreda, S. The Role of Antecedent Soil Moisture Conditions on Rainfall–Triggered Shallow
Landslides. Nat. Hazards Earth Syst. Sci. Discuss. 2018, 1–11. [CrossRef]

49. Lazzari, M.; Piccarreta, M.; Ray, R.L.; Manfreda, S. Modeling Antecedent Soil Moisture to Constrain Rainfall Thresholds for Shal-
low Landslides Occurrence. In Landslides—Investigation and Monitoring; IntechOpen: London, UK, 2020; ISBN 978–1–78985–824–2.

http://doi.org/10.4136/ambi-agua.1705
http://doi.org/10.1016/j.catena.2018.09.046
http://doi.org/10.5194/hess-18-1895-2014
http://doi.org/10.1016/j.jhydrol.2006.10.012
http://doi.org/10.1002/qj.49708938105
http://doi.org/10.1016/j.jsames.2020.102993
http://doi.org/10.1590/01047760201420031268
http://doi.org/10.1002/hyp.10110
http://doi.org/10.13031/trans.58.10715
http://doi.org/10.21168/rbrh.v14n1.p75-84
http://doi.org/10.1016/j.ejrh.2017.10.002
http://doi.org/10.1007/s12665-019-8802-2
http://doi.org/10.24297/jah.v4i2.5098
http://doi.org/10.1007/s10980-018-0690-4
http://doi.org/10.1029/2003WR002582
http://doi.org/10.1029/2007WR006716
http://doi.org/10.1590/S1415-43662010001200002
http://doi.org/10.5194/nhess-2018-371

	Introduction 
	Materials and Methods 
	Study Area 
	Data 
	Geomorphons 
	Distributed Hydrology Soil Vegetation Model (DHSVM) 
	DHSVM Input Data 
	DHSVM Calibration and Validation 
	DHSVM Sensitivity Analysis 

	Results and Discussion 
	Surface Map Geomorphons 
	Sensitivity Analysis 
	DHSVM Calibration and Validation Using Geomorphons 
	Soil Moisture Spatial Distribution 

	Conclusions 
	References

