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Abstract: There is an increasing interest in identifying soil hydraulic properties from simplified
evaporation experiments. However, the conventional simplified evaporation method includes a
deficit due to using the linear assumption and not accounting for uncertainty in parameters. A
suggested alternative method is assessing the parameter uncertainties through inverse modeling.
We examined the combination of a Bayesian inverse method, namely, DREAM(ZS), and a numerical
simulation model, namely, HYDRUS-1D, for parameter inversion with data in simplified evaporation
experiments. The likelihood function could be conditioned only on pressure head observations
(single-objective (SO)), or on both pressure head and evaporation rate observations (multi-objective
(MO)), with different treatments on the top boundary condition. Three synthetic numerical experi-
ments were generated in terms of the soil types of sand, loam and clay to verify the inverse modeling
method. The MO approach performed better than the SO approach and linear assumption when
the stage 1 evaporation rate was kept constant. However, the SO inversion was more robust when
oscillations existed in the potential evaporation rate. Then, the SO inverse modeling was adopted to
investigate two real experiments on loamy-sand soils and compared with the linear assumption. The
linear assumption could be reliable for wet conditions with stage 1 evaporation but was not always
useable for a relatively dry condition, such as that with stage 2 evaporation. The inverse modeling
could be more successful in capturing the whole evaporation process of soils when both stage 1 and
stage 2 were involved.

Keywords: simplified evaporation method; soil hydraulic properties; Bayesian inference framework;
inverse modeling; MCMC method; DREAM(ZS) algorithm

Key points

1. A Bayesian inverse modeling framework with DREAM(ZS) was used for simplified
evaporation experiments.

2. MO inversion was more sensitive to oscillations in evaporation than SO inversion.
3. Inverse modeling performed better than the linear assumption when simulating stage

2 evaporation.

1. Introduction

Soil hydraulic properties (SHPs), i.e., the dependencies of soil water content and
hydraulic conductivity on the matrix suction or pressure head, are prerequisite information
for quantitative analyses of hydrological processes in the vadose zone [1–4]. A variety of
laboratory methods were developed to determine SHPs. Most of these methods involve
a hydrostatic equilibrium condition, a steady-state flow or a transient flow experiment,
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such as the pressure plate extractor experiment or the one-step or multi-step outflow
experiments [5,6]. These experiments provide a series of measured data of water content,
pressure head and/or flow rate, which can be used to evaluate SHPs by fitting empirical
curves or calibrating numerical models [7].

In the last decade, the simplified evaporation experiment [8], as one of the transient
flow experimental methods that are used for the SHPs of soils, became more and more
popular in laboratories, mainly due to its relative ease of implementation and ability for
gaining almost continuous data points. However, the conventional simplified evaporation
method (SEM) relies on various assumptions in data analyses, which caused limitations
when using this method. In general, at the beginning of a simplified evaporation experi-
ment, the saturated hydraulic conductivity is significantly higher than the flux such that
the hydraulic gradient may be too small to be measured within the accuracy of pressure
transducers. The criteria of the hydraulic gradient have to be considered to select available
data for the relationship between the hydraulic conductivity and the pressure head [9–11].
Linear distributions of the pressure head and flux were conventionally assumed to estimate
SHPs [8] in the SEM, leading to bias errors, particularly for coarse-textured soils [12]. Pa-
rameters of the SHPs model were generally obtained from curve fitting without considering
the limited measurement range, which may include misleading errors [13]. The experiment
was improved in some approaches to avoid the disadvantages of the SEM, such as using the
WP4 method when observing the permanent wilting point [14,15], enhancing experimental
devices to extend the measurement range and precision or using complementary additional
data in the wet range [16–19].

As an alternative to the linear assumption, SHP parameters can be determined from
simplified evaporation experiments through inverse modeling of the transient flow in
unsaturated soil samples. The Richards equation is available to identify unbiased SHPs
from evaporation experiments using inverse modeling [20,21]. Dettmann et al. [19] used
both the inverse method and a linear assumption to derive SHPs in a large number of
organic soil samples. In their study, the linear assumption yielded a better fitness for the
wet range and the inverse method reproduced better predictions when considering the full
measured range. Uncertainties and bias still exist when the optimization-based inverse
approach is used [22] since they are inherent consequences of parameter estimation and
model prediction of hydrological processes [3,23–26]. The quantification of uncertainties is
crucial in practical implications for soil water management, designing data collection and
enhancing the predictive capability of vadose zone models [27]. However, parameter un-
certainties in the modeling of a simplified evaporation experiment are not well represented
in the literature. To our knowledge, the only attempt was made by Minasny and Field [28],
who used the generalized likelihood uncertainty estimation (GLUE) algorithm.

Inverse modeling of simplified evaporation experiments involves both uncertainties
in hydraulic parameters and measurements. Parameter uncertainty in hydrological models
is usually investigated through stochastic inversions with the Bayesian framework, which
is widely implemented in many disciplines, such as the identification of a contaminant
source [29] and the optimization of sewage management [30]. The posterior probabil-
ity distribution of parameters is derived from prior knowledge, for example, using the
Markov chain Monte Carlo (MCMC) algorithm [31,32]. The differential evolution adaptive
metropolis algorithm (DREAM) is an efficient MCMC algorithm that was proposed by
Vrugt et al. [33]; it takes advantage of a self-adaptive differential evolution learning strategy
and was widely used [3,29,34–38]. However, this algorithm has not been introduced for the
SEM besides the use of GLUE. The uncertainty in measurements may be included in the ob-
jective (likelihood) function. In previous inverse evaporation modeling experiments, both
a single-objective (SO) function with measured pressure head [39] and a multi-objective
(MO) function with a pressure head and evaporation flux were used [19,20,28,40]. The
treatments of the upper evaporation boundary in the forward model are different between
the SO and MO optimization strategies, while the performances and impacts of the metrical
uncertainty have not been compared in the literature.
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In this study, we developed a stochastic inverse modeling approach for estimating SHP
parameters and determined their uncertainties from simplified evaporation experiments.
An extended DREAM algorithm, named DREAM(ZS) [41], was combined with HYDRUS-1D
to simulate the unsaturated flow with the parameter uncertainty. The two inverse strategies
(SO and MO) were performed and compared with discussions on different treatments of
the upper boundary and the impacts of observation errors. This inverse modeling approach
was implemented for both synthetic cases and real experiments, comparing with fitting
parameters that were obtained on the basis of a linear assumption in the conventional SEM.
To our knowledge, this is the first examination of DREAM(ZS) for the parameter inversion
of a simplified evaporation experiment. The difference in performance between the SO and
MO approaches was found, which is worthy of attention when the DREAM(ZS) algorithm
is applied for similar experiments.

2. Materials and Methods
2.1. Simplified Evaporation Method

The SEM was proposed by Schindler [8] in which an unsteady-state vertical flow
in a soil sample is driven by evaporation from the top surface that begins from a fully
saturated condition. Soils are filled into a sealed container with only one open face on the
top for evaporation (Figure 1a). The evaporation rate can be estimated from the measured
change in the weight of the sample, while the pressure head in the soil is measured with
tensiometers at two points of different heights. In general, the lower tensiometer is installed
at the height of z1 = 0.25L, while the upper tensiometer is installed at the height of z2 = 0.75L,
where L is the length of the soil sample.

Figure 1. Simplified evaporation experiments: (a) sketch of the equipment and (b) synthetic numerical examples.

The traditional SEM assumed a linear distribution of the pressure head h(z) between
z1 and z2 (Figure 1a) so that the pressure head at the midpoint hmid is estimated as
hmid = (h1 + h2)/2, where h1 and h2 are the measured pressure heads at the lower and
upper tensiometers, respectively. The volumetric water content θ(z, t) is a function of
height and time. At the midpoint, the volumetric water content θmid is approximated
as the average water content of the soil sample, which is estimated from the measured
weight loss:

θmid(t) =
V0 − ∆V

VA
= θs −

1
L

∫ t

0
E(τ)dτ (1)



Water 2021, 13, 2614 4 of 21

where V0 and ∆V are the initial water volume and reduction in water volume during the
evaporation period t, respectively; VA is the total soil sample volume; and E(τ) denotes the
evaporation rate at the elapsed time τ. The pair data of θmid and hmid represent the water
retention function.

The relationship between the hydraulic conductivity K and the pressure head h is
evaluated from the SEM by assuming a linear distribution of upward flux q(z) throughout
the height. This means that the hydraulic conductivity at the middle of the soil sample
K(hmid) can be determined from the Darcy law, as follows [11]:

K(hmid) = − qmid
1 + (∆h/∆z)

(2)

where qmid is the water flux (upward) at the middle, which is approximated by E/2 in the
SEM according to the linear assumption; ∆h = (h2 − h1) and ∆z = (z2 − z1); and ∆h/∆z yields
the pressure head gradient. The values of hmid and ∆h are calculated for the measurement
interval of E with the time-averaged method. The pressure head gradient should be high
enough to satisfy the accuracy of pressure transducers [11].

2.2. Numerical Modeling and Inverse Method
2.2.1. Forward Modeling of Simplified Evaporation Experiments

The vertical unsaturated flow in simplified evaporation experiments can be theoreti-
cally analyzed with the one-dimensional Richards equation as follows:

∂θ

∂t
=

∂

∂z

[
K(h)

(
∂h
∂z

+ 1
)]

, 0 < z < L (3)

We used HYDRUS-1D [42] to numerically solve the Richards equation with specific
initial and boundary conditions in simplified evaporation experiments. The initial condi-
tion was

h(z, t) = L− z, 0 < z < L and t = 0 (4)

which referred to saturated soil under hydrostatic pressure.
At the bottom, a zero-flux boundary condition was applied:

K
(

∂h
∂z

+ 1
)

= 0, z = 0 (5)

The boundary condition of the top evaporation surface can be treated with different
approaches. When the SO inversion is applied, the measured evaporation rate is used to
achieve a known flux boundary in the forward model [39], as follows:

K
(

∂h
∂z

+ 1
)

= E(t), z = L (6)

When the MO inversion is applied, the evaporation rate is an output of the forward
model and is estimated as the two-stage evaporation process [11,43]:

K
(

∂h
∂z

+ 1
)

= E(t), z = L and E(t) = E0, when h|z = L < ha (7)

h(z, t) = ha, z = L and E(t) = K
(

∂h
∂z

+ 1
)∣∣∣∣

z = L
, when h|z = L = ha (8)

where E0 is the steady evaporation rate in the first stage, which is equal to the potential
evaporation that depends on atmospheric limitations, while ha is a critical value (negative)
of the pressure head at the soil surface for the second evaporation stage, which is also
known as the minimum allowed pressure head in HYDRUS-1D [42]. Thus, the MO inver-
sion introduces an additional parameter in the forward model, namely, ha, in comparison
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with the SO inversion. The impact of the uncertainty about this parameter will be discussed
in Section 3.2.

Empirical functions are used to parameterize SHP in simplified evaporation experi-
ments. In HYDRUS-1D, the Mualem–van Genuchten (MvG) model [44,45] was incorpo-
rated as follows:

Se =
θ − θr

θs − θr
=

{ (
1 + |αh|n

)−m, h < 0
1, h ≥ 0

(9)

K(h) = KsSη
e

[
1−

(
1− S1/m

e

)m]2
(10)

where Se is the relative saturation; θr and θs are the residual and saturated volumetric
water contents, respectively; α and n are fitting parameters, where m = 1−1/n; Ks is the
saturated hydraulic conductivity; and η is a pore geometry parameter.

2.2.2. Bayesian Inference with DREAM(ZS)

To estimate the SHP parameters and determine their uncertainty from inverse mod-
eling, we employed the extended DREAM algorithm, namely, DREAM(ZS) [41], which
is an efficient MCMC algorithm. Based on Bayesian inference, the probability density
function (PDF) of the inversion parameters’ posterior distribution p(u|Yobs) is summarized
as follows:

p(u|Yobs ) =
p(u)p(Yobs|u)

p(Yobs)
(11)

where Yobs denotes the observation data, u are unknown parameters listed as a vector
u = (u1, . . . , ud) with the dimension size of d, p(u) represents the prior knowledge of u,
p(Yobs|u) is equivalent to the likelihood function L(u|Yobs) with respect to observation
data, p(Yobs) is the probability of a status represented by observations that are subject to the
data-generating process. p(Yobs) is usually determined as an independent variable from
p(u) [46] such that in practice, an alternative formula for the relative probability can be
applied [41]:

p(u|Yobs ) ∝ p(u)L(u|Yobs ) (12)

For the prior parameter distribution p(u), a useful assumption when lacking prior
information is the uniform distribution in a given parameter range [34]. The likelihood
function is subject to both the residuals and their standard deviation when a Gaussian
distribution of the residuals is assumed [2]. The standard deviation is an a priori unknown
parameter and could be eliminated in the likelihood function in practice by adopting the
Jeffreys prior [2,47,48], which leads to

L(u|Yobs ) =

(
N

∑
j = 1

[
yj − f j(u)

]2)− N
2

(13)

where yj represents an observed value in measurements; fj is the simulated result for this
observation; and j = 1, . . . , N denotes the number of measurements.

Based on the calculated likelihood, the DREAM(ZS) algorithm is used to generate
samples from the posterior PDF. In DREAM(ZS), multiple parallel Markov chains are
run simultaneously and adaptive randomized subspaces are sampled, which speeds up
convergence to the target probability distribution. The change in the position of each
Markov chain (noted by i) is determined by

pacc

(
ui

old → ui
p

)
= min

1,
p
(

ui
p

)
p
(
ui

old

)
 (14)

where pacc

(
ui

old → ui
p

)
is the Metropolis acceptance probability [49]. It is then compared

with a random value extracted from a uniform distribution between 0 and 1. The new
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state is adopted for the Markov chain, i.e., ui
new = ui

p, when pacc

(
ui

old → ui
p

)
is larger. If

not, the state of the Markov chain is retained, i.e., ui
new = ui

old. Details of the DREAM(ZS)
algorithm were presented in Vrugt [41].

As proposed by Ritter et al. [50], to avoid interference and reduce the number of
inversed parameters, it is considered that some SHP parameters are not necessary to be
estimated. First, we used η = 0.5 according to Mualem [44]. θs could be directly estimated
from the weight difference of the soil sample between saturated and dried status. It
was also hypothesized that ha is a known parameter when the MO approach is applied.
Thus, the unknown parameters of the inverse modeling are θr, α, n and Ks. A stratified
random procedure, i.e., the Latin hypercube sampling (LHS) method [51], was used to
generate sample values from the constrained parameter ranges (Table 1). Experiences
with DREAM(ZS) suggested that 3 parallel chains can be used to appropriately explore the
posterior PDF and then avoid needing too much time for the burn-in with more parallel
chains [33]. The univariate scale reduction factor, namely, the “R-statistic, which compares
the within-chain and between chain variances of inversed parameters, was employed to
assess the convergence of the Markov chains, where “R < 1.2 was adopted to indicate the
convergent state [52].

Table 1. Reference soil parameters extracted from the HYDRUS-1D catalog to generate the three synthetic experiments.

Soil Type θS θr α n KS l
(cm3 cm−3) (cm3 cm−3) (cm−1) (-) (cm min−1) (-)

Sand 0.43 0.045 (0–0.1) † 0.145 (0–0.2) 2.68 (1–7) 0.4950 (0–1) 0.5
Loam 0.43 0.078 (0–0.1) 0.036 (0–0.2) 1.56 (1–7) 0.0173 (0–1) 0.5
Clay 0.38 0.068 (0–0.1) 0.008 (0–0.2) 1.09 (1–7) 0.0033 (0–1) 0.5

† (a–b) denote the lower (a) and upper (b) bounds of the parameter range.

2.2.3. SO and MO Inverse Strategies

Simplified evaporation experiments can provide two kinds of observation data for
inverse modeling with objective functions: pressure heads at two detected positions and the
evaporation rate. How the observations are included in the objective (likelihood) function
is dependent on the inverse strategy.

The SO optimization strategy only uses measured pressure heads in the likelihood
function. In this situation, the log-likelihood, l((u |Yobs)) = log[L(u|Yobs)], can be rewritten
from Equation (13) as follows [41]:

l(u|Yobs) = − Nh
2

log

{
Nh

∑
j = 1

[
h∗j − hj(u)

]2
}

(15)

where h* and h are the measured and simulated pressure heads, respectively, and Nh is the
total number of available pressure head data for the inverse modeling. The measured evap-
oration rate is used in the SO optimization strategy as a known flux boundary condition
that is described in Equation (6).

The MO optimization strategy includes both the measured pressure heads and evapo-
ration rate in the likelihood function, and then the corresponding log-likelihood function is
given by

l(u|Yobs ) = − Nh + NE
2

log

{
Nh

∑
j = 1

[
h∗j − hj(u)

]2
+

NE

∑
j = 1

[
E∗j − Ej(u)

]2
}

(16)

where h* and h are the estimated normalized heads, respectively, that are estimated from
the observation and numerical simulation; E* and E are the normalized evaporation rates
that are estimated from observation and numerical simulation, respectively; NE is the total
number of available evaporation data for the inverse modeling; and the number of total
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observations is found using N = Nh + NE. The normalized heads and evaporation rates are
calculated using the mean and standard deviation values of measurements. The simulated
evaporation rate is obtained from Equations (7) and (8) with the additional parameter
ha. The potential evaporation rate, E0, is given as a constant that is estimated from the
measured evaporation data but may also include uncertainty, which will be discussed in
Section 3.2.

2.3. Synthetic Numerical Experiments

In this study, synthetic numerical examples of simplified evaporation experiments
were generated to check the feasibility and effectiveness of the DREAM(ZS) based inverse
modeling with the SO or MO approaches. L = 5 cm was applied for each example. Three
soil textures, i.e., sand, loam and clay, were considered to generate three examples using
the MvG model parameters of the SHPs listed in Table 1. The initial condition and lower
boundary conditions were determined to be those presented in Section 2.2.1. The upper
boundary condition was treated as being that for the two-stage evaporation, namely,
Equations (7) and (8), where the potential evaporation rate, E0, was set to 0.2 cm d−1.
The value of ha was given from empirical ranges: ha = −103 cm for sand and loam and
ha = −105 cm for clay. Nevertheless, the impact of the uncertainty in ha values is discussed
in Section 3.2. The soil column was converted to a finite element grid in HYDRUS-1D with
a resolution of 0.05 cm. The convergence criteria for the moisture content and pressure head
were 0.001 and 1 cm, respectively, in the numerical models. The variable time discretization
was adopted when solving the Richards equation. For the clay example, the pressure head
decreased rapidly during evaporation such that a small record interval, namely, 10 min,
was used to produce observation data for the inverse process. The investigated duration
of the clay example was determined by considering a general detectable limitation of the
pressured head (−103 cm) at the upper tensiometer, which was ~1.3 days. For the sand
and loam examples, the investigated duration was extended to 14 days, similar to Iden
et al. [53], and a larger record interval, namely, 100 min, was used. Synthetic observation
data for the three examples are shown in Figure 1b.

3. Results and Discussion
3.1. Comparison of the Results Found Using Different Methods

The uncertainty of parameters in the three synthetic examples (sand, loam and clay)
were analyzed with both inverse approaches of SO and MO from the prior parameter ranges
that are listed in Table 1. Note that the ha value used in the top boundary condition of the
MO approach model was not investigated in the inverse modeling, but rather was directly
given as that in Section 2.3. Inverse modeling results were obtained after 60,000 iterations
with the DREAM(ZS) algorithm along three parallel chains (each had 20,000 iterations) to
ensure that a stable posterior distribution of each parameter was achieved. It required
approximately 6 h of computation time (Intel(R) Core(TM) i7-10700k CPU @ 3.80 GHz;
32 GB RAM; Windows 10 Pro., 64 Bit). The difference in computational time between the
SO and MO approaches was not significant.

Figure 2 shows the Markov chain trace plots of the “R-statistic and parameter values
for the sand example. The results of the loam and clay examples are presented in the
Supplementary Materials. As indicated in Figure 2a, the DREAM(ZS) algorithm needed
about 50,000 model evaluations for the SO approach to officially reach convergence ( “R < 1.2).
However, the MO approach needed fewer model evaluations (~20,000), as shown in
Figure 2b. For the loam and clay examples, the MO approach needed more evaluations to
reach convergence than that of the SO approach, while the difference in number was less
than 12,000 (Figures S1 and S2). As shown in Figure 2c–f, with an increase in the number
of evaluations, the samples of α and n values rapidly concentrated to a small stable range,
in comparison with that of θr and Ks. Similar characteristics were also exhibited for the
loam and clay examples (Figures S1 and S2).
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1 
 

 
Figure 2. Trace plots of inverse modeling for the sand example: (a) the “R-statistic with the SO
approach; (b) the “R-statistic with the MO approach; and (c–f) are mixed changes in parameter values
with evaluations along three Markov chains.

Figure 3 shows the marginal posterior distributions of each sampled parameter that
was obtained through the SO and MO approaches for the three synthetic examples. As
indicated, the effective range of the posterior distribution was significantly smaller than the
prior range. The posterior distributions of the parameters obtained from the MO approach
for all the three synthetic examples sufficiently enclosed the exact value. The SO approach
yielded biased posterior distributions for the sand and loam examples (Figure 3a–h); how-
ever, the maximum discrepancy was less than ~10% of the exact value and could be
reduced when the time interval of the measurements was smaller than 100 min. For the
clay example, the SO inversion of θr and Ks provided quite different values from the exact
values; therefore, prior knowledge may be required for a more effective inversion. This
demonstrates that both of the SO and MO approaches could approximately suggest a
“unique” solution of the inverse problem when the measurements were noise-free with a
high enough temporal resolution.
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Figure 3. The marginal posterior probability density functions (PPDF) of the parameters obtained from inverse modeling
for the synthetic examples: (a–d) sand example, (e–h) loam example and (i–l) clay example. The red and blue curves were
extracted from the SO and MO approaches, respectively, whereas the vertical dashed line denotes the exact value.

To compare with the traditional SEM, we also carried out a calculation using the linear
assumption by fitting the θ(h) and K(h) data sets. The maximum a posteriori parameter
(MAP) values that were extracted from the SO and MO approaches are listed in Table
2, which were comparable to the exact parameter values, as well as the estimation from
the linear assumption (also presented in Table 2). The corresponding SHP curves of θ(h)
and K(h) are depicted in Figure 4 for comparison. As shown, all the estimated SHP curves
agreed well with the exact curves and are hardly distinguishable in Figure 4. An observable
effect was that the data points of the linear assumption did not fall on the exact curve
when pF = log(−h) was smaller than 1 (h > −10 cm), which was caused by the non-linear
distribution of the flow velocity along the soil column in the early evaporation period.
The difference in the performances of the methods could be more clearly identified from
the parameter values given in Table 2. As indicated, the MAP value of the parameters
obtained from inverse modeling through the MO approach almost fully matched the exact
value, which was better than the traditional SEM result. The linear assumption also caused
a deviation of about 40% when estimating the saturated hydraulic conductivity when
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the near-saturated data were involved. In comparison, the SO approach did not always
perform better than the linear assumption.

Table 2. Soil hydraulic parameters that were obtained with different methods for the three syn-
thetic examples.

Soil Type Methods
θr α n KS

(cm3 cm−3) (cm−1) (-) (cm min−1)

Sand

True value 0.045 0.145 2.68 0.495
SO MAP 0.048 0.146 2.71 0.551
MO MAP 0.045 0.145 2.68 0.495

MO-T MAP 0.044 0.144 2.68 0.475
Linear assumption 0.044 0.144 2.60 0.355

Loam

True value 0.078 0.036 1.56 0.0173
SO MAP 0.083 0.035 1.58 0.0171
MO MAP 0.078 0.036 1.56 0.0173

MO-T MAP 0.100 0.026 1.76 0.0117
Linear assumption 0.086 0.035 1.58 0.0168

Clay

True value 0.068 0.008 1.09 0.0033
SO MAP 0.008 0.009 1.07 0.0062
MO MAP 0.068 0.008 1.09 0.0033

MO-T MAP 0.068 0.008 1.09 0.0033
Linear assumption 0.000 0.007 1.08 0.0042
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Figure 4. Water retention (a–c) and hydraulic conductivity (d–f) functions that were obtained from different methods. The
SO and MO curves were extracted with the MAP value of the parameters. MO denotes the inversion results of using the
exact ha value of −103 cm for the sand and loam examples and −105 cm for the clay example. The results of MO-T were
obtained using a different ha value that was ten times the exact one.
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3.2. Impacts of Critical Pressure Head for Evaporation on MO Results

A special problem that arises in the MO approach is the uncertainty of the critical
pressure head for evaporation, namely, ha. It controls the switching of the upper boundary
from a prescribed flux condition (stage 1) to a prescribed head condition (stage 2), as
depicted in Equations (7) and (8). Specifically, the flux on the upper boundary remains at
the potential evaporation rate until the pressure head at the soil surface reaches ha; then,
the evaporation decreases but the pressure head remains at ha. In general, ha is empirically
specified for different soil textures (higher for coarser soils), while, in theory, it is related to
the air humidity and temperature [54]:

ha =
RT
Mg

ln(Hr) (17)

where M is the molecular weight of water, g is the gravitational acceleration, R is the
gas constant, T is the air temperature and Hr is the air humidity. An alternative way
of determining ha is to find the pressure head corresponding to the water content of
θr + 0.005 [42].

We did not include ha in the inversion parameters but we checked the sensitivity of
the MO approach using this parameter. The inverse modeling in Section 3.1 was based on
using the exact ha value in the synthetic example. In the sensitivity analysis, we carried
out additional MO inverse modeling by using a larger ha value for each example, which
was denoted as the MO-T scenario. The ha value in MO-T was ten times the exact ha value
for the examples, i.e., −104 cm in the sand and loam examples and −106 cm in the clay
example. This change leads to new MAP values of the parameters, which are also listed
in Table 2, and new SHP curves, which are shown in Figure 4. As indicated, the changes
in the results of the sand and clay examples were not significant. The clay example only
experienced the stage 1 evaporation such that the inverse modeling was not affected by
the ha value. In contrast, the MO-T of the loam example yielded larger errors in the MAP
value of parameters. For example, the θr value that was estimated from MO-T reached the
upper bound of the prior range. Thus, the MO inversion approach may be influenced by
the additional unknown parameter, namely, ha, especially when stage 2 evaporation was
involved. In contrast, the SO approach was not affected by this parameter because it used
the actual evaporation rate as the known boundary flux in the forward modeling rather
than including the evaporation rate in the likelihood function.

3.3. Sensitivity to Stochastic Oscillation in Evaporation and Observation Errors

Results in Sections 3.1 and 3.2 were obtained when a steady-state value of the potential
evaporation E0 was applied and no errors were introduced to establish synthetic examples.
In real experiments, the evaporation may be unstable due to changes in atmospheric
conditions. Observation errors may also exist in the measured weight and tension of the
soil sample caused by the limited accuracy of devices. In this section, we discuss the
impacts of the stochastic oscillation in the evaporation rate and observation errors on the
inversion results.

At first, we introduced a stochastic oscillation on the potential evaporation in the
synthetic experiment of the loam example, which was synthetically determined from a
stochastic Gauss noise [55]:

Ep = E0(1 + ξn0,1) (18)

where Ep denotes the oscillated potential evaporation rate around the average value (E0),
n0,1 is a number drawn from the standard Gaussian distribution and ξ represents the
relative level of oscillation. The E0 value, 0.2 cm d−1, was equal to that in the previous
synthetic numerical experiment and used to estimate Ep from Equation (18) with ξ = 0.5 for
a step-by-step changing interval of 12 h. Ep is a replica of E0 in Equation (7) in the forward
modeling of the synthetic loam example. It produced a fluctuated evaporation E in stage 1
and decaying evaporation in stage 2, as shown in Figure 5a. This oscillation evaporation
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also led to a disturbance in the pressure heads at the lower (h1) and upper (h2) tensiometers
in the stage 1 period, as shown in Figure 5b. However, the oscillation behavior was
significantly decreased in the pressure head and did not transfer to observations in stage 2
(Figure 5c). The “observation” data in Figure 5 were then introduced for inverse modeling,
while the average Ep value was applied for the MO approach, as is normally implemented.
The box diagrams in Figure 6 exhibit the uncertainty of the estimated parameters around the
exact value (represented by 1 in the relative form) in different scenarios. Compared to that
of the no oscillation scenario (ξ = 0, Figure 6a), the ξ = 0.5 oscillation significantly increased
the interquartile range of parameters that were obtained through the MO approach with
a bias in the MAP value related to the exact value (Figure 6b). Inversion results obtained
through the SO approach were not sensitive to the oscillation in evaporation rate. This
was because only the pressure head data (with limited oscillation) were included in the
likelihood function of the SO approach.
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Figure 5. Synthetic experimental data for the loam example with a stochastic oscillation in the potential evaporation: (a) the
change in the potential evaporation and simulated actual evaporation, (b) corresponding pressure heads in the first 8000 min
period and (c) corresponding pressure heads during the entire experiment duration.
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Figure 6. Box diagrams of the inversion parameters obtained from the SO (red) and MO (blue) approaches for the loam
example: (a) both ξ and ζ are zero; (b) ξ = 0.5 and ζ = 0.0; (c) ξ = 0.0 and ζ = 0.2; (d) ξ = 0.5 and ζ = 0.2. ξ is the relative
oscillation level of the evaporation rate. ζ is the relative level of observation errors.

Second, we tested the effect of stochastic observation errors by using

Yobs = Ymod(1 + ζn0,1) (19)

where Yobs is the synthetic observation data used in Equation (11), Ymod is the simulation
data in the forward modeling with or without the oscillation in evaporation and ζ represents
the relative level of the measured errors. For the loam example, we used ζ = 0.2 to generate
an error-including data set for inverse modeling.

As shown in Figure 6c,d, the uncertainties of the parameters were significantly en-
hanced by observation errors for both the SO and MO approaches. The posterior distribu-
tion of the residual water content θr became close to the upper bound of the prior range for
the ζ = 0.2 cases. When the oscillation in evaporation did not exist, the SO approach was
slightly more sensitive to observation errors than the MO approach, as indicated by the
wider interquartile range of parameters (Figure 6c). Otherwise, the SO approach performed
better than the MO approach by yielding a relatively smaller bias in the MAP value of
the parameters (Figure 6d). The treatment of the upper boundary in the MO inversion
introduced additional noises when the oscillation in evaporation existed. Among different
parameters, the saturated hydraulic conductivity Ks was mostly sensitive to observation
errors, while the n value was relatively insensitive to observation errors and the oscillation
in evaporation. The GLUE inverse modeling of simplified evaporation experiments con-
ducted by Minasny and Field [28] also indicated high uncertainties in Ks but this was not
attributed to the evaporation oscillation and observation errors.
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4. Application to Real Experiments

In the study of the synthetic numerical experiments, it was demonstrated that the
Bayesian inversion of SHP with the DREAM(ZS) algorithm could provide high-accuracy
parameter values when the oscillations in the evaporation and observation errors were
ignorable. In comparison to the MO approach influenced by the uncertainty of the ha value,
the SO approach was more reliable in a condition with oscillating evaporation values. In
this section, we further discuss the SO approach for real experiments in comparison with
the results of the linear assumption.

4.1. Soil Samples and HYPROP Experiments

Simplified evaporation experiments were carried out on two samples of loamy-sand
soil, denoted as A and B. Sample A was an undisturbed soil core collected from the Ordos
Plateau, China, with a saturated water content of 0.42. Sample B was filled with disturbed
soils collected from the Qinghai-Tibet Plateau, China, with a saturated water content of 0.50.

The equipment, named the HYPROP system (UMS GmbH, Munich, Germany), was
used to implement the simplified evaporation experiment. Tensiometers were installed at
1.25 cm and 3.75 cm underneath the soil’s surface, which were the same as the depths used
in the synthetic numerical experiments. The pressure head and the weight loss of the soil
samples were recorded automatically with 10 min intervals. To avoid data overrun in the
inversion procedure, we extracted evaporation data of the 10 min interval and pressure
head data of the 100 min interval for further analyses.

The duration of each experiment was close to 8 days. As shown in Figure 7, the
evaporation of both samples experienced significant fluctuations, similar to stochastic
oscillations, but only sample A experienced stage 2 evaporation. The average evaporation
rates of stage 1 were approximately 0.00024 cm min−1 and 0.00015 cm min−1, respectively,
for samples A and B.

Figure 7. Time series of the measured evaporation rate (dashed lines) and cumulative evaporation
(solid lines) in two real evaporation experiments.

4.2. Inversion Results

Inverse modeling of the real experiments with the SO approach also involved 20,000 model
evaluations along three parallel Markov chains, where the DREAM(ZS) algorithm needed
approximately 15,000 evaluations to officially converge to a stationary distribution. We
used the convergent chain states to represent the posterior distribution of the parameters.

Figure 8 shows the marginal posterior distribution of the inversion parameters. As
indicated, the parameter values generally had a normal or log-normal posterior distribution.
The posterior distribution of Ks for sample B seemed to be cut by the upper bound of the
prior range, suggesting that more prior knowledge regarding the hydraulic conductivity
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may be required. The MAP value and standard deviation of the posterior parameters are
listed in Table 3. Cross-correlation may have existed between different inversion parameters
and caused equifinality for different parameter sets. For example, θr and n of sample A
were positively correlated with each other at a correlation coefficient that was close to 0.9.
The inversion values of α and n for sample A had a negative correlation, as indicated by
the correlation coefficient of −0.61. For sample B, the cross-correlation coefficients between
different parameters were generally small, indicating a weaker equifinality for different
parameter sets.
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Figure 8. Marginal posterior probability density functions of inversion parameters for the real evaporation experiments:
(a–d) sample A and (e–h) sample B.

Table 3. Soil hydraulic parameters of samples A and B that were obtained when using the SO inversion approach and the
linear assumption.

Soils Methods
θr α n KS

(cm3 cm−3) (cm−1) (-) (cm min−1)

Sample A

Prior range 0–0.10 0–0.20 1–7 0–1

Inversion
MAP 0.061 0.052 1.750 0.170
S.D. † 0.003 0.002 0.021 0.021

Linear assumption 0.086 0.017 3.406 0.228

Sample B

Prior range 0–0.15 0–0.20 1–7 0–1

Inversion
MAP 0.122 0.014 2.020 0.770
S.D. 0.001 0.0003 0.003 0.181

Linear assumption 0.100 0.013 1.972 0.121
† S.D. denotes the standard deviation of the posterior parameters.

Estimated soil hydraulic properties were also obtained through the traditional SEM
with the linear assumption. This analysis was performed by using the HYPROP-Fit
software [56] and the results are also listed in Table 3. The corresponding soil water
characteristic curves that were directly obtained from this method and extracted from
the MAP value of inversion parameters are shown in Figure 9 for comparison. The SEM
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result of the θ(h) curve for sample A was quite different from the inversion result due to a
strong decrease in the pressure head in the early wet period. This was also indicated by the
significant difference in the α and n values of sample A that were obtained from different
methods (Table 3). The θ(h) points of SEM for sample B fell close to the inversion curves.
A few of the K(h) data were selected by the HYPROP-Fit, especially for sample B, and
most of the data points fell below the inversion curves. The linear assumption yielded a Ks
value (0.121 cm min−1) for sample B that was significantly smaller than the MAP value
(0.770 cm min−1) of the Ks extracted from the SO inversion results.
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p
F

 (
−

)
p
F

 (
−

)

log K (cm min−1) log K (cm min−1)

Sample A

Sample A

Sample B

Sample B

Linear assumption

MAP 

Posterior parameter sets

Figure 9. Soil water retention and hydraulic conductivity functions that were obtained from the MAP
value of the inversion parameters and the linear assumption for the real evaporation experiments.

To check the performances of the different methods, the estimated parameters were
introduced into the forward modeling to reproduce changes in the pressure head at the
lower (h1) and upper (h2) observation points. The results are shown in Figure 10, where the
differences between the linear assumption and the inversion were significant for sample A
and relatively insignificant for sample B. The linear assumption yielded simulated pressure
heads for sample A that agreed well with observations when the evaporation time was less
than about 4 days. However, it significantly underestimated the decay rate of the stage 2
evaporation. The observation data points of sample A fell into the range determined from
the 95% total model uncertainties of the SO inversion, but the MAP values of the parameters
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underestimated the pressure head when the evaporation time was less than about 4 days.
In comparison with the traditional SEM based on the linear assumption, the inverse method
could be more successful in capturing the whole evaporation process of soils when both
stage 1 and stage 2 evaporation were involved. The linear assumption could be more
reliable for the wet condition in the stage 1 evaporation but was not always useable for a
relatively dry condition, such as that in the stage 2 evaporation. Such behavior was also
reported by Dettmann et al. and Iden et al. [19,53], who proposed that the fitted parameters
from the linear assumption need to be evaluated when they are used in the full measured
pressure head range. Our study suggested that the SO inversion was an efficient alternative
method for assessing the parameters of soils from the simplified evaporation experiment.

h
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Linear assumption

95% parameter uncertainty

95% total model uncertainty

Sample B, h1
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Time (d)Time (d)

h
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Figure 10. Reproduced pressure head variations over time. The 95% confident interval around the MAP curve was
determined from posterior parameters (dark grey zone) or the total model prediction (light grey zone).

The assumption of a uniform prior distribution (noninformative) for the inversed
parameters was implied in this study, which seems to have not led to severely unreasonable
estimations for the synthetic examples but could cause uncertainties in the real experiments.
If prior information about the soil hydraulic parameters and their correlation are available,
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the parameter identifiability may be significantly improved [2]. In addition, an assumption
of the used likelihood function, namely, Equation (13), is that the residuals of the model
follow a Gaussian distribution. This was approximately satisfied in the synthetic examples
and the real experiment of sample B but deviated in sample A. Similar non-Gaussian
distributions in residuals were also reported [3]. This deviation may influence the posterior
distribution of inversed parameters [57], which is worthy of further investigation using
other likelihood functions.

5. Conclusions

This study implemented and examined a Bayesian inference framework for the inverse
modeling of simplified evaporation experiments by combining the forward model based
on HYDRUS-1D and the MCMC inversion algorithm based on DREAM(ZS). This method
has the potential to overcome disadvantages in the traditional SEM that lie on the linear
assumption. There are two ways of dealing with the evaporation boundary and likelihood
function. The SO inversion treats the top surface as a known flux boundary and conditions
the likelihood function solely with measured pressure heads. The MO inversion treats
the top surface as a convertible boundary with an additional parameter depending on the
evaporation stages and conditions the likelihood function with both the observed pressure
heads and evaporation rates. To examine the performance of these two approaches, three
synthetic experiments were generated with HYDRUS-1D using specified parameters of
sand, loam and clay, and parameters were then identified with the inversion method
and linear assumption for comparison. The SO inverse modeling was finally applied
to investigate two real experiments of loamy-sand soils with oscillating evaporation for
almost 8 days. The following conclusions were drawn according to the obtained results:

(1) When the evaporation in stage 1 was steady and no observation errors were intro-
duced, the MO inversion performed better than the SO inversion and linear assump-
tion, which yielded the values of parameters that sufficiently fell into a small range
around the accurate value.

(2) The conducted MO inversion was less sensitive to observation errors; however, the
conducted SO inversion was more robust when the oscillation existed in the potential
evaporation rate.

(3) For the experiment only including the stage 1 evaporation, the SO inversion and linear
assumption yielded similar parameter values and both performed well regarding
reproducing time-dependent pressure heads.

(4) For the experiment including two evaporation stages, the soil hydraulic parameters
derived from the linear assumption were quite different from that identified by the
SO inversion, which misestimated the time-dependent pressure head for the stage
2 evaporation.

Supplementary Materials: Figure S1: Trace plots of the inverse modeling for the loam example:
(a) the “R-statistic with the SO approach; (b) the “R-statistic with the MO approach; and (c–f) are mixed
changes in the parameter value with evaluations along three Markov chains. Figure S2: Trace plots of
the inverse modeling for the clay example: (a) the “R-statistic with the SO approach; (b) the “R-statistic
with the MO approach; and (c–f) are mixed changes in parameter value with evaluations along three
Markov chains.

Author Contributions: Conceptualization, X.W. and X.-s.W.; methodology, X.W., X.-s.W. and N.L.;
experiments and data processing, X.W.; formal analysis, X.W., X.-s.W. and L.W.; writing—Original
draft preparation, X.W.; writing—Review and editing, X.-s.W. All authors have read and approved
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 41772249.



Water 2021, 13, 2614 19 of 21

Acknowledgments: We greatly thank Hao Zhou and Pan Wu for their help in collecting samples
and conducting the experiments. The authors are grateful to three anonymous reviewers for their
constructive comments.

Conflicts of Interest: The authors declare no conflict of interest.

References
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