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Abstract: Rivers in Taiwan are characterised by steep slopes and high sediment concentrations.
Moreover, with global climate change, the dynamics of channel meandering have become complicated
and frequent. The primary task of river governance and disaster prevention is to analyse river changes.
Spectral water indices are mostly used for surface water estimation, which separates the water from
the background based on a threshold value, but it can be challenging in the case of environmental
noise. Edge detection uses a canny edge detector and mathematical morphology for extracting
geometrical features from the image and effective edge detection. This study combined spectral water
indices and mathematical morphology to capture water bodies based on downloaded remote sensing
images. From the findings, this study summarised the applicability of various spectral water body
indices to the surface water extraction of different river channel patterns in Taiwan. The normalised
difference water index and the modified normalised difference water index are suitable for braided
rivers, whereas the automated water extraction index is ideal for meandering rivers.

Keywords: remote sensing; spectral water index; mathematical morphology

1. Introduction

Taiwan is a narrow (north–south) island, with rivers following an east–west flow and
having shorter flow path characteristics compared with other countries. Most of Taiwan’s
rivers originate in high mountain areas; therefore, they have high flow rates and steep
slopes [1]. Moreover, Taiwan is known for extreme weather events. A complex, seasonally
shifting, monsoon-dominated weather system brings an abundance of rain, with a yearly
average rainfall of 1000–3000 mm [2]. Because of the effects of extreme weather in recent
years and the scale and frequency of rain events, the number of rainfall-related landslides
and injuries has significantly increased [1]. Such weather causes the water flow to have
a high sand content, which leads to intense riverbed silting. River sand mining and the
construction of cross-river structures have also made river changes more frequent and
complex. The prevention and control of river disasters have become critical tasks for the
government. Therefore, analysing and investigating river changes must be prioritised [3,4].

In the past, river change patterns were the primary data source for river planning
and management; traditional measurement techniques included control, topographic, and
cross-sectional surveys [5]. River cross-sectional survey data have helped researchers to
understand the actual changes in river troughs. Much effort, time, and money are required
when short-term information on river changes cannot be obtained. Remote sensing data
have the following characteristics: a synoptic view, the potential for remeasurement, and
a wide range of spatial and temporal resolutions. The format of remote sensing data is
suitable for computer processing; combined with their other advantages, this has made
such data the primary source for change detection [6–8]. Remote sensing images include
multispectral information and the band data of different ground objects can be collected
for feature classification [9]. Hence, this study selected remote sensing images as a data
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source for river extraction. First, the inspection of river channel change is necessary for
determining the characteristics of water bodies. Most water extraction methods are based
on remote sensing images. Methods for determining water characteristics include super-
vised classification, nonsupervised classification [10,11], mixed cell decomposition [12–14],
single-band threshold, and spectral water indices [15–18]. Spectral water indices have
higher accuracy and convenience compared with other methods [19,20]. The fundamental
water index normalized difference water index (NDWI) using green and near-infrared
(NIR) bands of a Landsat thematic mapper (TM) image maximize water feature identifica-
tion by McFeeters [16]. Xu replaced the near-infrared (NIR) band in McFeeters’s NDWI
with the shortwave infrared (SWIR) band and derived the modified NDWI (MNDWI) [18]
to resolve water bodies over built-up areas. However, there were still significant problems
due to shadows in mountainous terrain. Feyisa et al. [15] proposed the automated water
extraction index (AWEI) to identify water features, which has two conditions: AWEIsh
is designed primarily to remove shadow pixels, whereas AWEInsh is designed for areas
with an urban background. Extracting rivers and lakes by combining the water indices
(NDWI, MNDWI, AWEIsh, and AWEInsh) was proposed as an automated method with
digital image processing techniques in Landsat scenes in China [21]. Hence, in this study,
we evaluated the performance of the most widely used water indices: NDWI, MNDWI,
AWEIsh, and AWEInsh in a Landsat image of Taiwan. Mathematical morphology can be
used to extract water body features, and it has the advantage of noise filtering and feature
information retention. In particular, a continuous shape can be maintained for narrow
water bodies in space [22].

The water body index and mathematical morphology have their advantages in water
body extraction from images. This study combined the benefits of these two methods to
extract water bodies. The spectral water body indices of the images in each period were
calculated to enhance the differences between the water body and other objects. Then, a
series of mathematical morphological operations were performed, and the characteristics
of the water body were extracted. Subsequently, this study analysed the optimal water
body index corresponding to different river channel patterns in Taiwan.

2. Materials and Methods
2.1. Data

The satellite optical images are free to download, and have regular fixed-point shoot-
ing and more spectral resolution options. This study used Landsat imagery from the United
States as a source of information for detecting river changes. The data product, Level-1
TP, was downloaded from the U.S. Geological Survey (USGS). Landsat-7 was launched by
NASA on 15 April 1999, with enhanced theme mapping (Enhanced Thematic Mapper Plus
(ETM plus)) sensors in eight bands. Landsat-8 was launched by NASA on 11 February 2013
and is equipped with a land imager (OLI) and thermal infrared sensor (Thermal InfraRed
Sensor (TIRS)) with 11 bands.

Taiwan has 26 main rivers. This study selected rivers of different types and locations:
the Tamsui River in Northern Taiwan, the Beigang River in Central Taiwan, the Zengwen
River and Qishan River in Southern Taiwan, and the Xiuguluan River in Eastern Taiwan.
River change was the primary target of this study; for every testing area, images recorded
at different times were used for detecting changes (Figure 1 and Table 1).
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Figure 1. Locations of testing rivers.

Table 1. Data of testing images.

Testing Area Date Satellite

Tamsui River
3 December 2001 Landsat-7 ETM+
23 December 2017 Landsat-8 OLI

Beigang River 17 November 2013
Landsat-8 OLI15 November 2018

Zengwen River 3 December 2013
Landsat-8 OLI30 October 2018

Qishan River
26 December 2001 Landsat-7 ETM+
28 November 2017 Landsat-8 OLI

Xiuguluan River 14 November 2000 Landsat-7 ETM+
13 December 2019 Landsat-8 OLI

2.2. Method

This study’s primary goal was to identify water bodies from remote sensing images
for use in flood prevention and river management. The research steps were as follows:
First, the spectral water body indices of the remote sensing images of each period were
calculated to enhance the difference between water bodies and other earth objects. Then, a
series of mathematical morphological operations were conducted to extract the water body
features. A flow chart of the research process is presented in Figure 2.



Water 2021, 13, 2774 4 of 17

Figure 2. Research flow chart.

2.2.1. Spectral Water Indices

Spectral water indices are algebraic operations that combine two or more bands to
enhance the difference between water bodies and nonwater bodies. Then, appropriate
thresholds are established to distinguish between water bodies and other land covers; the
process is simple, fast, and low-cost, especially for treating specific noise. Spectral water
indices are widely used to identify water bodies [19,20]. We used four typical spectral water
body indices for water body extraction in this study: the normalised difference water index
(NDWI), the modified NDWI (MNDWI), the automated water extraction index shadow
(AWEIsh), and the automated water extraction index no shadow (AWEInsh; see Table 2).

Table 2. Spectral water indices for water feature extraction.

Spectral Water Index Equation

Normalised difference water index (NDWI) NDWI =
(

Bgreen − BNir
)
/
(

Bgreen + BNir
)

Modified normal difference water index (MNDWI) MNDWI = (Bgreen − BMIR)/(Bgreen + BMIR)

Automated water extract index shadow (AWEIsh) AWEIsh = Bblue + 2.5 × Bgreen − 1.5 × (BNir + BSWIR1) − 0.25 × BSWIR2

Automated water extract index no shadow (AWEInsh) AWEInsh = 4 ×
(

Bgreen − BSWIR1
)
− (0.25 × BNir + 2.75 × BSWIR2)

In the surface water extraction process, the threshold of 0 is used for all individual
index maps. An optimum threshold is searched to give the highest overall accuracy and
kappa coefficient based on the trial and error method. Furthermore, indices with better
extraction abilities are combined to increase the separability between water and non-water
surfaces based on the evaluation matrices [21].
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2.2.2. Mathematical Morphology

Edges are important features in an image since they represent significant local in-
tensity changes. They provide important clues to separate regions within an object or to
identify changes. Most remote sensing applications, such as image registration, image seg-
mentation, region separation, object description, and recognition, use edge detection as a
preprocessing stage for feature extraction. Real images, such as remote sensing images, can
be corrupted by point noise [23,24]. Edge detection uses a canny edge detector and mathe-
matical morphology for extracting geometrical features from the image and for effective
edge detection [25]. After data preprocessing and spectral water body index calculations,
the images were processed using mathematical morphology. Mathematical morphology
is an image processing technique that was proposed by Matheron and applied by Serra
to image processing and analysis [26]. Compared with traditional classification, which
only considers the grayscale value of pixels, mathematical morphology also considers the
shape, neighbourhood, size, and other characteristics of an object to preserve its shape and
edges. This is particularly suitable for water bodies with specific spatial features, resulting
in feature extraction [27]. Mathematical morphology is highly effective at distinguishing
between water and nonwater bodies. For example, KuPidura used mathematical morphol-
ogy to distinguish between lakes and rivers and proved that mathematical morphology
results are accurate [28]. Sghaier et al. combined image texture with mathematical mor-
phology to form an algorithm for extracting rivers from high-spatial-resolution images [22].
Rishikeshan and Ramesh developed a mathematical-morphology-based semiautomated
lake extraction method that preserves the actual size and shape of lakes and ponds [29].
Intervention studies involving animals or humans, and other studies that require ethical
approval, must list the authority that provided approval and the corresponding ethical
approval code.

This study used Matlab toolsto operate mathematical morphology [30]. Median fil-
tering is the first step, which is a nonlinear operation often used in image processing to
reduce salt and pepper noise. It makes the image smoother and intensifies pixels, mainly
background pixels close to each other. The second step is to determine the size of the
structural elements, which depends on satellite imagery at different spatial resolutions
(15 m in this study). The third and fourth steps are dilation and erosion operating “length-
ening”, “thickening”, “shrinks”, and “thins” in the binary image, which achieve control by
a structural element. The last two steps are opening and closing operations. The opening
operation makes the contour of objects smooth and disconnects narrow discontinuous, and
removes thin protrusions. Similarly, with the opening operation, the closing operation
also makes the outline smooth. The opposite is that it usually eliminates discontinuity and
narrows long, thin gaps; clears up small holes; and fills the ruptures of the contour line.
(For theoretical principles and foundations, please refer to [31]).

2.3. Accuracy Assessment

After all the research procedures, the water body results were compared with reference
images (i.e., the ground truth data). To verify the accuracy of the results, the reference
images were recorded at the same time as the result images. In this study, the reference
data of water bodies and nonwater bodies in colour images were collected through random
sampling to evaluate the accuracy of the classification results. Landsat 8 colour images
were used as reference images, and random sampling was used to collect reference data on
water and nonwater bodies. Sampling points were established using ArcGIS software, in
which random sampling methods comprise the following options:

1. Simple random sampling: The samples are randomly distributed throughout the image.
2. Stratified random sampling: A random number of samples is distributed throughout the

image; the number of samples for each category is proportional to the area of the image.
3. Equalised stratified random sampling: A randomly distributed sample count is

created throughout the image, with each category having the same sample size.
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The interest category of the topographic features was the water bodies. To ensure
accurate and reliable classification, images were selected in which water bodies accounted
for a lower proportion of the whole image compared with other objects. Hence, we used
equalised stratified random sampling to produce sampling points. The water body and
nonwater sample sizes were the same to avoid the sample number being concentrated in
the nonwater body category. For each category, a sufficient number of samples must be
collected to accurately assess the classification accuracy when using random sampling.
However, a crucial consideration is the number of sampling points, which must be deter-
mined to balance accuracy with the cost of collecting reference data. In general, at least
50 random samples are required for each category when the study area is less than 1 million
acres and there are fewer than 12 categories [32]. At least 75–100 random samples should
be collected in each category when the study area is large or the surface distribution is
more complex (100 samples in this study). These criteria were verified as statistically valid
and helpful.

In this study, a confusion matrix was used as an evaluation indicator, the results of
which can be divided into four categories, as presented in Table 3:

(1) True positive (TP) represents correctly identified water pixels;
(2) True negative (TN) indicates the correctly rejected nonwater pixels;
(3) False positive (FP) indicates incorrectly identified water pixels;
(4) False negative (FN) indicates undetected water pixels.

Table 3. Confusion matrix.

Classified Data Water Non-Water

Water TP FP

Non-water FN TN

The values in the confusion matrix can be used to calculate the producer accuracy
(PA), user accuracy (UA), overall accuracy (OA), and kappa coefficient, which are detailed
in Table 4.

Table 4. Indicators in the accuracy evaluation.

Accuracy Evaluation Metrics Equation Description

Producer accuracy PA = TP
TP+FN

The ratio of the correctly classified pixels to the actual total number of
pixels for each category.

User accuracy UA = TP
TP+FP

The ratio of the correctly classified pixels to the total pixels categorised
for each category.

Overall accuracy OA = TP+TN
T The ratio of the correctly classified pixels to the total number of pixels.

Kappa coefficient Kappa = T(TP+TN)−∑
T2−∑

The percentage of errors reduced by classification results compared
with completely random classifications.

In Table 4, ∑ is the chance accuracy represented by (TP + FP)(TP + FN) + (FN + TN)(FP + TN),
where T is the total number of pixels. The accuracy indices of PA, UA, and OA range from
0 to 1, with values closer to 1 indicating more accurate results. However, these indices do
not account for random agreement between datasets. Hence, the kappa coefficient, a tool
for controlling the random agreement factor, is often used with PA, UA, and OA. Usually,
the kappa coefficient can range from −1 to +1, where 0 represents the agreement that is
expected from random chance, and 1 represents perfect agreement between the raters [33].



Water 2021, 13, 2774 7 of 17

3. Result and Discussion
3.1. Element Sizes in Water Body Extraction

An image’s spatial resolution affects the sizes of structural elements when the char-
acteristics of water bodies are extracted using spectral water body indices combined
with mathematical morphology; specifically, Landsat images with a spatial resolution
of 15 m were used in this study. Because morphological operators are based on mini-
mum/maximum computations, they require a total ordering relationship between the
values of the pixels falling within the neighbourhood defined by the structuring element.
This study used three consecutive years (2013 to 2015) of image data from the Beigang
River area to find the most suitable structural element size, which also calculates OA of
each water index; the results are presented in Table 5 and Figure 3.

Figure 3. Characteristics of the water body of Beigang River extracted using differently sized structural elements.

Table 5. Overall accuracy of the Beigang River area based on the different sizes of structural elements.

Spectral Water Index Accuracy(%)
NDWI MNDWI AWEIsh AWEInshElement Size Year

3
2013 73.9 77.8 88.9 96.7
2014 73.3 76.7 86.1 91.1
2015 78.3 78.3 85.0 91.1

4
2013 73.3 76.1 92.8 96.1
2014 75.0 76.7 91.1 94.4
2015 82.2 77.8 87.2 93.9

5
2013 71.1 75.0 94.4 95.0
2014 76.7 76.1 83.3 90.0
2015 77.4 77.8 92.2 92.2
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With a structural element size of three, the Beigang River water body was entirely
extracted using mathematical morphology. However, some smaller pixels were misjudged
as water bodies, as indicated by the circles in Figure 3. The accuracy of each spectral water
index was higher than those of other structural element sizes. The Beigang River could
also be fully extracted when the structural element size was four. When the structural
element size was five, however, water bodies were determined to be nonwater, as indicated
by the circles in Figure 3. In summary, for extracting water bodies using water body
indices combined with mathematical morphology, the most suitable structural element size
was four.

3.2. Results of Water Body Extraction

The original images were processed using radiation correction, atmospheric correction,
and image fusion. NDWI, MNDWI, AWEIsh, and AWEInsh were used to calculate and
enhance the differences between water bodies and nonwater bodies in the images. Subse-
quently, mathematical morphological calculations were performed, and the water features
were finally extracted. The accuracy of water body classification was supplemented by
Google Earth images with an accuracy assessment and confusion matrix through random
sampling. The total number of samples collected was 100. Then, the PA, UA, OA, and
kappa coefficient were calculated based on the confusion matrix of the four spectral wa-
ter body indices. The OA and kappa coefficient were then used as evaluation criteria to
determine the quality of the classification results.

1. Tamsui River

As indicated in Table 6, the MNDWI performed the best in terms of OA for the Tamsui
River watershed. MNDWI, using an MIR band instead of an NIR band, can considerably
improve the enhancement in open water features. It can quickly and accurately discriminate
water from nonwater features [18]. Based on the results, the MNDWI is particularly suitable
for urban areas with both buildings and water bodies. It can enhance the differences
between artificial objects and water bodies to avoid misjudgements, as shown in Figure 4.

2. Beigang River

The AWEI indices were optimal for the Beigang River in terms of OA (Table 7). The
studied area is located in the downstream plain, with less shadow-free problems. AWEIsh
could not fully depict tributaries and buildings, which it misjudged as water bodies;
therefore, the AWEInsh is more suitable for the Beigang River (Figure 5).

3. Zengwen River

In terms of OA in the Zengwen River basin, the AWEI indices had the best perfor-
mance (Table 8). The study area includes downstream plains and midstream areas of
hillsides. When the water extraction results were examined, this study found that AWEIsh
could show continuous water flows and contributed to the analysis of subsequent change
detection (Figure 6).

4. Qishan River

The Qishan River is located in an upstream area with mostly mountainous terrain and
only a few artificial buildings. In terms of OA, the NDWI exhibited the best performance
for the Qishan River (Table 9). Based on the water extraction results, the NDWI successfully
distinguished between water bodies and other objects, and then fully extracted the river
channel of the Qishan River, as detailed in Figure 7.

5. Xiuguluan River

Similar to the Qishan River, the Xiuguluan River is mostly located in mountainous
areas. In addition to artificial buildings, there are ponds and agricultural land. As detailed
in Table 10, the NDWI had the best performance in terms of OA for the Xiuguluan River.
Based on the water extraction results, the NDWI eliminated the mountain shadow problem,
as detailed in Figure 8.
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Table 6. Tamsui River: Accuracy of spectral water body indices in water body extraction on different dates.

Water
Index

3 December 2001 23 December 2017

PA UA OA Kappa PA UA OA Kappa

NDWI 0.36 0.8182 0.64 0.28 0.5 1 0.74 0.4898

MNDWI 1 1 1 1 0.9615 1 0.98 0.96

AWEIsh 0.58 1 0.79 0.58 0.7308 1 0.86 0.7227

AWEInsh 0.44 1 0.72 0.44 0.4615 1 0.72 0.4514

Figure 4. Tamsui River: Results of spectral water body indices for water body extraction at different times.
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Table 7. Beigang River: Accuracy of spectral water body indices in terms of water body extraction on
different dates.

Water
Index

17 November 2013 15 November 2018

PA UA OA Kappa PA UA OA Kappa

NDWI 0.8889 0.7273 0.76 0.5074 0.717 0.7917 0.75 0.5012

MNDWI 0.963 0.7429 0.8 0.5868 0.9434 0.8065 0.85 0.6956

AWEIsh 0.9074 0.9608 0.93 0.8598 0.8679 0.9583 0.91 0.8204

AWEInsh 0.9074 0.98 0.94 0.88 0.9434 1 0.97 0.94

Figure 5. Beigang River: Results of spectral water body indices in terms of water body extraction at
different times.
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Table 8. Zengwen River: Accuracy of spectral water body indices in terms of water body extraction
on different dates.

Water
Index

3 December 2013 30 October 2018

PA UA OA Kappa PA UA OA Kappa

NDWI 0.9825 0.7568 0.81 0.5926 0.9636 0.803 0.85 0.6901

MNDWI 0.9825 0.8 0.85 0.6822 0.9636 0.8689 0.9 0.7955

AWEIsh 0.8772 1 0.93 0.86 0.9091 1 0.95 0.9

AWEInsh 0.9123 0.9811 0.94 0.879 0.9273 0.9623 0.94 0.8793

Figure 6. Zengwen River—Results of spectral water body indices in terms of water body extraction
at different times.
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Table 9. Qishan River: Accuracy of spectral water body indices in terms of water body extraction on
different dates.

Water
Index

26 December 2001 28 November 2017

PA UA OA Kappa PA UA OA Kappa

NDWI 0.8929 1 0.94 0.88 0.7813 1 0.86 0.72

MNDWI 0.8036 0.9574 0.87 0.7419 0.7969 0.9623 0.85 0.6949

AWEIsh 0.3929 0.9167 0.64 0.3223 0.5781 0.9737 0.72 0.4753

AWEInsh 0.5 0.4444 0.37 −0.3006 0.625 0.6349 0.53 −0.0138

Figure 7. Qishan River: Results of spectral water body indices in terms of water body extraction on
different dates.
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Table 10. Xiuguluan River: Accuracy of spectral water body indices in terms of water body extraction
on different dates.

Water
Index

14 November 2000 13 December 2019

PA UA OA Kappa PA UA OA Kappa

NDWI 0.9079 0.9718 0.9357 0.8713 0.9091 1 0.95 0.9

MNDWI 0.8947 0.9714 0.9286 0.8571 0.9455 0.963 0.95 0.8992

AWEIsh 0.8026 0.9683 0.8803 0.7624 0.6909 0.8261 0.75 0.504

AWEInsh 0.8553 1 0.9214 0.8438 0.7636 1 0.87 0.7441

Figure 8. Xiuguluan River: Results of spectral water body indices in terms of water body extraction
on different dates.
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3.3. Result of River Changing

The findings of this study were used to detect river changes between two epochs in
the testing areas. It is easy to see the difference between epochs, based upon which river
management and government can be conducted. For the Tamsui River watershed, we used
the MNDWI and mathematic morphology to extract the water body of two epochs. The
difference between the two epochs is shown in Figure 9.

Figure 9. The Tamsui River watershed changes between two epochs.

The AWEInsh and mathematic morphology were more suitable for the Beigang River
to extract water bodies. The difference between the two epochs is shown in Figure 10.

Figure 10. The Beigang River changes between two epochs.

The AWEIsh had the best performance in the Zengwen River, including downstream
plains and midstream areas of hillsides. The difference between the two epochs is shown
by the changes in the river channel (Figure 11).
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Figure 11. The Zengwen River changes between two epochs.

The Qishan River is located in an upstream area with mostly mountainous terrain and
only a few artificial buildings; the NDWI and I and mathematic morphology exhibited
the best performance for the Qishan River. The difference between the two epochs is
demonstrated by the changes in the river channel (Figure 12).

Figure 12. The Qishan River changes between two epochs.

For the Xiuguluan River, using NDWI and mathematic morphology had the best
performance in extracting the water bodies of the two epochs. The difference between the
two epochs is shown in Figure 13.
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Figure 13. The Xiuguluan River changes between two epochs.

4. Conclusions

Much effort, time, and money are required to determine river change patterns for
river planning and management. Remote sensing data have the potential to be used
for remeasurement with a wide range of spatial and temporal resolutions. This study
integrated spectral water body indices and mathematical morphology to extract the water
bodies of the watershed from remote sensing images of Northern, Central, Southern, and
Eastern Taiwan. The results demonstrated the performance of each spectral water body
index in every watershed as well as which index is most suitable for each type of river
channel. Based on the results, this study drew the following main conclusions:

1. NDWI and MNDWI are ideal for braided rivers (e.g., Qishan River, Xiuguluan River,
and Tamsui River).

2. AWEInsh should be applied to meandering rivers (e.g., Beigang River and Zengwen
River).

3. The various spectral water body indices differ in their application. Therefore, the
contribution of this study is mainly for Taiwan’s rivers, summarising the applicability
of various spectral water bodies indexes in water body extraction.

4. In this study, pairs of remote sensing images were used to identify the water bodies
of river channels to observe changes; the results may facilitate river management.
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