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Abstract: Drought is the costliest disaster around the world and in China as well. Northeastern China
is one of China’s most important major grain producing areas. Frequent droughts have harmed the
agriculture of this region and further threatened national food security. Therefore, the timely and
effective monitoring of drought is extremely important. In this study, the passive microwave remote
sensing soil moisture data, i.e., the SMOS soil moisture (SMOS-SM) product, was compared to several
in situ meteorological indices through Pearson correlation analysis to assess the performance of
SMOS-SM in monitoring drought in northeastern China. Then, maps based on SMOS-SM and in situ
indices were created for July from 2010 to 2015 to identify the spatial pattern of drought distributions.
Our results showed that the SMOS-SM product had relatively high correlation with in situ indices,
especially SPI and SPEI values of a nine-month scale for the growing season. The drought patterns
shown on maps generated from SPI-9, SPEI-9 and sc-PDSI were also successfully captured using the
SMOS-SM product. We found that the SMOS-SM product effectively monitored drought patterns in
northeastern China, and this capacity would be enhanced when field capacity information became
available.

Keywords: drought monitoring; northeastern China; passive microwave remote sensing; Pearson
correlation analysis; soil moisture

1. Introduction

Drought is a serious environmental natural hazard affecting the natural environment
and a variety of activities of our human society [1–4]. Although losses resulting from
droughts are well documented, the proper definition of drought remains a challenge
for all researchers [5–7]. Wilhite and Glantz [8] classified drought into the following
four categories: meteorological, agricultural, hydrological and social–economic drought.
Among these, agricultural drought is most sensitive to natural drought events and is closely
related to soil moisture deficits [9].

Drought can be effectively monitored using drought indices integrated with weather
factors such as rainfall, temperature and evapotranspiration. The most frequently used
drought indices include the Palmer Drought Severity Index (PDSI) [10], Percent of Normal
Precipitation, deciles [11], SPI (Standardized Precipitation Index) [12] and the Standardized
Precipitation Evapotranspiration Index (SPEI) [13]. Among these, the SPI only uses pre-
cipitation as input and can be obtained for flexible time scales that can be used to monitor
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meteorological, agricultural or hydrological drought depending on a user’s interests [2,14].
As the SPI is calculated based on a statistical method and is designed to be spatially com-
parable, it has enhanced drought monitoring capacities and has been employed broadly by
researchers and governments [15–17].

Despite the efficiency and popularity of these meteorological indices, soil moisture
(SM) measured by agrometeorological stations is a more direct and sensitive indicator of
agricultural drought and has been widely adopted to monitor soil water deficits [18,19].
The scarcity of SM during the growing season serves as a good indicator of agricultural
drought conditions, reflecting recent precipitation deficits and unfavorable conditions for
crop production [20,21]. However, along with meteorological indices, station-based SM
can only reflect drought conditions around agrometeorological stations. Although spatial
interpolation methods can provide valuable information for drought monitoring, high
uncertainty still exists because many factors affect interpolation processes [22]. Therefore,
the characterization and monitoring of detailed spatial patterns of drought conditions at a
regional scale are often limited due to a lack of spatially continuous data, especially for areas
with sparsely distributed stations or high levels of spatial variability [23,24]. In this regard,
the use of remote sensing techniques may help to provide spatially distributed information
to overcome such limitations [24,25]. A satellite-based sensor can provide consistent and
continuous information on processes occurring on the Earth’s surface and can monitor
related changes in space and time [23,26]. Drought indices derived from satellite remote
sensing information are therefore able to capture detailed spatial information and have
emerged as the most promising tools for drought monitoring at the regional scale [2,27].

Among the various types of remote sensing, microwave remote sensing, for which
spectral wavelengths range from approximately 1 cm to 1 m, is not susceptible to atmospheric
scattering, which affects shortwave radiation. This key property makes it possible to detect
SM under all weather conditions and for all environments so that data can be obtained
at any time. There are currently several global SM datasets based on microwave remote
sensing methods such as the SMOS (Soil Moisture and Ocean Salinity) from the ESA (Euro-
pean Space Agency), the ASCAT (Advanced Scatterometer) aboard EUMETSAT’s Metop-A
and -B satellites, the Advanced Microwave Scanning Radiometer 2 (AMSR2) aboard the
GCOM-W1 satellite and NASA’s SMAP (Soil Moisture Active Passive) dataset [28–32]. A
number of studies have aimed to compare several existing SM products from different
sources. Validations of three frequently used microwave SM products (SMOS, VUA-LPRM
and ASCAT) and estimations from the European Centre for Medium Range Weather Fore-
casts (ECMWF) NWP model show that the SMOS-SM product is more accurate [33]. The
SMOS and SMAP missions were recently launched and both were equipped with L-band
(1.4 GHz) microwave sensors. L-band is considered to be the most suitable microwave
band for measuring SM owing to its ability to penetrate deeper (~5 cm) into the soil layer
than any available microwave sensor [34,35]. Among the missions, the SMOS mission
is the first space-borne mission dedicated to soil moisture mapping. SMOS-SM data are
available at the official website (http://bec.icm.csic.es/data/, accessed on 2 October 2021),
and the dataset covers from 2010 to the present.

This study was conducted to confirm the usability of SMOS-SM data and to further
apply these data for monitoring agricultural drought in the three provinces of northeastern
China. As the SPI can effectively characterizes drought at multiple scales and has been
used as validating data for many drought indices [23,36–38], we use the SPI as a benchmark
index. The SMOS-SM data were compared to the SPI at multiple time scales to determine
whether the SMOS-SM adequately monitors agricultural drought in the study area. As
a point of comparison, the multi-scale SPEI and PDSI were also calculated using in situ
monthly mean temperature and precipitation data.

http://bec.icm.csic.es/data/
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2. Materials and Methods
2.1. Study Area

The study (Figure 1) was conducted in the three provinces (i.e., Heilongjiang, Jilin and
Liaoning) of northeastern China. These three provinces are extremely important major
grain-producing areas in which total grain outputs account for a large proportion (approxi-
mately 19.3% (Statistics of 2015)) of national grain outputs [39]. The study area spans from
56◦–35◦ N to 118.83◦–135.08◦ E, covering an area of 7.873 × 105 km2. Precipitation in the
study area is dominated by the East Asian summer monsoon (EASM) [23]. Variability of
EASM and related seasonal rain belts is very significant at intra-seasonal, inter-annual and
inter-decadal time scales [40]. Moreover, the EASM has experienced dramatic weaken-
ing since the 1970s, and this trend is expected to aggravate drought across northeastern
China [23,41].
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Figure 1. Study area and climate characteristics. (a) Vegetation regionalization from MODIS MCD12Q1 land cover type 
data and meteorological station distribution according to the China Meteorological Data Service Center; (b) DEM data 
downloaded from the Geospatial Data Cloud website (i.e., http://www.gscloud.cn/, accessed on 2 October 2021); (c,d) 
average annual precipitation and temperature distributions for 1961 to 2015 according to 71 meteorological stations across 
northeastern China. 

The dominating land-cover types in the study area are cropland, sparsely vegetated 
grassland and evergreen or mixed forest, accounting for 45.26%, 7.42% and 45.51%, re-
spectively, of the region as estimated from land cover classifications derived from MODIS 
(the Moderate Resolution Imaging Spectroradiometer) data (MCD12Q1). To quantita-
tively investigate how well space-borne microwave SM data monitor drought across dif-
ferent underlying surfaces, the study area was divided into three sub-regions correspond-
ing to three dominant vegetation land cover types: grassland-dominated region (A), crop-
dominated region (B) and evergreen forest-dominated region (C). The annual means of 
precipitation for the three regions amount to 411, 556 and 695 mm, respectively (as calcu-

Figure 1. Study area and climate characteristics. (a) Vegetation regionalization from MODIS MCD12Q1 land cover type
data and meteorological station distribution according to the China Meteorological Data Service Center; (b) DEM data
downloaded from the Geospatial Data Cloud website (i.e., http://www.gscloud.cn/, accessed on 2 October 2021); (c,d)
average annual precipitation and temperature distributions for 1961 to 2015 according to 71 meteorological stations across
northeastern China.

The dominating land-cover types in the study area are cropland, sparsely vegetated
grassland and evergreen or mixed forest, accounting for 45.26%, 7.42% and 45.51%, re-
spectively, of the region as estimated from land cover classifications derived from MODIS
(the Moderate Resolution Imaging Spectroradiometer) data (MCD12Q1). To quantitatively
investigate how well space-borne microwave SM data monitor drought across different un-
derlying surfaces, the study area was divided into three sub-regions corresponding to three
dominant vegetation land cover types: grassland-dominated region (A), crop-dominated
region (B) and evergreen forest-dominated region (C). The annual means of precipitation
for the three regions amount to 411, 556 and 695 mm, respectively (as calculated using data
drawn from available weather stations from 1961 to 2015). The relationship between the
SMOS-SM and in situ meteorological indices of multiple scales was investigated for each
of the three regions.

http://www.gscloud.cn/
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2.2. In Situ Reference Data and Drought Indices

Monthly precipitation and temperature data from all available stations from 1961
to 2015 were obtained from the China Meteorological Data Service Center (http://data.
cma.gov.cn, accessed on 2 October 2021). Only weather stations located in the three sub-
regions with complete records available from 1961 to 2015 were included. Thus, data of
8 stations in region A, 30 stations in region B and 33 stations in region C were acquired.
The available water capacity (AWC) data is extracted for each weather station from the
dataset by Yongjiu Dai’s research team [42] and can be found on his research group website
(http://globalchange.bnu.edu.cn/research/soilw, accessed on 2 October 2021).

2.3. Remote Sensing Data

The ESA’s Soil Moisture Ocean Salinity (SMOS) Earth Explorer mission was launched
in 2009. The SMOS is onboard the sun-synchronous Proteos platform, affording it global
coverage with a revisit time of less than 3 days. The SMOS is equipped with a dedicated
L-Band (~1.4 GHz) microwave radiometric sensor and a Microwave Imaging Radiometer
with Aperture Synthesis (MIRAS) with a target accuracy of 0.04 m3/m3. L-band sensors
effectively measure SM values by penetrating surfaces up to 3 to 5 cm deep depending on
soil wetness levels [24,43,44]. The SMOS mission provides global SM data of approximately
0.25◦ in spatial resolution [45].

The satellite orbits around the earth and could not cover a certain area for every day
of a month. The available soil moisture data of a month is collected by the sensor and the
average value of the available data is calculated to be the monthly soil moisture. In this
study, monthly SMOS-SM data provided by the SMOS website is downloaded and was
compared with in situ drought indices to verify its usability in drought detecting. The
closest SMOS gridded observations were searched and extracted for each in situ weather
station using the nearest neighbor approach [44].

2.4. Methodologies
2.4.1. Calculation of Drought Indices

The basic theories of SPI, SPEI and sc-PDSI can be found from published articles [46–48].
These drought indices could be easily calculated by using the Python packages (https:
//pypi.org/project/climate-indices/, accessed on 2 October 2021). Ground precipitation
and temperature data were aggregated by 1, 3, 6, 9 and 12 months and used to calculate in
situ indices, i.e., SPIs of different time scales (SPI-1, SPI-3, SPI-6, SPI-9 and SPI-12), as well
as SPEIs of different time scales (SPEI-1, SPEI-3, SPEI-6, SPEI-9 and SPEI-12). Apart from
these meteorological factors, AWC is also used to calculate the sc-PDSI.

The SPI indicates how the precipitation for a specific period compares with the com-
plete record [49]. As the main focus of this study is on agricultural drought, which depends
on rainfall within 3 months, seasonal time scales of 3 to 9 months were assumed to be
the most appropriate [50]. SPI-3, SPI-6 and SPI-9 values were used as reference data for
measuring agricultural drought conditions. Shorter and longer time scales must also be
considered, as short- and long-term droughts can seriously affect agricultural conditions.
Multi-scale SPEI and PDSI values were also used as reference indices.

2.4.2. Correlation Analyses

The monthly value series of the indices from 2010 to 2015 of all the stations (or grid-
based SMOS-SM near the station) for the three subset regions were obtained as previously
mentioned. Pearson correlation analysis (PCA) was used to figure out whether the SMOS-
SM is robust enough for detecting drought. By using PCA, the correlation coefficient could
be obtained, which reflects the degree of correlation of two variables [51]. In this study, the
PCA is carried out between SMOS-SM and every in situ meteorological index, i.e., 1-, 3-, 6-,
9- and 12-month SPI (SPI-1, SPI-3, SPI-6, SPI-9 and SPI-12); 1-, 3- 6-, 9- and 12-month SPEI
(SPEI-1, SPEI-3, SPEI-6, SPEI-9 and SPEI-12); and sc-PDSI [22,52]. To determine whether
the SMOS-SM data perform well only for the growing season or the full year, a correlation

http://data.cma.gov.cn
http://data.cma.gov.cn
http://globalchange.bnu.edu.cn/research/soilw
https://pypi.org/project/climate-indices/
https://pypi.org/project/climate-indices/
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analysis was carried out for the 4-month growing season running from June to September
and for each separate month. It should be noted that when the correlation analysis between
two indices is carried out for a certain month, the series contain all the data of the month
(e.g., there are 5 years and 8 stations for region A; there will be 40 pairs of data). If the
growing season is concerned, there will be 160 pairs of data for correlation analysis. The
results of these analyses were compared to investigate the performance of the SMOS-SM in
monitoring drought across different forms of land cover and across seasons.

2.4.3. Spatial Comparisons between the Remotely Sensed SM and In Situ Drought Index Maps

A series of maps was generated to compare drought spatial patterns across the study
area. Maps of SMOS-SM, SPI, SPEI and sc-PDSI values from 2010 to 2015 were created for
July, when the yearly peak precipitation occurred over the study region. The relative soil
moisture (RSM) is unusually used for the definition of drought degree; however, the field
moisture capacity data is not available for RSM calculation. Exact comparisons between
SMOS-SM and in situ index maps were not appropriate. Hence, the drought maps show
colored dots denoting relative drought grades.

3. Results and Discussion
3.1. Relationship between SMOS-SM and In Situ Indices

Correlation coefficients were calculated between remote sensing drought SMOS-SM
indices and in situ meteorological indices over three subset regions for full year and
growing season (Table 1). Overall, correlation coefficients for the full year were relatively
low, and most of them had a p-value > 0.05. SMOS-SM values showed relatively strong
correlations with 6-, 9- and 12-month SPI and SPEI values and sc-PDSI values over the
grassland region, with the p-value of these correlation coefficients passing a 0.05 confidence
level test. The other correlation coefficients, except for SPI-9, were very low or negative
and had a p-value of > 0.05.

Table 1. Correlations between SMOS-SM and in situ indices of different time scales for the three
sub-regions for full year and growing season, respectively. For the “Full Year” column, r values with
p-value < 0.05 are underlined and italicized. For the “Growing Season” column, the highest r values
for each row for the three regions are shown in italics/bold. The p-value < 0.01 except for data with
asterisk (*), for which the p-value < 0.05.

In Situ
Indices

Full Year Growing Season

Cropland Grassland Evergreen
Forest Cropland Grassland Evergreen

Forest

SPI-1 0.04 0.06 0.1 0.6 0.61 0.59
SPI-3 −0.04 0.1 −0.03 0.65 0.78 0.66
SPI-6 0.15 0.39 0.13 0.53 0.82 0.59
SPI-9 0.24 0.48 0.18 0.66 0.83 0.66

SPI-12 0.11 0.25 0.11 0.43 * 0.69 0.46 *
SPEI-1 −0.03 0 0 0.56 0.63 0.54
SPEI-3 −0.08 0.06 −0.09 0.61 0.77 0.64
SPEI-6 0.09 0.35 0.06 0.53 0.81 0.59
SPEI-9 0.18 0.45 0.15 0.63 0.78 0.66
SPEI-12 0.09 0.26 0.11 0.47 * 0.69 0.47 *
sc-PDSI 0.05 0.32 0.06 0.58 0.76 0.53

For the growing season, correlation coefficients varied across regions and time scales,
with most correlation coefficients exceeding 0.5. Moreover, our significance test shows
that almost all of the correlation coefficients are statistically significant at the 0.01 level
except for SPI-12 and SPEI-12 values for cropland and evergreen forest regions, whose
p-values were found to be less than 0.05. In general, the SMOS-SM showed a relatively
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high correlation with all in situ meteorological indices for the growing season; thus, we
focus on the growing season in the following section.

Overall, correlation coefficients over grassland were the highest followed by evergreen
and cropland. Several factors may explain why lower correlations were found for cropland
and evergreen forest regions. First, passive microwave-derived SM values exhibited good
accordance with in situ observations over areas of low vegetation coverage to moderate
density, and performance decreased as vegetation coverage increased [23,53,54]. Second,
SM variations were not entirely dominated by precipitation, but were also influenced by
factors such as irrigation [23]; thus, agreement between in situ indices and SMOS-SM
values was relatively lower over cropland areas.

Correlations between SMOS-SM and SPI values over grassland areas first increased
and then fell, for which the r values increased from 0.61 to 0.83 on SPI-9 and then decreased
to 0.69. Similarly, correlations between SMOS-SM and SPEI values over grassland areas
followed the same trend as SPI values, with the highest r value found between SM and
SPEI-6 values. Although the sc-PDSI performed fairly well, its correlation with SMOS-SM
values is not as strong as those with 3-, 6- and 9-month SPI and SPEI values.

In contrast, correlation coefficients fluctuated over cropland and evergreen forest
regions, with the highest coefficients appearing in the SPI-9 (the same as those for grassland
areas). The SPI-6 and SPEI-6 showed lower correlations with SMOS-SM values than 3- and
9-month SPI and SPEI values. Correlations between SMOS-SM values and 12-month SPI
and SPEI values were the lowest, and their p-values did not pass a 0.01 level significance
test. Correlations between SMOS-SM and PDSI values were not as strong as those for
grassland areas but outperformed SPI-6 values over cropland areas. Overall, remote
sensing indices showed relatively higher correlations with 3-, 6- and 9-month SPI and SPEI
values and sc-PDSI values over cropland areas, according with previous findings over
northern China [23]. This result suggests that the SMOS-SM product provided valuable
information for monitoring agricultural droughts for the regions.

3.2. Temporal Correlation between Remote Sensing Drought Indices and In Situ Meteorological Indices

Correlation coefficients between remote sensing drought indices and in situ meteoro-
logical indices of different time scales for each month of the growing season are summarized
in Figure 2. It could be noticed that the r values varied considerably over month and time
scales across the regions, indicating that the SMOS-SM varies in its capacity to monitor
drought conditions over seasonal time.

For the grassland-dominated region, the SMOS-SM showed strong correlations with
SPIs of all time scales for each month of the growing season with the exception of the SPI-1
for August. Among them, the 3- and 6-month SPIs were closely related with the SMOS-SM
in June at a high confidence level. For July, the SMOS-SM is sensitive to SPI-1. From the
hot summer month of August to the end of the growing season, the long timescale SPI
outperformed the short timescale SPI in correlations with the SMOS-SM. Nearly the same
results were found for the correlation between the SMOS-SM and the SPEIs, although the
12-month SPEI was not closely related to the SMOS-SM for September. The sc-PDSI showed
high correlations with the SMOS-SM for the last two months of the growing season. This
result may be because the SMOS-SM was influenced by antecedent snowfall that melted at
the beginning of the growing season, making the SMOS-SM more closely related to 3- and
6-month SPI and SPEI values. As time went on, the SM became more sensitive to temporal
precipitation. At the end of the growing season, water became extremely scarce in the
grassland region, so the water stored underground a long time ago may exert an influence
on the SMOS-SM.
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In contrast, correlations between SMOS-SM values and 1-month SPI and SPEI in-
dices for cropland and evergreen forest areas for June showed a very distinct situation.
The r values were very high, and all were statistically confident at the 0.05 or 0.01 level.
Meanwhile, SPI-1 values for these two regions declined from June to September. This
result may be attributed to the fact that at the beginning of the growing season vegetation
coverage was not high, and its effect on remote sensing derived SMOS-SM was minor, but
as vegetation grew denser, its effect became more significant. Long timescale SPIs and
SPEIs and the sc-PDSI initially performed particularly poorly at the 6-, 9- and 12-month
scales and gradually improved in terms of correlations with the SMOS-SM. This result
indicates that the SMOS-SM is preferable when monitoring drought over moderate to long
time periods, i.e., agriculture and hydrological drought.

3.3. Drought Maps Based on the SMOS-SM and Comparisons to In Situ Indices

A series of drought maps was created for July of 2010–2015 based on SMOS-SM
and in situ meteorological indices to compare drought spatial patterns over northeastern
China (Figure 3). The in situ indices, i.e., SPIs, SPEIs and sc-PDSIs, were classified into
five levels of water status, i.e., extremely dry, severely dry, moderately dry, mild dryness
and normal [55,56], and are represented in orange, yellow, green, baby blue and blue
(sub-figures II, III and IV of Figure 3). Since we have not obtained detailed field capacity
information for each corresponding SMOS-SM grid to calculate relative water content
levels, as mentioned earlier, the categories of SMOS-SM maps were classified arbitrarily for
presenting purposes. Thus, the categories of SMOS-SM maps and those of in situ indices
were not one-to-one relationships, although they are labeled as bars of similar colors.
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Figure 3. Annual maps of SMOS-SM and in situ meteorological indices for July of 2010 to 2015.
Sub-figures (a–d) refer to SMOS-SM, SPI-9, SPEI-9 and PDSI data, respectively.

In most of the study area, annual changes and spatial distributions of SMOS-SM
values correspond well with the in situ indices, indicating that the remote sensing SM was
successful in monitoring drought conditions in northeastern China. Drought conditions
revealed through in situ indices are captured by the SM-SMOS, especially for 2011, 2014
and 2015. All three in situ index maps show that the southeastern area in 2011, the
southwestern area in 2014 and the southern area in 2015 experienced moderate to severe
drought while drought conditions depicted by the sc-PDSI were the most serious (sub-
figure IV in Figure 3). It is evident from sub-figure I of Figure 3 that the SMOS-SM maps
show few discrepancies in spatial patterns of drought conditions with in situ index maps.
The most serious drought events that occurred in 2015 were reflected in the SMOS-SM
and in situ maps and in the sc-PDSI maps in particular. However, the SMOS-SM maps
show that in 2011, soil water levels may have been insufficient in the northwest, although
this result is not reflected in in situ indices. This result may be attributed to the fact that
the rainfall in this area is scarce, and soil moisture levels were low throughout the year.
Thus, it is drought in the SMOM-SM map. However, the in situ indices describe water
conditions in consideration of historic precipitation. Though the current rainfall may be
limited, it may not be much less than the normal condition. Consequently, large-scale field
moisture capacity information is indispensable when remote sensing SM is applied for
drought monitoring.

Apart from serious drought conditions, the maps show relatively better water con-
ditions, i.e., in 2010, 2012 and 2013. Water scarcity conditions during these three years
were less severe. Conditions in 2013 were the most favorable, involving nearly no drought
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with the exception of a few moderate drought events occurring in the southeastern area.
The SMOS-SM maps show better water conditions for these years compared with those
of 2011, 2014 and 2015. Meanwhile, poor drought conditions in the eastern region in 2012
are reflected in the SMOS-SM and in situ maps. However, without access to detailed field
capacity information, the SMOS-SM cannot compare exact categories with in situ indices.
Moreover, as the SMOS-SM data only represents the soil moisture statue of the surface
layer within 5 cm and may not reflect real drought condition, reinforcing the data usability
by adding new information is indispensable.

4. Conclusions

In this study, passive microwave remote sensing soil moisture data, a SMOS soil
moisture product, were compared to several in situ meteorological indices (SPIs, SPEIs
and sc-PDSI) through a Pearson correlation analysis to validate the product’s effectiveness
at monitoring agricultural drought in northeastern China. Then, drought maps of in situ
indices and SMOS-SM values for July from 2010 to 2015 were generated to compare drought
spatial patterns and to further test the performance of the SMOS product.

The results showed that the SMOS-SM had strong correlations with in situ indices
for the growing season, but for an entire year correlation coefficients between remote
sensing and in situ indices were not satisfactory. Meanwhile, the SMOS-SM showed the
highest correlation with in situ indices for the grassland region, followed by evergreen
areas, while for cropland areas the coefficients was the lowest correlation. Furthermore, the
SMOS-SM has better correlation with the SPI-9 and SPEI-9. Hence, drought maps based on
the SMOS-SM, SPI-9, SPEI-9 and sc-PDSI were created, and corresponding spatial patterns
were analyzed.

The drought maps depicted by the SMOS-SM were not categorized due to a lack of
large-scale field capacity information; nonetheless, they were classified artificially based on
in situ indices. Overall, the SMOS-SM successfully captured drought distributions, but did
not have the capacity to identify the exact drought levels. The water conditions in some
areas were overestimated in relation to the in situ indices, as these meteorological indices
consider historic water patterns. Overall, the SMOS product effectively monitors drought
conditions in northeastern China and will perform even better as more soil survey data
become available.
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