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Abstract: Recycled wastewater is widely used owing to the potential shortage of water resources
for drinking purposes, recreational activities, and irrigation. However, gut microbiomes of both
human beings and animals negatively affect this water quality. Wastewater contamination is con-
tinuously monitored, using fecal contamination indicators or microbial source tracking approaches,
to oppose arising enteric infections. Viral gastroenteritis is considered a principal manifestation of
waterborne pathogenic virome-mediated infections, which are mainly transmitted via the fecal-oral
route. Furthermore, acquired enteric viromes are the common cause of infantile acute diarrhea.
Moreover, public exposure to wastewater via wastewater discharge or treated wastewater reuse
has led to a significant surge of public health concerns. In this review, we discussed the etiology
of waterborne enteric viromes, notably gastrointestinal virus infections, and public exposure to
municipal wastewater. Conclusively, the early human virome is affected mainly by birth mode,
dietary behavior, and maternal health, and could provide a signature of disease incidence, however,
more virome diversification is acquired in adulthood. A multi-phase treatment approach offered
an effective means for the elimination of wastewater reuse mediated public risks. The insights
highlighted in this paper offer essential information for defining probable etiologies and assessing
risks related to exposure to discharged or reused wastewater.
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1. Introduction

Virome diversity accounted for approximately 1031 members worldwide, including
bacteriophages, as the major division according to a ten-fold diversity evaluation compared
to their bacterial hosts’ diversity [1]. Likewise, phage community dominates the early
human enteric virome, along with the bacterial communities’ expansion acquired by
maternal-mediated vertical transmission and after weaning [2,3]. On the other hand,
enteric viruses in infants are minimally acquired from their mothers [4], however, the
enteric viromes mostly persist after the first two years [2,5]. Several enteric viruses could
transfer to infants, and even children, via maternal transmission, through direct exposure,
or through the use of contaminated water, such as hepatitis E virus (HEV) and hepatitis A
virus (HAV) causing gastroenteritis or, in severe cases, fulminant hepatitis [6–8].

However, adenovirus, rotavirus, norovirus, hepatitis A virus, and astrovirus represent
the most commonly acquired enteric viruses and contribute to virome shaping in its
early phases [6,9–12]. Moreover, these viruses are of high persistence in various water
environments. For example, noroviruses can survive in ground water for 1266 days at
25 ◦C with 1.76 log10 reduction [13]. However, adenoviruses can last for 36 and 132 days at
20 ◦C and 4 ◦C, respectively, and are associated with a 1 log10 reduction [14]. Rotaviruses
can also persist in fresh water and drinking water for 10 [15] and 64 [16] days, respectively,
at 20 ◦C with 2 log10 reduction.
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People are frequently exposed to wastewater via surface water usage, toilet flushing,
recreation water, and wastewater—or greywater—dependent irrigation [17–21]. Most com-
monly occurring enteric viruses are self-limiting, whereas their infection risk is determined
by the prevalence of infectious viral particles in the appropriate environmental condition,
since some enteric viruses are significantly influenced by seasonal variation (e.g., rotavirus
favoring late autumn and early winter [22]) or their prevalence in water environments that
people are exposed to. For instance, the prevalence of HAV was found to be higher in raw
water (16/27; 59%), than in treated water (5/26; 19%) [23].

Wastewater discharge to surface water resources imposes public health concerns and
directly affects water resources, causing both enteric and non-enteric diseases, especially
with the recent COVID-19 pandemic [24–26]. On the contrary, wastewater reuse was pro-
posed mainly because of the shortage of water supplies [27,28]. This demanded technical
solutions for reuse of treated water for both non-potable uses, such as irrigation, with
reported limitations (e.g., alterations of soil physicochemical parameters, microbiota [29],
soil fertility, and subsequent productivity [21] and soil pH [29]) to be considered and de
facto wastewater reuse associated with raised concerns (e.g., increased drinking water risks
in case of wastewater effluent in source water [30]). Integration of these technical solutions
with a water safety plan (WSP) could offer organized management solutions for limitations
and concerns. Thus, the current review highlighted the etiology of enteric viromes in
various water environments and the associated concerns related to public exposure to
municipal wastewater via wastewater discharge or treated water reuse.

2. Enteric Virome in Infants

The microbiome is established as early as the gestation period, and develops into a
steady state as the individual reaches early adulthood [2,31–34]. Infant microbiomes were
shown to be influenced by various factors involving birth mode, gestational age, antibiotic
usage, geographical location, lifestyle, diet, and age [35–37]. For instance, a greater virome
diversity was observed in spontaneous vaginal delivery (SVD) than in caesarean section
(CS) [38]. Moreover, microbiome diversification during the early months after birth was
found to be followed by a secondary expansive phase owing to diet alterations that occur
after weaning [2,3,39]. Furthermore, microbiome composition of the infants’ gut is linked to
that of the maternal gut [4,40,41]. However, it was demonstrated that vertical transmission
of the virome was considerably lower than that of bacterial microbiome [4].

Interestingly, antibiotic usage acts as a stressor, causing microbiome imbalances that
are reported to cause sepsis in newborn infants by vertical transmission [42]. Antibiotic
treatment reduces both the size and diversity of the bacterial community, initiates pro-phage
activation, and enriches phage-encoded antibiotic resistance genes that further influences
the prokaryotic microbiome, which is associated with long-term implications [37,43–45].
Thus, such influences on the microbiome via these trans-domain interactions can be as-
sociated with probable metabolic deficiencies and inflammatory conditions [46–49]. On
the other hand, the infant virome is affected by dietary behavior and could serve as a
signature of malnutrition. For instance, members of the Anelloviridae and Circoviridae
were found to discriminate between both healthy twin pairs and twin pairs developing
malnutrition [50].

Although the microbiome is acquired during pregnancy or even at birth, the gut
virome develops postnatally, since the meconium was found to lack any virus-like particles
(VLPs) [51]. However, VLP numbers begin to surge to about 108 per g feces in the first birth
week, along with the primary colonizers that arise from dietary and maternal sources in
addition to the surrounding environment [52]. Consequently, the infantile virome expands
and includes significant shifts in the phage community along with age because of the
expansion and diversification of the bacterial communities [2]. Moreover, enteric virus
communities in infants, accounting for 15%, are acquired from their mothers [4]. The virome
peak is reached at adulthood, displaying persistent viruses of about 80% that persist for
>2.5 years [2,5]. Moreover, eukaryotic viruses, including adenovirus, herpes simplex virus,
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cytomegalovirus (CMV), human parvovirus B19, enterovirus, respiratory syncytial virus,
and Epstein–Barr virus, were characterized from healthy mothers’ amniotic fluid, while
neonates were healthy [53]. Furthermore, placental and vaginal transmission of viruses,
comprising of HIV, influenza, hepatitis, CMV, rubella, and herpes zoster virus, were also
detected, rendering extra evidence of maternal-mediated infantile virome modification [54].
This eukaryotic virome encompasses these conventional pathogenic viruses and viruses of
unidentified host interactions. Despite the presence of these classical pathogens, infected
hosts can remain asymptomatic.

On the other hand, waterborne enteric viruses, further, nourish the infantile virome
either through maternal-based vertical transmission [55] or ingestion of contaminated
water or infant formula, as reported elsewhere [56]. For instance, acute maternal HAV
infection could result in infant infection during the last trimester or the postpartum pe-
riod [6]. Moreover, piped drinking water crossing sewage channels in India led to higher
hepatitis E virus incidence in mothers, that was then vertically transmitted to fetuses [7].
Subsequently, two fetuses were aborted and four pre-matured babies were delivered [8].
Therefore, an obvious relationship between the gastrointestinal virome in infants and
waterborne diseases or enteric viruses in wastewater is well-established and tightly linked
to community behavior, life style, and infection risk via direct or indirect contact with
contaminated water.

3. Viral Etiology

Viral gastroenteritis is mainly transmitted by the fecal-oral route. Currently, five
common groups of viruses account for the most frequently occurring acute diarrheal cases
worldwide: adenovirus, rotavirus, norovirus, hepatitis A virus, and astrovirus.

3.1. Adenovirus

Adenoviruses are members of the family Adenoviridae and the genus Mastadenovirus,
comprising of more than 80 human serotypes [57]. Human adenoviruses are non-enveloped
icosahedral particles with a double-stranded linear DNA genome of ~34–36 kb [58]. They
are currently grouped into seven human adenovirus species (A–G), alongside novel ade-
novirus types that are continuously emerging [59,60]. Virus types were identified in
cross-neutralization assays as serotypes up to type 51, however a genotype designation
was used for the more recent types based upon phylogenetic analyses of genes encoding
the major capsid proteins [61].

Adenovirus infections can lead to a wide spectrum of clinical symptoms. Gastroin-
testinal infections are commonly caused by subgroup A, D, and F, while subgroup B is
the main cause of infections of the lungs and the urinary tract. Subgroups C and E are,
however, mainly related to infections of respiratory tract. Amongst subgroup F, serotypes
40 and 41, with serotype 31 of subgroup A, are mainly associated with gastroenteritis [62].
Adenovirus infections are mostly self-limiting, with the exception of immunocompromised
individuals. However, a strain of adenovirus 14 that emerged previously resulted in a fatal
respiratory disease in healthy personnel [63].

Human adenoviruses (HAdV) are specific to humans even though adenoviruses infect
a range of animals. In domestic sewage, HAdV existed in notably high concentrations
and their seasonal variability was insignificant [64–66]. As with most enteric viruses,
adenoviruses are more persistent in various water environments, including lakes, irrigation
water, and treated sewage (Table 1), than the currently used fecal indicator bacteria [67,68].
For instance, adenovirus was detected in rivers (18–100%), recreational water (40–93.1%),
raw sewage water (0.4–100%), and treated effluents (25–100%, except for that reported in
earlier study conducted in Tunisia) as shown in Table 1. Moreover, adenovirus was of the
highest concentrations, estimated at 9.8 × 108 GC/mL, in treated water influents and in
treated effluents, at 4.9 × 108 GC/mL, in Italy. HAdV was of the highest frequency (100%)
in raw sewage water in all countries, except for the U.K. and Italy, wherein the encountered
frequency was 90% and 96% in the same source, respectively. However, the highest HAdV
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concentration was obtained from lagoons and beaches in Brazil (109 GC/L). Furthermore,
adenoviruses are highly resistant to UV light and this significant resistance might be
due to the host cell-mediated DNA repair mechanism [69]. In addition, adenoviruses
have another mechanism that ameliorates the DNA damage response, mediated by the
E4 or F4 protein, which are involved in efficient adenovirus replication [70]. Therefore,
adenoviruses were proposed as a virological index for water quality control due to their
potential environmental stability [71].

Table 1. Occurrence of adenovirus in various water environments.

Country Water Source Frequency
(% Positive) Study Period Concentration Species

(Serotype) Assessment Tools Reference

Saudi
Arabia

Treated effluents 44.44–61.11%

April
2018–March 2019

- F (41) PCR and direct
sequencing [72]

Lakes 75–77.78%

Wastewater
landfill 83.33%

Irrigation water 52.78%

Egypt

Raw sewage
water 84.4% January–

December
2017

4.3 × 105–8.7
× 106 GC/mL - Conventional PCR and

Real-Time PCR
[73]

Treated effluents 50% 1.22 × 104–3.7
× 106 GC/mL

Irrigation water
(Nile River) 62.5%

September–
December

2017
1.5 × 107 GC/L a - Real-Time PCR and

amplicon cloning [74]

Japan

Raw sewage
water 100%

July 2003–June
2004

320 PCR units/mL a

-
TaqMan PCR and

quantification by the
MPN (Most probable

number method

[75]Secondary
treated water ** 99%

7 PCR units/mL a

Treated
effluents *** 100%

Tunisia
Raw sewage

water 0.4% January
2003–April 2007

-
F (41) PCR and direct

sequencing [76]
Treated effluents 0% -

Uruguay

River 18% June 2015–May
2016 1.5 × 104 GC/L a B (3)

Real-Time PCR, cell
culture, ICC-qPCR,

nested PCR and
amplicon sequencing

[77]

Underground
water 0.7%

November
2013–September

2014
- - Nested PCR [78]

South Africa

River 30.56% August
2010–July 2011 8.49 × 104 GC/L b C (1, 2, 5 &

6) and F (41)

Real-Time PCR and
Multiplex PCR

(Serotype-specific)
[79]

Treated effluents 64%
September

2012–August
2013

2.37 × 105 GC/L b C (2) and F
(41)

Real-Time PCR and
serotype-specific PCR [80]

Pakistan Tap water 20% - - - PCR [81]

USA

Raw sewage
water 100%

August
2005–August

2006
1.15 × 106 viruses/L F (41) and

A (12)

Real-Time PCR,
Molecular cloning

and sequencing
[67]

Combined sewer
overflows 100% February–June

2008 5.35 × 105 viruses/L -

Primary treated
water -

August
2005–August

2006

1.12 × 106 viruses/L F (41) and
A (12)

Secondary
treated water - 2 × 104 viruses/L -

Tertiary treated
water - 8.3 × 104 viruses/L -

Surface water 30% 2006-2007 7.76 × 103 viruses/L -

Raw sewage
water 100%

Fall 2007
- - Nested PCR and

sequencing [82]
Treated effluents 25% - -
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Table 1. Cont.

Country Water Source Frequency
(% Positive) Study Period Concentration Species

(Serotype) Assessment Tools Reference

Brazil
Recreational

water (Lagoons
and beaches)

93.1% c March 2015–July
2016 109 GC/L b C

qPCR, ICC-qPCR,
Nested PCR and

sequencing
[83]

Italy

Raw sewage
water 96% May–September

2007
9.8 × 108 GC/mL - TaqMan real-time PCR [84]

Treated effluent 76% 4.9 × 108 GC/mL

Raw sewage
water 60%

January–
December

2013
- F (41)

Nested PCR, Sanger
sequencing and Next

generation sequencing
[85]

UK

Raw sewage
water 90% March 2016 and

August
2016–August

2017

6 × 105 GC/L b

- SYBR Green qPCR [86]Treated effluent 87% 103 GC/L b

Surface water 88% 105 GC/L b

Netherlands Drinking water
influents **** 54% 2012 2.5 Log10 GC/L a F(40, 41) Real-Time PCR

and mpnPCR [87]

China

Recreational
water

(Swimming
pool)

40% May 2013 - E (4)
Conventional PCR,
sequencing and cell

culture
[88]

Canada
River upstream 50% c

June 2012–May
2013

2.66 Log10 GE * copies/L a

- qPCR and ICC-qPCR [89]River
downstream 92% c 4.55 Log10 GE copies/L

France River 100% January–June
2016 3.6 × 103 GC/L a F (41)

MPN assay, ddPCR
(digital droplet PCR)

and ICC-qPCR
[90]

Sweden

Raw sewage
water

100% November–
December 2015

9.07 × 104 GC/mL a

F (41)

Nested PCR, Library
construction,

Ion-Torrent sequencing
and qPCR

[91]Conventionally
treated water 1.06 × 103 GC/mL a

Ozone treated
water 8.25 × 103 GC/mL a

Raw sewage
water 100% January–May

2013 3.3 × 105 virus/L b - Real-Time PCR and
sequencing [92]

a: mean adenovirus concentration, b: maximum adenovirus concentration, c: maximum detection limit (frequency), GC: genome copy.
*: genome equivalent, **: treated water before chlorination, ***: treated water after chlorination, ****: last storage reservoir before treatment
of drinking water, (-): not defined.

3.2. Rotavirus

Rotavirus is a double stranded RNA virus composed of 11 segments of a genome size
of ~18,550 bp [93]. These segments differ in size from 667 to 3302 nucleotides (Figure 1).
Viral capsid proteins (VP1, VP2, VP3, VP4, VP6, and VP7) are encoded by segments 1, 2,
3, 4, 6, and 9, respectively. The non-structural proteins (NSP1, NSP2, NSP3, NSP4, NSP5,
and NSP6) are encoded by segments 5, 8, 7, 10, and 11, respectively. All segments have
methylated cap structures at the 5′ end and a 3′UGACC consensus sequence instead of the
poly-A tail [94,95].

Rotaviruses are divided into seven serogroups (A–G) [96]. Rotavirus A is considered
the principal cause of severe acute gastroenteritis throughout the world and predominantly
results in severe acute diarrhea in children [97,98]. Moreover, the incidence of rotavirus
diarrhea in developing countries accounts for 0.07 to 0.8 episodes per child annually [99] or
at least one diarrheal episode by five years of age [9]. Rotaviruses showed a high prevalence
in different water sources (Table 2). This could be owing to its broad tolerance to a wide
range of temperatures (−20 ◦C to 37 ◦C) and pH levels (3 to 11) without a significant infec-
tivity loss [100–104]. However, rotavirus A prevalence is influenced by seasonal variations,
favoring lower temperatures in temperate countries [22,105], unlike the endemic manner
of rotavirus in tropical countries [106]. In terms of rotavirus frequency, sewage influent of
Brazil and, surprisingly, wastewater treatment plant (WWTP) effluents in China recorded
the highest frequency, even higher than that reported in Chinese raw water, indicating a
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deficiency in the WWTP performance or probable sampling cross-contamination, as shown
in Table 2. Moreover, rotaviruses were detected in rivers (18.75–83.33%), raw sewage water
(21.2–100%), and treated effluents (5–100%). Furthermore, rotaviruses were detected at
significantly high concentrations, up to 1.16 × 107 GC/L, in treated water influents and
in treated effluents, at levels of 2.8 × 106 GC/L, in Brazil and the USA, respectively, as
displayed in Table 2.
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The rotavirus outer capsid consists of two distinct neutralization antigens that are
responsible for rotavirus attachment and entry, termed VP7 and VP4. They serve for virus
classification, with each categorized into a G-genotype (16 genotype) and P-genotype
(27 genotype thus far) [98]. Despite the wide spectrum of rotavirus genotypes resulting
from G/P combinations, epidemiological studies showed that the most prevalent geno-
types are G1P(8), G3P(8), G4P(8), G9P(8), and G2P(4), which cause up to 90% of severe
RVA infections worldwide [107,108]. Furthermore, there is no clear relationship between
rotavirus genotypes and the severity of disease [109].

Table 2. Rotavirus frequency and dominant genotypes in different water sources.

Country Water Source Frequency
(% Positive) Study Period Concentration Dominant

Genotypes
Assessment

Tools Reference

Saudi
Arabia

Treated effluent 5.56–13.89%

April 2018–March
2019

- G2

RT-PCR and
Sanger

sequencing
[22]

Lakes 27.78–30.56% - G2

Wastewater
landfill 63.89% - G2

Irrigation water 5.56 - G2

Dams 13.33% February–April 2017 - - RT-PCR [110]

Japan Drinking water
effluent 86% a–95% b June 2017–August

2018 5.5 b–6.3 a log10 GC/L -

RT-PCR,
semi-nested PCR

and direct
sequencing

[111]

Egypt

Nile river 18.75 % June 2016–May 2017 - G1P(8) and
G1P(4)

RT-PCR and
Multiplex

semi-nested PCR
[112]

Irrigation water
(Nile river) 50% September–December

2017 2.7 × 105 GC/L d -
RT-PCR,

amplicon cloning
and qPCR

[74]

Tunisia
Raw sewage

water 21.2% January 2003–April
2007

- GxP(8) and
GxP(4)

RT-PCR and
direct

sequencing
[76]

Treated effluent 10.8%

Uruguay

River
watersheds 41 % c June 2015–May 2016 1.3 × 105 GC/L d - RT-PCR and

Real-Time PCR [105]

Underground
water 32 % November

2013–September 2014 1.72 × 103 GC/L a RT-PCR and
qPCR [78]



Water 2021, 13, 2794 7 of 34

Table 2. Cont.

Country Water Source Frequency
(% Positive) Study Period Concentration Dominant

Genotypes
Assessment

Tools Reference

South
Africa Treated effluents 41.7% e September

2012–August 2013 5.2 × 103–1.2 × 105 GC/L f - RT-PCR and
Real-Time PCR [113]

Pakistan

Treated effluents 5%
February–July 2014 - -

Enzyme-linked
immunosorbent

assay (ELISA)
[114]

Drinking water 5%

Surface water
(River and dam

water)
23%

November
2014–February 2015
and April 2015–July

2015

- G3 and G9
RT-PCR,

Nested-PCR and
sequencing

[115]

USA Treated effluents 83% August 2011–July
2012 2.8 × 106 GC/L f - RT-PCR and

qPCR [116]

Brazil

Raw sewage
water 100% August 2009–July

2010

2.40 × 105–1.16
× 107 GC/L e G2P(4) and

G2P(6)

RT-PCR, qPCR,
Nested PCR and

amplicon
sequencing

[117]

Treated effluents 71% 1.35 × 103–1.64
× 105 GC/L e

Italy Raw sewage
water 60.4% 2010–2011 - G1P(8) and

G2P(4)

RT-PCR, Nested
PCR and
amplicon

sequencing

[118]

Netherlands Drinking water 48% 1999–2002 2.2 × 103 PDU/liter f -
RT-PCR, and

molecular
cloning

[119]

China

Surface water
(Rivers) 75-83.33%

September
2014–August 2015

- - (RT-)qPCR and
sequencing [120]

Treated effluent 100%

Raw sewage
water 91.67%

Tap water 91.67%

Canada Surface water
(Rivers) 37% g–75% h June 2012–May 2013 4.5 log10 GE * copies/L f G1

(RT-)qPCR, cell
culture and
ICC-qPCR

(integrated cell
culture with
qPCR) and
sequencing

[89]

a: in epidemic season, b: in non-epidemic season, c: mean detection frequency, d: mean rotavirus concentration, e: maximum detection
frequency, f: maximum rotavirus concentrations, g: in upstream sites, h: in downstream sites. *: genome equivalent, GC: genome copy,
(-): not defined.

3.3. Norovirus

Norovirus (NoV) is a member of the family Caliciviridae, with a polyadenylated,
positive-sense, single-stranded RNA genome sized ~7.5 kb. The ≥40 genotypes are clas-
sified into seven genogroups (GI–GVII) [121,122]. NoV infection is considered the most
prevalent non-bacterial mediated gastroenteritis, causing ~20% of entire gastroenteritis
cases worldwide [123], particularly in five years old and younger children [124]. NoV
causes ~685 million diarrheal episodes [125] and 200,000 deaths per year [126]. Norovirus
infection symptoms occurs after an average incubation period of 24 to 48 h, typically
involving vomiting, nausea diarrhea, dehydration, fever, and abdominal cramps [127].

The NoV genome organization involves three or four open reading frames (ORFs).
The first ORF (ORF1) encodes for six non-structural (NS) proteins, including NS1/2 (N-
Term), NS3 (NTPase), NS4 (3A-like), NS5 (VPg), NS6 (Protease), and NS7 (RNA-dependent
RNA polymerase; RdRp), which are responsible for viral replication. However, the other
two ORFs (ORF2 and ORF3) encode two structural viral proteins (VP), comprising of VP1
(major) and VP2 (minor capsid protein), respectively (Figure 2) [128]. Norovirus typing
was conventionally based upon sequence diversity within the capsid protein sequence.
Noroviruses could be grouped into ten genogroups (GI-GX). Generally, genogroups vary by
around 40–60% of their amino acid sequence: less sequence variance (20–40%) in the case
of genotypes [129]. Moreover, genotypes can be sub-divided into variants [130]. Currently,
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the RdRp-encoding region is used for dual genotyping of norovirus based on genotype
and P type; GI.1[P1], for example [129].
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Humans can be infected by more than 30 genotypes of noroviruses. Furthermore,
noroviruses show significant host specificity, which is at variance with evidence suggesting
inter-species transmission [131–133], in addition to the detection of viral RNA from human
strains in different animals [133–137]. Initially, human strains of viral RNA displayed a
potentially limited replication capacity in animals [138–140]. Moreover, GI and GII viruses
are mainly responsible for human infections [130], GIII viruses are associated with ovine and
bovine species [141,142], GV viruses are specific for murine species (mice and rats) [143,144],
and GIV, GVI, and GVII viruses are associated with various carnivorous species, notably
felines and canines [145–147]. Furthermore, GVIII and GIX, which are novel genogroups,
were detected in humans, while GX was described in bats [129]. However, there are some
exceptions to the species specificity of GII and GIV genogroups. For instance, GII.11, GII.18,
and GII.19 were described in pigs [148], but not detected in humans, while GIV.1 and
GIV.NA1 were associated with humans only, but not found in canines or felines [149].

Analyses of outbreaks identified GII noroviruses as the most frequently circulating
strains causing gastrointestinal infections worldwide [150]. Over the past 20 years, GII.4
became the predominant genotype, resulting in 70–80% of NoV outbreaks in various
countries [151]. This genotype is potentially evolving, yielding new pandemic variants,
including Grimsby 1995 (or US95_96), Farmington Hills 2002, Hunter 2004, Den Haag
2006b, New Orleans 2009, and Sydney 2012 [152,153]. This strain diversity arises from both
genome recombinations and mutational events, since significantly higher non-synonymous
changes were observed in comparison with other NoVs, supporting the antigenic drift
proposal, although occurring at a higher rate [154,155].

Noroviruses are mainly transmitted via the fecal-oral route, through the ingestion
of contaminated food or water, or by oral contact with a contaminated fomite existing
in the surrounding environment [156]. Moreover, high rates of secondary infection arise
via airborne transmission, although the fomite route is more dominant [157,158]. The
biological characteristics of norovirus were extensively studied through human feeding
study volunteers [159–162]. Norovirus inocula as low as 10 viral particles were sufficient
to initiate infection [161,163]. This potentially low count-mediated infection is regarded as
highly critical when discussing norovirus survival. Strikingly, norovirus was depicted to be
of stable infectivity under freezing and thawing conditions [164], although a more recent
study showed altered stability upon exposure to three cycles of freezing and thawing [165].
Moreover, it shows a high capacity of survival in a wide spectrum of water bodies (Table 3),
as well as thermal resistance, despite being exposure time-restricted to up to 21 min
decimal reduction time (time required at a given temperature to perform a log reduction)
in the temperature range of 50–72 ◦C [166,167]. Furthermore, longer exposure time was
detected at 50–60 ◦C, despite irreversible capsid disruption at >65 ◦C and loss of binding
capacity at 72 ◦C [168]. This high survival capacity can be demonstrated in a norovirus
outbreak that occurred in a long-term care facility in which fomite-mediated survival
of norovirus resulted in a continuous infection for 14 days following the initial peak of
illness [169]. Notably, noroviruses were detected in rivers (0–100%), recreational water
(25–50%), raw sewage water (2.8–100%), and treated effluents (1.6–100%), as displayed
in Table 3. Furthermore, noroviruses were detected at the highest concentrations, of
7.9 log10 GC/L, in combined wastewater in the USA (Table 3).
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Table 3. Norovirus occurrence in various water bodies.

Country Water Source Frequency
(% Positive) Study Period Concentration Genogroups (Genotype) Assessment Tools Reference

Saudi Arabia Raw sewage water 19% January 2009–February 2010 - - One step RT-PCR [170]

Egypt

Raw sewage water 25%
April 2017–March 2018 - GI ‡ and GII Semi-nested RT-PCR [171]

River 0% *–16.6% **

Irrigation water 31.25% September–December 2017 3.5 × 103 GC/L a GI One step RT-PCR, Amplicon cloning and
Real-Time PCR [74]

Urban sewage water 33.3%
October 2017–September 2018 -

GI ‡ and GII
RT-PCR and Semi- nested RT-PCR [172]

Treated effluents 25% GI and GII

Japan

Raw sewage water - October 2006- December 2007 - GI(8) ***, GI(4), GII(4) ‡ ,
GII(6) and GII(13) RT-PCR and DNA Sequencing [173]

Raw sewage water 50%
March 2005–February 2006

6.9 × 104 GC/L b

GIV RT-PCR and TaqMan-based real-time PCR [174]Treated effluents 25% 4.8 × 103 GC/L b

River water 31% April 2003–March 2004 1.5 × 104 GC/L b

Tunisia
Raw sewage water 2.8%

January 2003–April 2007 - GI(2), GI(5), GI(9) and
GII(4) ‡

RT-PCR, Second-round typing PCR and
amplicon sequencing [76]

Treated effluents 1.6%

South Africa

Raw sewage water 72.2%
April 2015–March 2016

6.0 × 105 GC/L b
GI(4) ‡ , GII(2) ‡ and

GII(17) ‡

Real-time reverse transcription-PCR,
semi-nested RT-PCR, conventional PCR,
amplicon cloning and clone sequencing

[175]

Treated effluents 83.3% 6.8 × 106 GC/L b

Rivers 62.9% 2008–2010 2.37 × 105 GC/L b GI(5) ‡ , GI(4) ‡ , GI(3),
GII(6) ‡ and GII(4) ‡

one-step real-time RT-PCR, two-step real-time
RT–PCR, conventional PCR, semi-nested PCR,

amplicon cloning and clone sequencing
[176]

India Tap water ư 16.67% June–July 2015 and
April–October 2017

1.9 × 104 GC/L †, b and
8.0 × 104 GC/L ¥, b GI and GII RT-PCR, ddPCR (singleplex and multiplex

probe-based assays) [177]

USA
Untreated graywater 6%

December–April, June, July
2.5 log10 GC/L GII

two-step RT-qPCR and duplexed RT-ddPCR [178]
Combined wastewater 39% †–96% ¥ 4.0 log10 GC/L †,b and

7.9 log10 GC/L ¥,b GI and GII ‡

Mexico Recreational water
(karst aquifer) 40% ¥–50% † - 1.6 × 103 GC/L †,b and

2.9 × 102 GC/L ¥,b GI(2) and GII(17) ‡ RT-qPCR, Nested PCR, amplicon cloning, and
Sanger sequencing [179]

Norway

Raw sewage water 100%

February 2008–February 2009

6.1 log10 GC/L †, b and
6.3 log10 GC/L ¥, b

GI and GII
RT-PCR, two genogroup-specific monoplex PCR

and direct sequencing [180]
Treated effluents 95% c 5.65 log10 GC/L †, b

5.75 GC/L ¥, b
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Table 3. Cont.

Country Water Source Frequency
(% Positive) Study Period Concentration Genogroups (Genotype) Assessment Tools Reference

Brazil

Raw sewage water 38.5% †–96.1% ¥

May 2013–May 2014 6.2 log10 GC/L †, b–
7.3 log10 GC/L ¥, b

GI, GII.4 ‡ , GII.17, GII.5,
GII.2, GII.3 and GII.1

RT-PCR, qPCR and Sanger sequencing [181]Primary effluent 40.4% †–96.1% ¥

Final effluent 1.9% †–5.8% ¥

Italy

Treated urban
wastewater stream 30%

May–September 2018
13 GC/L b

GI(4) and GII ‡ Real-time RT-qPCR and Qualitative
nested (RT)-PCR [182]

Recreational (bathing)
water 25% 3.2 GC/L b

Netherlands

Raw sewage water
100%

November 1998–April 1999

8.5 × 106 PDU §/liter b
GI(2), GII(1), GII(2), GII(3),

GII(4) ‡ and GII(7) RT-PCR, Southern blotting, amplicon cloning
and sequencing [183]Treated effluents 2.7 × 105 PDU/liter b

Surface water (Rivers) 100% 4.6 × 104 PDU/liter b GI(2),GI(4), GII(3), GII(4) ‡

and GII(7)

China
Drinking (barreled) water 45.5% d February 2014 - GII RT-PCR [184]

Tap water (Secondary
Water Supply System) 50% May 2017 - GII(17) RT-PCR, Targeted gene (RdRP) sequencing [185]

Canada
River upstream 50% d

June 2012–May 2013
3.24 log10 GE copies/L

- Two-step RT-qPCR [89]
River downstream 75% d 4.43 log10 GE copies/L

France River 100% January–June 2016 6.1 × 102 GC/L a, †–
3.7 × 103 GC/L a,¥ GI and GII ddPCR [90]

Sweden

Raw sewage water
100%

November–December 2015

4.3 × 104 GC/mLb, †–
6.5 × 104 GC/mLb,¥ GI and GII

RT-PCR, nested PCR, library construction,
Ion-torrent sequencing and qPCR [91]Conventionally treated

effluents 3.9 × 102 GC/mLb GII

Ozone treated effluents 33.3% 61 GC/mL GII

Raw sewage water 100% January–May 2013
3.5 × 103 virus

particle/L b, †–3.2 × 105 virus
particle/L b,¥

GI and GII RT-PCR and qPCR [92]

a: mean norovirus concentration, b: maximum norovirus concentration, c: mean norovirus frequency, d: maximum norovirus frequency. *: before mixing with wastewater, **: after mixing with wastewater,
‡: dominant genotype, †: genogroup I, ¥: genogroup II, ư: dead-end ultrafiltration (DEUF) samples, §: PCR-detectable units (PDU), GC: genome copy, (-): not defined.
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3.4. Hepatitis A Virus (HAV)

The hepatitis A virus belongs to the family Picornaviridae, genus Hepatovirus, and is
a non-enveloped positive-sense, single-stranded RNA virus of ~7.5 kb genome packaged
within a 27–32 nm icosahedral capsid [186]. The HAV genome is composed of a single
ORF, whose translation occurs by means of a cap-independent mechanism, making the
use of the internal ribosome entry site (IRES) located upstream of the genome producing
a polyprotein composed of ~2230 amino acids [187]. This polyprotein consists of three
distinct domains (P1, P2, and P3), which are further processed into 10 mature proteins by
the virus-encoded proteinase, 3Cpro [186,188]. P1 encodes the four major capsid proteins
VP1-VP4. The nonstructural viral proteins are comprised of the polyprotein domains P2 and
P3, and also “processed” by 3Cpro [189]. HAV displays a high degree of conservation of the
antigenic determinants—notably in amino acid sequences of viral capsids—now expanded
to include the recently identified HAV-like viruses [190,191]. This could have resulted from
negative selection pressures imposed upon any naturally-occurring mutants, producing the
observed consensus conservation [192]. Despite the high conservation of HAV, a degree of
genomic sequence divergence exists defining the various HAV genotypes and the identity
of sub-genogroups [192,193]. Consequently, HAV genotyping is dependent on different
regions of its genome used to recognize HAV variants, including the VP1 entire region,
notably the VP1 amino terminus, the 168 bp VP1–2A junction, the VP1–2B region, the
VP3–2B region, the VP3 carboxy-terminus, and the 5′ untranslated region [194,195]. Based
on VP1–2A junction region variability (of ~15%), seven genotypes of HAV were primarily
defined. However, according to the 23.7% variation denoted by the entire VP1 sequence
analyses, six HAV genotypes (I–VI) are currently defined, encompassing genotypes 1A,
1B, II, III, IV, V, and VI [196,197]. Genotypes I, II, and III infect humans and are divided
into A and B subtypes, however genotypes IV to VI are called simian HAV (SHAV) since
they infect non-human primates [196,198]. Amongst human HAV genotypes, subtype IA
was found to be the most frequently circulating subtype worldwide [199]. Interestingly,
individuals cannot be re-infected by HAV since the presence of a single HAV serotype
results in the neutralization of IgG production against HAV, elicited upon vaccination or
even natural infection [200].

On the other hand, HAV infections can range in associated severity from asymptomatic
to fulminant hepatitis-mediated deaths [201,202]. However, HAV commonly causes self-
limiting infections that do not lead to chronic liver disease [200,203]. Moreover, clinical
manifestations can increase with age, manifested by jaundice, and unusually high serum
aminotransferase levels as the common symptoms, which are exhibited by over 70% of
infected adult patients [201,204]. Furthermore, the incubation period of HAV lasts for
~15–50 days, with an average of 28 days [205]. A wide range of symptoms occur upon
HAV infection, including gastroenteritis, malaise, fever, nausea, anorexia, jaundice, dark
urine (genitourinary symptom), and abdominal discomfort [206]. Fulminant hepatitis is
considered as a rare complication associated with HAV infections that occurs in less than
1% of infected patients, wherein the highest incidence rates occur in young children and
the elderly with reported underlying liver illnesses [205,207]. Nucleotide substitutions at
the 5′ UTR, P2, and P3 regions of the HAV genome were found to be associated with this
fulminant disease [207,208].

HAV is mainly transmitted via the fecal-oral route, as well as through personal
contact and exposure to contaminated water/food supplies, whereas transmission routes
of the other typically hepatitis-causing viruses, in particular hepatitis B and C, involve
contaminated blood or other body fluids via injection, intimate contact, or perinatal period
vertical transmission [209]. Remarkably, waterborne HAV outbreaks are uncommon in
developed countries owing to proper sanitation procedures, as well as water supply
facilities [210]. On the other hand, HAV was found to be of high stability and abundance
in the surrounding water environments (Table 4) for long periods, whenever associated
with organic matter [207,211]. For instance, HAV was detected to be infectious after
more than one year of storage at 4 ◦C in bottled water, with <1 log reduction owing to
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concentrations of the added proteins [211,212]. Moreover, HAV shows significant resistance
to surprisingly low pH, since it was reported that infectivity remains after treatment at
pH 1 for up to 5 h at room temperature, and for 1.5 h at 38 ◦C and a pH 3 for up to
21 days at 4 ◦C [213,214]. The environmental stability of HAV, displayed by its low pH
as well as heat resistance (60 ◦C for 1 h), could be due to the inherent molecular stability
of the HAV capsid, concurrent with its particular codon usage, along with the unique
folding pattern of the VP2 protein [190,215,216]. Moreover, HAV was detected in rivers
(1.19–76%), recreational water (0–13.95%), raw sewage water (1.75–100%), and treated
effluents (0–64.7%), as shown in Table 2. In addition, HAV was detected at potentially high
concentrations, up to 6.0 × 106 GC/L, in treated effluents and, at 2.7 × 106 GC/L, in raw
sewage water in Tunisia.

Ingestion of HAV-contaminated food accounts for 2–7% of all HAV-mediated out-
breaks worldwide [217]. Epidemiological investigations provide a potential solution since
they have succeeded previously in identifying the source of contamination. For example, a
large and persistent food-borne mediated multi-state HAV outbreak occurred in Europe,
from 2013 to 2014, which was determined to be due to the ingestion of HAV-contaminated
frozen berries. This led to over 1589 cases and 2 deaths [218,219]. Moreover, bivalve mol-
luscan shellfish was reported to have significant HAV levels, showing various prevalence
spatially and temporally [220–222]. For example, the prevalence of HAV severely declined
over the years from 40% to <8%, according to the 20 year-systematic survey conducted on
bivalve molluscan shellfish from three estuaries in Spain [220], accompanied by a reduction
in HAV cases. However, the reduction in cases could be due to the increasing availability
of the HA vaccine, alongside increased surveillance that can rapidly identify contaminated
food [217,223].

3.5. Astrovirus

Human astroviruses (HAstV) are members of the family Astroviridae, genus Ma-
mastrovirus. They are non-enveloped icosahedral viruses, with a linear positive sense,
single-stranded, RNA genome ranging from 6.4–7.9 kb [238]. The genome consists of
three ORFs, comprising of ORF1a, ORF1b, and ORF2, which are flanked by 5′ and 3′

UTRs (85 and 83 nts, respectively) and a 3′ poly-A tail (Figure 3). ORF1a and ORF1b
encode two functional polyproteins (nsp1a and nsp1ab), encompassing a serine protease
and a RNA-dependent RNA-polymerase (RdRp). ORF2 encodes the capsid proteins pre-
cursor, translated from a sub-genomic RNA (sgRNA), and comprises of two principal
domains: the highly conserved amino (N)-terminus and the hypervariable carboxy (C)-
terminus [239,240]. In addition, the viral genome encodes genomic linked protein (VPg)
that plays a major role in viral infectivity (notably the TEEEY-like tract), the replication of
the virus genome, and protein synthesis [241,242].
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HAstV was commonly associated with the incidence of acute gastroenteritis in young
children, immunocompromised individuals, and the elderly. HAstV is responsible for
sporadic non-bacterial diarrheal cases, representing up to 20% and 0.5–15% of related
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outbreaks [243–245]. HAstV is considered the second or third major cause of infantile
gastroenteritis after rota- and calciviruses [246]. Nonetheless, regional studies demonstrate
a significantly different relative prevalence of HAstV in water resources (Table 5) and
clinical settings. For instance, in particular developing countries, 30% of all diarrheal
cases were due to HAstV infection [94,247]. Moreover, HAstV was detected in rivers
(8.3–100%), seawater (4–11%), raw sewage water (40.2–100%), and treated effluents (0–84%),
as displayed in Table 2. Moreover, HAstV was detected at the highest concentration
estimated, 4.3 × 107 GC/L, in raw sewage water in Uruguay in comparison to other
countries.

Gastroenteritis caused by HAstV is characterized by symptoms involving 2–3 day-
watery diarrhea, vomiting, abdominal pain, malaise, and headache [248]. The incubation
period is somewhat longer than gastroenteritis caused by other types of virus at an average
of 4.5 days [96,249]. HAstV encompasses eight genotypes, HAstV-1 to HAstV-8 [250], while
HAstV-1 is the most common genotype identified in both wastewater and stools [251].

Table 4. HAV abundance in water environments and prevalent genogroups.

Country Water Source Frequency
(% Positive) Study Period Concentration Genotypes-

Subgenotype Assessment Tools Reference

Bahrain

Raw sewage
water 12.5%

January–February and
May–June

- - RT-PCR [224]
Tertiary treated

effluents 0%

Bay
downstream

water (effluent
discharge)

0%

Egypt

Irrigation
water 34.4% September–December

2017
1.2 × 104

GC/L a - One-step RT-PCR and
Real-Time PCR [74]

Raw sewage
water 97.4%

2014 - IB
RT-PCR, cell culture and

direct sequencing [225]
Treated

effluents 47%

Tunisia

Raw sewage
water 66.9%

December
2009–December 2010

2.7 × 103

GC/mL IA ‡ and
IB-

One-step real-time
RT-qPCR, semi nested

RT-PCR and sequencing
[226]

Treated
effluents 40.7% 6.0 × 103

GC/mL

Raw sewage
water 68.3%

2007–2008

3.5 × 105

GC/L a

IA ‡ and IB
RT-PCR, nested RT-PCR,

sequencing, qPCR [227]
Treated

effluents 64.7% 2.5 × 105

GC/L a

Uruguay

Surface water
(rivers and

logoon)
13.95%

2009–2012

3.7 × 103

GC/L

-
qualitative PCR and
TaqMan-based qPCR [228]Drinking water 0%

-Raw sewage
water 2.3%

Treated
effluents 0%

South
Africa

Surface water
(Rivers and

dams)
76% August 2010–December

2011 Υ, and January
2012–August 2012 ¥

- IB
One-step RT-qPCR,

nested PCR, amplicon
cloning and sequencing

[229]
Treated

effluents 37%

Irrigation
water 73% January, March and

May 2013
2.37 × 105

GC/L b V
real-time RT-PCR,

molecular cloning and
sequencing

[230]
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Table 4. Cont.

Country Water Source Frequency
(% Positive) Study Period Concentration Genotypes-

Subgenotype Assessment Tools Reference

Pakistan Surface and
subsurface water 12.63% June 2014–May 2015 - - RT-PCR [231]

USA Well water 60% September
1995–December 1995 - 1A

IC (immunocapture)-RT-
PCR and amplicon

sequencing
[232]

Brazil

River water 1.19% 2012–2014 1.5 × 104

GC/L
-

RT-TaqMan
probe-mediated qPCR

and ICC-RT-qPCR
[233]

Recreational
water (Lagoons

and beaches)
0% March 2015–July 2016 - - RT-PCR [83]

Italy

Raw sewage
water 28.16%

2015–2018
-

IA ‡ and IB
RT-nested-PCR and

amplicon sequencing [199]Coastal
discharge

water
3.97%

Seawater 12.8%

Raw sewage
water 33.3%

January–December
2013

-

IA and IB ‡

nested RT-PCR and
sequencing [234]Treated

effluents 14.3% IA ‡ and IB

River water 7.4% IB

Spain

Raw sewage
water 1.75%

2019 - - Real-time RT-PCR [235]Tertiary-
treated
effluent

0.35%

Hong
Kong Seawater § 57.14% 2011 1.028 × 103

particle/L b IB
RT-PCR, amplicon

cloning, sequencing and
TaqMan real-time PCR

[236]

Canada Drinking water 10% 1974–2001 - - ♦ [237]

France

Raw sewage
water 59.3%

October 2014–October
2015

-

IIIA and
IA RT-PCR and sanger

sequencing [23]
Treated

effluents 19.2% -

Sweden Raw sewage
water 100% January–May 2013 1.4 × 104

virus/L b - Two-step real-time
RT-qPCR [92]

a: mean HAV concentration, b: maximum HAV concentration. Υ: for surface water samples, ¥: for WWTP outflow water, ‡: dominant
genotype, §: sewage polluted sea water, ♦: outbreaks data summary, GC: genome copy, (-): not defined.

Table 5. Prevalence of waterborne astroviruses, predominant genogroups, and assessment tools.

Country Water Source Frequency (%
Positive) Study Period Concentration Genogroups-

Genotypes Assessment Tools Reference

Egypt

Raw sewage
water 40.2%

April 2017–March 2018 - A and B Semi-nested RT-PCR [171]
River 8.3% *–25% **

Urban sewage
water 58.3% October 2017–September

2018
-

B ‡ and A
Semi-nested RT-PCR [172]

Treated effluent 33.3% A and B
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Table 5. Cont.

Country Water Source Frequency
(% Positive) Study Period Concentration Genogroups-

Genotypes Assessment Tools Reference

Japan Raw Sewage
water 91.67% July 2015–June 2016 - A(1), MLB1

‡ and MLB2 RT-PCR and sequencing [252]

Kenya

Raw sewage
water 98% d April 2015–April 2016 30.8

∫
- Real-time RT-PCR [253]

Urban river 60% b

May 2007–February 2008 - - Qualitative singleplex
real-time RT-PCR

[254]Rural river 41.7%

Urban sewage
water 87.5% b

Uruguay Raw sewage
water 45% March 2011–February

2012 4.3 × 107 GC/L a - Qualitative RT-PCR and
qPCR [255]

South
Africa

River water 21.6%
June 1997–May 1998 - - Cell culture, RT-PCR,

dot-blot Hybridisation assay [256]
Dam water 5.9%

Nepal

Ground water 8.1%

August 2009–May 2011 -

A(1,2,4,5
and 8) ‡

and MLB RT- semi-nested PCR and
Next-generation amplicon

sequencing
[257]

River water 100% A, B, MLB
and VA

USA
Raw sewage

water 75% b

August 2011 and July 2012 - A ‡ , B, MLB
and VA

RT- semi-nested PCR and
Next-generation amplicon

sequencing
[257]

Treated effluent 63% b

Brazil Surface water
(basins) 15.4% b August 2004–June 2005 - A(1) RT-PCR, nested PCR and

amplicon sequencing [258]

Italy

Seawater
(receiving

treated water)
9%

February 2019–August
2020 1 × 102 GC/L A(1)

Real-time (RT) qPCR,
OneStep RT-PCR, nested or

semi-nested PCR and
sequencing

[259]

Seawater
(receiving

non-treated
water)

7%

Seawater
(receiving rain
drain and raw

water)

4%

Seawater
receiving mixed

waters
11%

UK Water supplies 1% 1992–2003 - - ‡ [260]

China
Sewage

treatment
plant water

6.3% November 2006–October
2007 - - RT-nested PCR [261]

Canada

River upstream 42% b

June 2012–May 2013

2.52 Log10 GE §

copies/L a

- Two-step RT-qPCR [89]
River

downstream 92% b 4.1 Log10 GE §

copies/L a

France

River water 36%

May 2013–May 2014

103 GC/L a

- Real-time RT-qPCR [262]Tributaries water 16% 103 GC/L a

Treated effluents 84% 104 GC/L a

Sweden

Raw sewage
water 100%

November–December
2015

1.1 × 106

GC/mL a

A(4)
RT-nested PCR, Library

construction, NGS
sequencing and qPCR

[91]Conventionally
treated effluents 33.3% 1.8 × 102

GC/mL

Ozone treated
effluents 0% -

Raw sewage
water 100% January–May 2013 4.6 × 105

virus/L c - Two-step real-time RT-qPCR [92]

a: maximum astrovirus concentration, b: maximum astrovirus detection frequency, c: mean astrovirus concentration, d: mean astrovirus
frequency, GC: genome copy. *: before mixing with wastewater **: after mixing with wastewater, §: genome equivalent, ‡: dominant
genogroup/genotype,

∫
: average quantification cycle (Cq), where low Cq values reflects high virus concentrations and vice versa, ‡: review

study of epidemiological and microbiological characteristics of 89 waterborne infectious intestinal outbreaks affecting England and Wales,
(-): not defined.
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4. Public Exposure to Municipal Wastewater

People are exposed to wastewater by various means (recreational activities, food
production, and agriculture). However, the infection risk due to waterborne enteric viruses
is dependent on the infectious enteric viruses’ prevalence or their infectivity in various
water environments that humans interact with (Table 6). For instance, infection risk due
to HAdV in drinking water accounted for 10−4/year for each person, which was quite
similar to astrovirus infection risk detected earlier in surface water in Mexico [87,263].
Moreover, HAdV and EV were found to be of the highest infectivity rate in secondary
treated water and even in post-disinfection final effluent confirmed by cytopathic effect
detection. However, a lower infectivity rate of HAdV and EV was detected in raw sewage
(64%) and dam water (~65%), respectively (Table 6). Furthermore, infection risk was more
reduced in surface water (10,000x/180 days and 10,000x/30 days) than in ground water
(1000x/‘213 days and 10x/30 days) in the case of RV and AstV, respectively. The main expo-
sure routes frequently include recreational activities and surface water drinking. Moreover,
shellfish production is regarded as an indirect route of exposure, since molluscs are filter
feeders and, consequently, contaminated water pathogens become concentrated and lead
to consumer infection [264,265]. Moreover, enteric viruses were detected using nested PCR
for entero-, norwalk-like, and hepatitis A viruses and real-time PCR for adenovirus in 50%
to 60% of the total mussel samples (18) obtained from a bioremediation mussel farm [266].
Notably, non-enveloped viruses, such as noroviruses and the hepatitis A virus, can survive
in the bivalves’ tissues and are highly resilient to degradation [267,268]. Moreover, virus
particle size was found to determine whether the particle is degradation resistant or sus-
ceptible [265]. For example, <200 nm VLPs are typically of higher degradation resistance
when compared to bacteria [269]. Human infectious diseases owing to consumption of
contaminated filter-feeders and recreational activities in wastewater-polluted coastal wa-
ters account for USD 12 billion annually [270]. Moreover, wastewater-mediated irrigation,
in particular sprinkler irrigation, generates aerosols that can cause infection upon direct
exposure or ingestion of irrigated crops [271]. It is important to note that the RNA of the
pandemic SARS-CoV-2 was detected in treated wastewater, representing a critical issue for
usage in irrigation [272]. Therefore, SARS-CoV-2 RNA was investigated in various water
resources for their incidence frequency (Figure 4) and prevalence using different genes
(e.g., RdRP, S, N1, N2, N3, ORF1ab, and E) as genetic tracers [273–285]. However, the high-
est SARS-CoV-2 detection specificity was obtained when RdRP was applied in RT-qPCR
and compared to other SARS-CoV-2 genes [286]. Furthermore, detection of SARS-CoV-2
RNA in treated wastewater is not usually associated with SARS-CoV-2 infection risk, as
reported in treated sewage of nine WWTPs in Germany [286]. This could be owing to the
significantly higher persistence of SARS-CoV-2 RNA than infectious SARS-CoV-2 in water
environments. Moreover, the persistence of infectious SARS-CoV-2 in water environments
is reliant on many factors, such as water source, temperature, and the initial virus titer. For
instance, a T90 of infectious SARS-CoV-2 at room temperature was found 1.7 and 1.5 days
in tap water and wastewater, respectively, that extended to 7 days when a higher initial titer
(105 TCID50/mL) was applied [26]. By comparison, the T90 values declined in wastew-
ater to a total of 15 min and 2 min at 50 and 70 ◦C, respectively [26]. Toilet flushing and
groundwater production render other routes of direct exposure to wastewater [100,287].
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Table 6. Infectivity of enteric viruses in different water resources.

Water Source Virus Genotype Infectivity Rate Number of Samples

Infection Risk (IR) ♦

Detection Method Reference
IR/person

Infection Risk Reduction

Period (days) RA (Log10 or fold)

Recreational water HAdV C 1 IVP/90% of sites * 159 (144 [9 sites] and
15 [3 sites]) - Integrated cell

culture-qPCR assay [83]

Raw sewage water
HAV IIIA and IA

64.3% (9/14) ** 14
- Cell culture [23]

Treated effluents 100% (1/1) ** 1

Drinking water
(40 mJ/cm2 UV-treated)

HAdV F(40, 41) 1/1700 (5.88 × 10−4) *** 35 10−4/year § -
5 Ұ

Integrated cell
culture PCR

[87]
Drinking water

(73 mJ/cm2 UV-treated) 6.5 Ұ

Groundwater

RV - -

35

-

90 100 ¥

Immunoperoxidase focus
infectious assay [263]

150
1000 ¥

~213

Surface water 35

30 40 ¥

150 1500 ¥

180 10,000 ¥

Ground water
AstV - -

20
- 30 10 ¥

2.0 × 10−3 ‡ 60–120 2000 ¥

Surface water 5 10−4 ‡ 30 10,000 ¥

Pre-DIS influent
HAdV and EV - 100% † 30 - -

-
Cell culture [288]

Post-DIS influent 4.2 Ұ,a

Raw sewage water HAdV F 64% (32/50) ** 50 - - - Cell culture [289]

Dam water EV 64.6% (31/48)–66.7%
(44/66) **

114 (48 samples at
Jan.–Dec. 2012 and
66 samples at Oct.
2013–Oct. 2015)

- - -

Cytopathic effect
detection and Direct
immunofluorescence

assay

[290]

HAdV: human adenovirus, RV: rotavirus, AstV: astrovirus, EV: enterovirus, ♦: infection risk (IR), including two parameters: infection risk per person and infection risk reduction. Infection risk per person refers
to the probability of infection occurrence for each person exposed to various water sources, whereas, infection risk reduction refers to the amount of risk reduction (RA) in case of water treatment (e.g., via
disinfection or UV-treatment) or in case of being exposed for a period of time (represented in days) to different water environments. Ұ: Log10 reduction ¥: x fold reduction, a: average reduction, IVP: infectious
virus particle, Pre-DIS: pre-disinfection (after secondary biological treatment), Post-DIS: post disinfection (final effluent), *: minimum infectivity rate (i.e., minimum number of infectious virus particles/site), **: %
of samples that showed cytopathic effect (i.e., detection frequency of infectious virus particles), ***: average count of infectious virus particles out of total virus particles enumerated by qPCR and MPN PCR, §: in
all four-treatment scenarios, ‡: residual infectivity (x of the original virus titer), †: defined by cytopathic effect detection, (-): not defined.



Water 2021, 13, 2794 18 of 34

Water 2021, 13, 2794 24 of 40 
 

 

 
Figure 4. Frequency of SARS-CoV-2 RNA in various water environments [274,276–278,281–286,291]. SW: sewage water, 
TWW: Treated wastewater, RW: River water, SS: Wastewater sludge samples, Av.: Average frequency, for example, Av. 
SW: Average frequency of SARS-CoV-2 RNA in SW of countries that involved SW in their evaluation. 

5. Discharge of Wastewater 
Wastewater is commonly discharged into surface water resources. In addition to the 

public health concerns, fecal contamination of wastewater can negatively influence water 
environments essential for fishing, drinking water, and recreation. Enteric viruses are con-
sidered the main cause of waterborne illnesses associated with recreational water, includ-
ing pools, spas, rivers, etc., and can reach waters via the accidental release of feces or body 
fluids [292]. Moreover, a surge in non-enteric diseases was reported to arise from 
wastewater contaminated with significant viral contamination [24,25]. Wastewater treat-
ment (WWT) performance guidelines were established for reclamation and reuse (Table 
7). These guidelines are concerned with microorganism levels and the degree of treatment, 
whereas receiving waters risk management mainly depends on fecal indicator bacteria 
monitoring [293]. Unfortunately, these bacterial indicators cannot meet the full criteria of 
the ideal water quality indicators [294]. On the other hand, excreted enteric viruses can be 
detected in wastewater, but a wastewater treatment plant (WWTP) may not completely 
eliminate viruses in terms of their concentration and infectivity, thus demonstrating a con-
tinued water-related health risk [295]. Furthermore, enteric virus presence in water does 
not necessarily link to the bacterial indicators’ detection as Escherichia coli and coliforms 
[296]. Additionally, bacteriophage survival in water is more similar to human enteric vi-
ruses than the presently used bacterial indicators [293]. For instance, cross-assembly 
phage is currently implemented alongside pepper mild mottle virus (PMMoV) as the mi-
crobial source tracks markers simultaneously in this toolbox approach. This is owing to 
their inclusive distribution, associated with ever higher densities in sewage, than other 
detected viruses and the fact they follow a similar pattern to enteric viruses prevalence in 
different water bodies. Consequently, they are efficient as indicators of virus-mediated 
fecal pollution in lakes, rivers, and recreational waters [297–301]. Thus, traceability proce-
dures provide a mandate to determine fecal contamination sources so that the risk can be 
assessed to initiate a proper water management to counteract it at its source. 

  

0%

20%

40%

60%

80%

100%
SA

RS
-C

oV
-2

 fr
eq

ue
nc

y 
(%

)

Country

SW
TWW
RW
SS
Av. SW
Av. TWW
Av. RW

Figure 4. Frequency of SARS-CoV-2 RNA in various water environments [274,276–278,281–286,291]. SW: sewage wa-
ter, TWW: Treated wastewater, RW: River water, SS: Wastewater sludge samples, Av.: Average frequency, for example,
Av. SW: Average frequency of SARS-CoV-2 RNA in SW of countries that involved SW in their evaluation.

5. Discharge of Wastewater

Wastewater is commonly discharged into surface water resources. In addition to
the public health concerns, fecal contamination of wastewater can negatively influence
water environments essential for fishing, drinking water, and recreation. Enteric viruses
are considered the main cause of waterborne illnesses associated with recreational water,
including pools, spas, rivers, etc., and can reach waters via the accidental release of feces
or body fluids [292]. Moreover, a surge in non-enteric diseases was reported to arise from
wastewater contaminated with significant viral contamination [24,25]. Wastewater treat-
ment (WWT) performance guidelines were established for reclamation and reuse (Table 7).
These guidelines are concerned with microorganism levels and the degree of treatment,
whereas receiving waters risk management mainly depends on fecal indicator bacteria
monitoring [293]. Unfortunately, these bacterial indicators cannot meet the full criteria of
the ideal water quality indicators [294]. On the other hand, excreted enteric viruses can be
detected in wastewater, but a wastewater treatment plant (WWTP) may not completely
eliminate viruses in terms of their concentration and infectivity, thus demonstrating a
continued water-related health risk [295]. Furthermore, enteric virus presence in water
does not necessarily link to the bacterial indicators’ detection as Escherichia coli and col-
iforms [296]. Additionally, bacteriophage survival in water is more similar to human enteric
viruses than the presently used bacterial indicators [293]. For instance, cross-assembly
phage is currently implemented alongside pepper mild mottle virus (PMMoV) as the
microbial source tracks markers simultaneously in this toolbox approach. This is owing
to their inclusive distribution, associated with ever higher densities in sewage, than other
detected viruses and the fact they follow a similar pattern to enteric viruses prevalence in
different water bodies. Consequently, they are efficient as indicators of virus-mediated fecal
pollution in lakes, rivers, and recreational waters [297–301]. Thus, traceability procedures
provide a mandate to determine fecal contamination sources so that the risk can be assessed
to initiate a proper water management to counteract it at its source.
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Table 7. Microbial guidelines for wastewater reuse.

Usage Guideline
Category Allowed Limit Average Limit Reference

Irrigation (unrestricted) Enteric viruses <2 Virus/50 L - [302]

Toilet flushing, primary
contact recreation, food

aquaculture and
car wash

Total coliform <10 cfu/100 mL - [303]

Irrigation (unrestricted) Total coliform <10 cfu/100 mL - [304]

Gardens with access,
ponds parks, crops and

secondary contact
recreation

Total coliform <100 cfu/100 mL -

[305]Gardens and parks with
no public access during
irrigation and passive

recreation

Total coliform <1000 cfu/100 mL -

Non-food crops, Pasture
and fodder irrigation Total coliform <10,000 cfu/100 mL -

Food crops Total coliform <23 cfu/100 mL 2.2 cfu/100 mL

[304]Non-food crops Total coliform <240 cfu/100 mL 23 cfu/100 mL

Recreational reuse
(unrestricted) Total coliform <240 cfu/100 mL 23 cfu/100 mL

Irrigation (unrestricted) Fecal coliform <1000 cfu/100 mL - [305]

Food crops Fecal coliform <400 cfu/100 mL 200 cfu/100 mL

[304]Non-food crops Fecal coliform <400 cfu/100 mL 200 cfu/100 mL

Recreational reuse
(unrestricted) Fecal coliform <23 cfu/100 mL 2.2 cfu/100 mL

Irrigation (unrestricted) Fecal coliform <1 cfu/100 mL - [302]

Irrigation (unrestricted) Nematode egg <2 egg/L - [305]

Irrigation (unrestricted) (Oo)cysts <1 cyst/50 L - [302]
(-): not applicable.

6. Reuse of Treated Water

The reusing of wastewater is determined by economic factors as it is often either used
for the recirculation of organic matter, to act as natural fertilizers, or due to a shortage of
water resources [27,28]. For instance, wastewater and greywater (households’ wastew-
ater with no fecal contamination) were used for irrigation of agricultural products, as
well as indoor activities involving toilet flushing and even for potable use [17–21]. How-
ever, intensive treatment measures are required to meet the suggested wastewater reuse
guidelines and, in particular, for greywater in which significant coliform loads may exist.
However, the performance of treatment procedures relying on coliform elimination may
be biased and exaggerated owing to the capability of these bacteria to multiply within the
greywater system.

Wastewater reuse is currently a frequent practice in many countries. For example,
treated wastewater is utilized in agriculture and landscaping in many countries, including
Egypt, Saudi Arabia, Italy, Cyprus, Malta, Spain, and the USA [306–310]. It is, for instance,
used in Egypt for the irrigation of sandy soils to raise the organic matter content of soil
and improve the capacity of cation exchange [311]. In Saudi Arabia in 2010, 25% of treated
wastewater was used to irrigate landscapes in the public parks of a number of cities [312].
In the Netherlands, particularly in Amsterdam, wastewater is regarded as a rich resource
of organic matter, including alginic acid, cellulose, bioplastic, biogas, and phosphorus
obtainment, that can be recovered and reused [313]. Moreover, wastewater reuse has
converted Singapore into a universal hydro-hub via the implementation of novel water
technologies that allowed the nation to meet 30% of its water demands, a number that is
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set to increase to 55% by 2060 [314]. Wastewater reuse usually demands higher standards
of treatment, since it may well contain higher pathogen content than greywater [315]. Grey-
water reuse is, therefore, much easier when separated from wastewater [316]. However,
water contamination is possible in all pathways to an extent that necessitates adequate
safety measures prior to the establishment of new systems. In this regard, Singapore has ap-
proved a potential multi-phase approach to water reuse, involving primary sedimentation,
followed by activated sludge and microfiltration, and then ultrafiltration, reverse osmosis
and, eventually, disinfection by ultraviolet radiation exposure [314]. This approach can
also be highly beneficial to eliminate or significantly reduce public health risks associated
with the reuse of various wastewater streams. However, the targets should be well defined
and technical solutions and proper assessment tools should be made available to ensure
that it meets the recommended guidelines of safe water reuse.

Technical solutions for reuse of treated water includes: (i) the employment of inno-
vative tools and technologies, such as the replacement of old equipment used for water
treatment with new technologies, including membrane bioreactor (MBR)-based treat-
ment [317,318], (ii) the establishment of an evaluation approach for determining water
cost, that is energetic and equivalence-dependent, alongside treatment strategies [319], and
(iii) solving the gap between water supply and water demand via desalination methodolo-
gies [320,321], control of runoff water [322], wastewater reuse [323], and cloud seeding [324].
However, the technical solution selection mandates the inclusion of a short costs analysis
that depends on the nature of water reuse projects being chargeable or not [325]. For
instance, regenerated water use for industrial purposes or course irrigation in the private
sector required investment costs that reached AUD >3/m3 in Australia [326] and up to
EUR 736/m3 produced/day in Spain, with an additional EUR 0.06/m3 to EUR 0.45/m3

for operational costs that varied according to the regenerated water uses and the required
treatment [327]. On the contrary, regenerated water for water resources restoration and
maintenance, the recharging of aquifers, or reduction of treated effluent discharge into
essential water bodies is not chargeable [325,328]. Technical solutions for water reuse
should be assessed for, in particular, viral load reduction efficacy to avoid any associated
health concerns due to direct exposure. The MBR treatment process was found to be of
higher efficiency, in terms of both bacterial and virus removals, than the activated sludge
process, which results in up to 2 log10 bacterial load reduction and lacks virus removal
capability [329]. For example, adenoviruses and enteroviruses, and even infectious en-
teroviruses, were 3.7, 1.7, and 2log10 reduced, respectively, following MBR-based treatment
in Saudi Arabia [318].

Nevertheless, such efforts for the reuse of treated water, alongside the offered technical
solutions, were opposed by serious limitations raised against irrigation using treated water.
The alteration of the texture properties and physicochemical parameters of soil, due to
agricultural reuse, led to changed microbiota and biomass [29]. Moreover, probable modifi-
cations of soil microbiota could influence soil fertility and subsequent productivity [21]. In
addition, organic matter mineralization [330] and nutrients and metals availability [331,332]
were affected by altered soil pH caused by irrigation with WWTP effluents. Therefore,
reuse of insufficiently treated wastewater, or even raw water, could serve as alternative
sources for irrigation, avoiding these risk factors [29]. However, other risk factors may
emerge from the high burden of enteric pathogens. The norovirus disease burden due to
the consumption of lettuce irrigated with untreated greywater was assessed by QMRA
model and revealed an annual disease burden fluctuation above the range of 2 × 10−8 and
5 × 10−4 [333].

On the other hand, wastewater reuse is commonly practiced for potable purposes
owing to the incidental presence of treated wastewater in a water supply source, termed de
facto wastewater reuse. Upstream WWTP discharge was reported by the EPA as influencing
drinking water treatment plants (DWTPs), which included 2–16% of upstream wastewater
discharges [334]. For instance, DWTPs, containing 50% upstream WWTP discharges, were
used to serve over 104 U.S. people, as reported in [335]. However, extensive risk assessment
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studies were concerned with the associated risks due to de facto reuse [30,336,337] and an
annual risk of >1 infection/105 people was recorded [338]. Moreover, the median norovirus
risk per year was the highest in the case of de facto reuse, when compared to other treatment
scenarios, to such an extent that de facto reuse scenarios exceeded risk benchmarks (10−o).
Alarmingly, 1% wastewater effluent was predicted to potentially surge drinking water
risks if contributed to the source water [30]. De facto reuse is still applicable globally and
de facto reuse is expected to increase in the future due to an increased frequency of water
supplies shortages and droughts [339].

The Water Safety Plan (WSP) is receiving increasing attention as a recommended
risk management approach for water reuse. The establishment of the WSP approach
organized drinking-water-related management practices and assured the applicability
of these practices to drinking-water quality management. A WSP encompasses, at least,
a system assessment and effective operational monitoring and management to ensure
drinking-water safety. Moreover, a WSP integrates various principles of other risk man-
agement approaches including, of a particular interest, the multiple-barrier approach and
HACCP [340]. HACCP development presented an earlier framework for the improvement
of drinking water treatment processes to minimize the probability of waterborne disease
incidence [341]. Moreover, repairing and maintaining the drinking water distribution
network was highlighted as a means of preventing drinking water contamination. In
this regard, the necessity of HACCP implementation was reported in terms of avoiding
microbial contamination incidence in drinking water treatment lines [342].

7. Conclusions

The high persistence of enteric viruses in various water environments enabled their
detection in almost all water sources with a significantly higher frequency. However,
detection frequency of enteric viruses could vary according to the virus type, geographical
location, water source, and the assigned period for sampling, irrelevant to virus concen-
tration. Second, virus detection is not usually associated with virus infectivity, wherein
the presence of infectious virus particles indicate infectivity and the resultant infection
risk. Moreover, infection risk relies on detection specificity since the virus origin, whether
of human origin or not, could determine the course of infection. For example, the RDRP
gene of SARS-CoV-2 was found to be of higher specificity than other genes. On the other
hand, exposure to wastewater discharge should be monitored and controlled for probable
health issues. Consequently, a toolbox approach, implementing both pepper mild mottle
virus and cross-assembly phage together, was highly encouraged for the traceability of
any possible fecal pollution. Moreover, MBR-based treatment for wastewater reuse was
much more efficient in both bacterial and viral burden reduction than activated sludge,
which cannot achieve virus removal. A WSP could likewise help in the quality manage-
ment of de facto wastewater reuse through the employment of HACCP throughout the
wastewater treatment strategies. This review article provided the information necessary
for decision making in terms of determining the most probable viral etiologies as well as
evaluating the resultant risks associated with direct or indirect exposure to both discharged
or reused wastewater.
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