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Abstract: The ecosystems in the arid inland areas of Central Asia are fragile and severely degraded.
Understanding and assessing ecosystem resilience is a challenge facing ecosystems. Based on the net
primary productivity (NPP) data estimated by the CASA model, this study conducted a quantitative
analysis of the ecosystem’s resilience and comprehensively reflected its resilience from multiple
dimensions. Furthermore, a comprehensive resilience index was constructed. The result showed that
plain oasis’s ecosystem resilience is the highest, followed by deserts and mountainous areas. From the
perspective of vegetation types, the highest resilience is artificial vegetation and the lowest is forest.
In warm deserts, the resilience is higher in shrubs and meadows and lower in grassland vegetation.
High coverage and biomass are not the same as the strong adaptability of the ecosystem. Moderate
and slightly inelastic areas mainly dominate the ecosystem resilience of the study area. The new
method is easy to use. The evaluation result is reliable. It can quantitatively analyze the resilience
latitude and recovery rate, a beneficial improvement to the current ecosystem resilience evaluation.

Keywords: Latitude of resilience; recovery rate; resistance; primary productivity; vegetation coverage

1. Introduction

The response of ecosystems to environmental change can be complex, nonlinear,
and often unpredictable [1–3]. Ecosystem conservation and management must deal with
this great uncertainty to accurately assess the various adverse ecological effects caused
by environmental and human stressors. Under the pressure of environmental change,
to help ecosystem management, it is crucial to evaluate ecosystem resilience, which not
only helps to propose effective ecosystem restoration actions but also provides the basis for
sustainable ecosystem management under current and future climate change [3–6].

The term resilience is used in various contexts, from human health to psychology, soci-
ology, materials science and, of course, ecology and conservation biology [7–9]. In ecology,
resilience has been defined as the inherent ability of ecosystems to absorb disturbances
and reorganize, while undergoing state changes to maintain critical functions [10,11].
When ecosystem resilience is degraded or lost due to disturbances, ecosystems are ex-
posed to the risk of shifting from a desirable to an undesirable state. Although policy
makers and environmental managers increasingly use the term resilience, the core concept
of resilience still remains vague and difficult to quantify [12–14]. Based on the classical
concept of ecosystem stability, resilience is considered a component of ecosystem stability.
In this context, resilience is often defined as the time taken for an ecosystem to recover
to equilibrium after a disturbance [15,16]. Resilience and resistance are regarded as the
two components of ecosystem stability, and usually, there is a trade-off between them.
However, after deepening our understanding of resilience, the above views have been
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continuously revised. The original notion of resilience has gradually been replaced by a
broader concept of ecological resilience recognizing multiple stable states and the ability
of systems to resist regime shifts and maintain functionality potentially through internal
reorganization (adaptive capacity) [13,17]. Recently, definitions of ecosystem resilience
encompass aspects of both recovery and resistance, although different mechanisms can
underpin them, and in some cases, there might be trade-offs between them [12,18–20].
Furthermore, the latitude of resilience, the maximum amount of change that a system can
bear before losing its ability to recover (before crossing a threshold beyond which recovery
is difficult or impossible) [21], is also a crucial metric of ecosystem resilience. Ecosystem
resilience is a multidimensional concept; a single concept of resistance or recovery does not
reflect the whole ‘picture’ of ecosystem resilience. Although resilience can still be used as a
measure index of stability, it has advanced beyond the initial, simplistic, recovery time rate
notion to encompass multiple factors such as resistance, recovery, and latitude and so on.
Thus, resilience and resistance are no longer considered two independent components of
ecosystem stability, but resilience now encompasses resistance.

Within the continuous advances on the notion of resilience, quantification of resilience
has always been a core issue. In general, biodiversity can reflect the state (desirable or
undesirable) of ecosystems. Therefore, it has been one of the main ways to assess ecosystem
resilience based on diversity or functional diversity [20,22]. However, the unimodal model
that assumed species diversity reaching its maximum at intermediate disturbance levels is
far from universal and often not confirmed by observational, experimental, and theoretical
studies [22]. Researchers consider ecological thresholds (which can be divided into struc-
ture threshold and function threshold) better reflect ecosystem resilience [13,23]. Studies
have also introduced a flow-kick framework to assess ecosystem resilience [24]. However,
application of these methods was limited by their demand for large datasets spanning
multiple time periods. So, providing a feasible and straightforward method of evaluating
ecosystem resilience becomes more and more critical. In this respect, studies developed
two approaches to quantify resilience: (i) the use of ecosystem water-use efficiency (WUE)
to measure ecosystem resilience [25,26] and (ii) the use of the normalized difference vegeta-
tion index (NDVI) and climatic element anomalies [27]. Although these two methods are
effective, they are fundamentally focused on the resistance aspect of ecosystem resilience.
Other elements of resilience, such as recovery time rate and its latitude, have not been
taken into account.

The purpose of this study was to develop a feasible and straightforward approach/index
for assessing ecosystem resilience in arid areas of Central Asia based on net primary
productivity (NPP) data. This new index should comprehensively encompass a multi-
dimensional ecosystem resilience including the latitude of ecosystem resilience, recovery
time rate, and resistance/tolerance to disturbance. Application of this index could provide
an accurate decision-making basis for sustainable ecosystem management in arid areas.

2. Materials and Methods
2.1. Study Area

In this study, the ecosystem resilience of the Xinjiang region, located in the arid inland
region of Central Asia, was evaluated. The Xinjiang region covers about 1.6 million km2

and borders with Mongolia, Russia, Kazakhstan, Kyrgyzstan, Tajikistan, Afghanistan,
Pakistan, and India. The most well-known historical route, the Silk Road, ran through
the eastern territories towards its northwestern borders. The study area is bounded by
the Altai and the Kunlun (Karakorum) Mountains on the northern and southern borders,
respectively (Figure 1). The Tianshan Mountains are located in the middle of Xinjiang.
It divides Xinjiang into two major basins, the Junggar Basin and the Tarim Basin. According
to meteorological data from national meteorological stations of the study area, from 1960
to 2018, Xinjiang has a typical continental arid climate. Annual temperature varies from
10 ◦C to 13 ◦C, and annual precipitation varies from 20 mm to 100 mm in the southern
parts and from 100 mm to 500 mm in the northern parts of the study area. Land cover is
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predominantly desert, including sand (21.16%), the Gobi Desert (17.48%), and bare land
(18.83%). Forests, grasslands, and farming land account for 2.26%, 28.61%, and 4.72% of
the total study area, respectively.

Figure 1. Xinjiang region geographical location, topography, and land use: geographical location data from standard
map website (Review picture serial number: GS(2019)3266), The DEM data are from USGS, and the land use types are
abbreviated from the vegetation type map of China at a scale of 1:1,000,000.

2.2. Data

The MODIS land surface temperature (LST) data (MOD11A2 level data; from 2000
to 2018), normalized difference vegetation index (NDVI; MOD13A1; from 2000 to 2018),
and surface albedo data (MCD43B3; from 2000 to2018) were acquired from the National
Aeronautics and Space Administration website [28]. The temporal and spatial resolutions
of the LST and albedo data are 8 days and 1 × 1 km, respectively. The temporal and spatial
resolutions of the NDVI data are 16 days and 500 × 500 m, respectively. The MODIS data
were processed using the MODIS reprojection tool to generate a tagged image file format
in the WGS84 coordinate system. The study area’s digital elevation model (DEM) was
downloaded from the U.S. Geological Survey website [29]. In this study, the LST and
albedo data were reprocessed in ArcGIS v10.3 to a spatial resolution of 500 m.

A dataset containing daily mean, maximum, and minimum air temperatures, wind
speed, relative humidity, precipitation, mean atmospheric pressure, and sunshine duration
data from 68 national meteorological stations from 2000 to 2018 was used [30]. These data
were strictly quality-controlled by eliminating missing, erroneous, and suspicious data
and other data that had not been quality-controlled. There are 13 vegetation types in the
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study area as follows: alpine cushion vegetation (ACV), forest (F), shrub (Sh), meadow
(M), alpine meadow (AM), alpine steppe (AS), meadow steppe (MS), typical steppe (TS),
desert steppe (DS), alpine desert (AD), warm desert (WD), marshland (Mh), and artificial
vegetation (cultivated land; CL) [31].

2.3. Methods

We assumed that ecosystems aim to reach maximum biomass, and thus, ecosystem re-
silience can be regarded as the system’s inherent ability to maintain stability and maximize
its biomass. To develop a multi-dimensional ecosystem resilience index, we accounted for
three essential aspects of resilience: latitude of resilience, recovery time rate, and resistance.
Index development was based on net primary productivity (NPP), assessed using the
Carnegie-Ames-Stanford Approach (CASA) model [32,33]. The NPP data calculated in this
study have been verified to be reliable [34].

2.3.1. Latitude of Resilience

For a flexible system that is in a regime-stable state, latitude of resilience is the system’s
maximum deviation (deviation from the center or mean level). For ecosystems, this can be
expressed as follows in Equation (1):

LAT =
1
n∑ max

∣∣∣∣∣(NPPni − NPPn)
/

NPPn

∣∣∣∣∣ (1)

where n is the number of stages of regime-shift of annual NPP, which is determined using
Mann–Kendall tests on annual NPP time series, e.g., for a pixel, in the 2000–2018 period,
if there is a regime-shift (significant increase or decrease) in NPP, the annual NPP has
two regime-stable (insignificant increase or decrease) stages and thus n = 2; if there is no
regime-shift then n = 1. NPPni is the annual NPP during a regime-stable stage, while the
NPPn represents the multiyear mean NPP in the regime-stable stage.

2.3.2. Resistance

This study defined resistance based on sensitivity. The greater the coefficient of
sensitivity, the lower the ecosystem resistance to disturbance, within an inverse relationship
between sensitivity and resistance. The sensitivity coefficient was calculated as follows in
Equation (2):

εi =
∂ f
∂x

× xi
LUE

(2)

where, εi is the sensitivity coefficient of NPP to environmental factors (temperature and
precipitation) Xi, at the same time period; and f denotes the function between NPP and Xi.
The CASA model can estimate the NPP as follows in Equations (3) and (4):

NPP = APAR × LUE (3)

LUE = Tε1 × Tε2 × Wε × LUEmax (4)

where, APAR is the photosynthetically active radiation absorbed by vegetation; Tε1 and
Tε2 are temperature stress coefficients; Wε is the water stress coefficient (the ratio of evapo-
transpiration to potential evaporation); and LUEmax is the maximum light using efficiency.
Temperature is directly calculated in Equation (3), but precipitation is not calculated. Pre-
cipitation is indirectly determined using the water stress coefficient Wε and the influence
of evapotranspiration. Thus, we constructed the fitting formula between precipitation
(p)/temperature (T) and Wε using the CASA model Equation (5):

Wε = 0.004p − 0.0092T + 0.7073 (5)
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By substituting Equation (4) into (3), the final function between NPP and the climate
variables Xi can be obtained. Considering the inverse relationship between sensitivity and
resistance, the sensitivity coefficient was standardized to get the resistance index as follows
in Equation (6):

Ri =

(
εmax − εij

) /
(εmax − εmin)

(6)

Thus, the resistance coefficients Rt and Rp, which are the ecosystem’s resistance
coefficients to temperature and precipitation, respectively, were estimated.

2.3.3. Recovery Time Rate

Recovery rate is defined as the time required for an ecosystem to return to equilibrium
state after being disturbed. Larger recovery rates mean less time to recover after disturbance.
In our framework, recovery rate was calculated as follows in Equation (7):

C =
1
m∑m

i=1

∣∣(NPPm − NPP
)∣∣

tm
(7)

where, C is the average recovery time of the system to return from ‘deviation’ due to
disturbance, to the multi-year average; m is the number of data segments greater or less
than the multi-year average NPP; NPPm is the mean NPP of the data segments m; NPP is
the mean NPP of the total NPP time series data; and tm is the number of years covered
by the m data segments. To eliminate the influence of different units, the data were
standardized as follows in Equation (8):

Rec = (Ci − Cmin)
/

(Cmax − Cmin)
(8)

where, Ci is the average recovery time in pixel i, while Cmax and Cmin are the maximum
and minimum values of the average recovery time in the entire region. The recovery time
rate (Rec) index ranged from 0 to 1, with larger values denoting higher recovery time rates.

2.3.4. Comprehensive Resilience Index

Considering the multi aspects of resilience, this study proposed a comprehensive
ecosystem resilience index and is calculated as follows in Equation (9):

RSL =

(
LAT + Rec + Rp + Rt

) /
4 (9)

2.3.5. Grading of Resilience Indicators

Although we propose a simple multi-dimensional index of ecosystem resilience,
we often need to classify the quantitative indices into different ecosystem-management
or decision-support classes. Such levels are resilient, slightly nonresilient, moderately
nonresilient, and severely nonresilient. Because of the lack of a grading scheme, we referred
to existing research and used ArcGIS (V10.3) to develop a comprehensive resilience index
grading system based on the natural break method [26].

3. Results
3.1. Multidimensional Characters of Resilience

The multidimensional characteristics of resilience, including latitude of resilience
(LAT), recovery time rate (Rec), and resistance to temperature (Rt) and precipitation (Rp),
showed a significant correlation with each other (Figure 2). On the pixel scale (Figure 2a),
the LAT index was positively correlated with the Rec index, while it was negatively corre-
lated with the resistance index, that is, Rt and Rp. The Rec index was negatively correlated
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with the resistance index. As for the two resistance indices, there was a positive correlation
between Rt and Rp. The results show that for an ecosystem, more robust resistance to
disturbance is often also combined with lower latitude of resilience and recovery time rate.
Regarding vegetation types (Figure 2b), only the Rec index was significantly correlated with
Rt and Rp. Thus, a single index, such as the resistance index or LAT, Rt, and Rp. Thus, a sin-
gle index, such as the resistance index or LAT index, could not reflect the real status of
ecosystem resilience. Given this, this study suggests the use of the comprehensive resilience
indicator (RSL). The RSL index was significantly correlated with all four sub-indices on
the scale of pixel vegetation types. The assessment results of ecosystem resilience on the
vegetation types showed apparent variability (Figure 2c–f). Alpine cushion vegetation has
the highest latitude of resilience, but it also has the lowest recovery rate and resistance to
precipitation. As for the warm desert, although it has the highest resistance to precipitation
and a higher recovery rate, it also has a lower resistance to temperature. Obviously, there is
great uncertainty in using a single indicator to evaluate ecosystem resilience, mainly due
to the inconsistency of the evaluation perspective and the multi-dimensional nature of
ecosystem resilience.

Figure 2. The correlation between the index of different aspects of ecosystem resilience and their values on different
vegetation types: (a,b) are the correlation of each index on the scale of pixel and vegetation type, respectively. The symbol
‘**’ and ‘*’ in (a,b) indicates the extremely significant correlation and significant correlation, respectively. Panel (c–f) shows
the latitude of resilience (LAT), recovery rate (Rec), and the resistance of ecosystem to temperature (Rt) and precipitation (Rp)
on vegetation type scale. ACV stands for alpine cushion vegetation, F stands for forest, Sh stands for shrub, M stands for
meadow, AM stands for alpine meadow, AS stands for alpine steppe, MS stands for meadow steppe, TS stands for typical
steppe, DS stands for desert steppe, AD stands for alpine desert, WD stands for warm desert, Mh stands for marshland, and
CL stands for cultivated land.
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3.2. Comprehensive Resilience

Based on the variability of the four aspects of resilience, the comprehensive resilience
index (RSL) was adopted to represent the state of ecosystem resilience (Figure 3). The spatial
variability of the RSL index ranged from 0.24 to 1.02; ecosystem resilience of the oasis area
was the highest, with an average value of 0.58 followed by plain desert area (0.56) and
mountain area, which was the lowest, with an average value of 0.52. For the different
vegetation types, ecosystem resilience of artificial vegetation (crop land) had the highest
resilience, and the RSL index was 0.58. In contrast, forest had the lowest resilience (0.52).
Generally, warm desert, meadow, and shrubs have higher resilience, while alpine and
meadow steppes have lower resilience (Figure 3a,b).

Figure 3. The comprehensive ecosystem resilience (RSL) index in the study region. (a) RSL on the pixel scale, (b) average
RSL of different vegetation types, (c) the grading results of RSL, and (d) area percentage of different RSL classifications
for different vegetation types. In (b,d), ACV stands for alpine cushion vegetation, F stands for forest, Sh stands for shrub,
M stands for meadow, AM stands for alpine meadow, AS stands for alpine steppe, MS stands for meadow steppe, TS stands
for typical steppe, DS stands for desert steppe, AD stands for alpine desert, WD stands for warm desert, Mh stands for
marshland, and CL stands for cultivated land.

This study used the natural break method to categorize the comprehensive ecosystem
resilience into four classes: resilient (RSL ≥ 1.02), slightly nonresilient (0.64 ≤ RSL < 1.01),
moderately nonresilient (0.56 ≤ RSL < 0.64) and severely nonresilient (RSL < 0.56). The re-
sults showed that the study area was mainly dominated by moderately and slightly
nonresilient areas. In the oasis, plain desert, and mountain areas, the resilient area only
accounted for 4.93%, 4.24%, and 2.35% of their total areas. Simultaneously, the sum of the
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slightly and moderately nonresilient areas accounted for 93.11%, 85.80%, and 59.54% of
their total areas. Warm deserts and meadows have high resilience, and the elastic area only
accounted for 3.20% and 5.70% of the total area. Meanwhile, the sum of the slightly and
moderately nonresilient areas accounted for 85.18% and 72.58% of their total areas. For the
alpine and meadow steppes with the poor resilience, the severely resilient areas account
for 57.95% and 42.72% of their total areas, respectively. In general, the area percentage of
the nonresilient area (Figure 3d) of different vegetation types was negatively correlated
with the changing trend of comprehensive resilience of them (R2 = 0.56).

3.3. Coverage, NPP, and Resilience

Generally, vegetation with profitable growth and high coverage often means that the
ecosystem may have high diversity and ecosystem stability, but this does not mean high
ecosystem resilience. At least in arid areas, this view needs to be updated. This study
showed that the resilience index, except the Rec, all presented a significant correlation with
vegetation coverage. Among them, the LAT, Rp, and RSL index were negatively correlated
with vegetation coverage, and the correlation coefficients was −0.29, −0.54, and −0.50,
respectively, while the Rt index was positively correlated with coverage, and the correlation
coefficient was 0.20 (Figure 4a). Although the higher vegetation coverage can bring higher
biomass (correlation coefficient was 0.96), the higher biomass was not equivalent to the
high ecosystem resilience (Figure 4a,b). Similarly, the LAT, Rp, and RSL index were also
significantly negatively correlated with NPP, and the correlation coefficients were −0.38,
−0.49, and −0.61, respectively.

Figure 4. Correlation analysis between mean coverage, resilience index, and NPP on vegetation type scales. (a) Is the
correlation between mean resilience index, NPP, and vegetation coverage of different vegetation types. (b) Is the correlation
between mean NPP and resilience index of different vegetation types. ‘**’ indicates the extremely significant correlation
between them.

4. Discussion
4.1. The Improvement and Reliability of the Method

Ecosystem resilience is an important characteristic of ecosystems that reflects their
health. Thus, accurate assessment of ecosystem resilience is vital for sustainable ecosys-
tem management [35,36]. Currently, there are three simple, effective methods to assess
ecosystem resilience at large scales based on: (1) ecosystem water-use efficiency (WUE) [26];
(2) vegetation and climate anomalies (VCA) [27]; and (3) methods based on regime shift of
NDVI time-series data.

Although the new index we proposed has advantages, the accuracy-reliability of the
index needs to be further verified. In this study, the original method’s results were com-
pared with those calculated based on the on the WUE (Appendix A) and VCA (Appendix B)
methods, respectively. In WUE-based calculations, the ratio of WUE in the driest year to the
mean WUE of the entire period was defined as the Rd coefficient, denoting the ecosystem’s
resistance to drought, and the more extensive Rd indicating higher resilience [26]. In the
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VCA method, three key coefficients of the model, namely α, β, and φ, can be calculated.
Coefficient α reflects the resilience of the ecosystem, with larger values indicating a low
resilience. At the same time, β and φ represent the drought-resistance and temperature-
resistance metrics, respectively. Larger β and φ values indicate low resistance [27].

The comparison results showed that the RSL index was negatively correlated with
coefficient α, while the Rt and Rw indexes were also negatively correlated with coefficients
φ and β, respectively (Figure 5). Additionally, coefficient Rd was negatively correlated with
coefficient β, while it was positively correlated with Rw. The above comparative analysis
showed that although there are differences in the index values calculated by the method
proposed in this study and existing methods, all indices had consistent trends. The results
suggest that this method-index can replace current methods in most cases, and it is also a
useful supplement and improvement of the existing ecosystem resilience assessments.

Figure 5. Scatter plot between the resilience index of the new method that proposed by this study and that of the existing
methods. (d) The coefficient of Rd is the resilience index that calculated by the method which based on the ecosystem water
use efficiency. (a–c) Coefficient α, β, and ϕ was the resilience and resistance index that calculated by the method which
based on the annual NDVI and climatic factors (including temperature and drought index) anomalies. (a) The coefficient α

represents system returns to equilibrium, with large values indicates a low resilience. (b,c) While the coefficients β and ϕ

represents the drought-resistance and temperature-resistance metrics, respectively. And the large values of coefficient β and
ϕ indicate a low resistance to droughts/temperature anomalies.

4.2. Resistance, Resilience, and the Stability

In ecosystem resilience assessments, the resistance index is often regarded as a critical
variable reflecting resilience [10,13]. Studies evaluate the resilience of ecosystems, mainly
by employing the resistance index [21,26]. Our study confirmed that ecosystem resistance
was positively correlated with the RSL index, and the contribution rate of Rt and Rw to RSL
was 35.74% and 36.13%, respectively, which was more than 2 and 3 times that of the LAT
and Rec indices.

We also found that high coverage does not always reflect high ecosystem resilience.
In this study, resilience had a decreasing trend with the increase of vegetation coverage
(Figure 4). The reason may be that ecosystems with low vegetation coverage, such as warm
deserts, tend to have more significant biomass fluctuations. Hence, the LAT index is broader,
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and the recovery rate is faster (Figure 2c,d). Simultaneously, low vegetation coverage also
has higher resistance, and the resistance almost dominates the overall resilience calculations.
Thus, low vegetation coverage leads to high resistance probably because the vegetation
system is always fluctuating due to environmental disturbance, being like an elastomeric.
On the contrary, bare land is like a rigid body, which has little response to environmental
change. Therefore, ecosystems with low vegetation coverage, i.e., large bare lands, usually
have low sensitivity to environmental change and thus higher resistance.

But does low resilience also mean low stability? Here we need to distinguish between
two very confusing concepts: ecosystem stability and resilience. Initially, ecosystem
resilience is focused on ecosystem recovery time rate after disturbances (recovery or
engineering resilience) [16]. The stability of an ecosystem includes resilience and resistance,
usually in inverse proportion. Our study confirmed that the LAT and Rec indices were
significantly negatively correlated with the Rt and Rp indices (Figure 2a,b). Then, after
deepening our understanding of resilience, the concept of ecosystem resilience was further
expanded. Recently, ecosystem resilience encompasses aspects of both recovery and
resistance [12,18–20]. Furthermore, the latitude of resilience is also an essential metric of
ecosystem resilience [37]. Therefore, ecosystem resilience is a crucial aspect of ecosystem
stability but it cannot fully represent its stability. In some cases, ecosystem resilience cannot
effectively reflect fluctuations of ecosystem stability caused by diversity variability [21].
The results of this study suggest that in the arid desert area, desert vegetation has a home-
field advantage, and thus it is not surprising that it has strong resilience. On the contrary,
as nonzonal vegetation, the mountain forest is mainly composed of single spruce species
and has lower diversity than the zonal forest area. Thus, it has lower resilience.

4.3. Ecosystem Resilience and Ecosystem Management

Our study area is the driest region in China, where the observed rise rate of temper-
ature reached 0.32–0.35 ◦C/10a [38,39]. With increased temperature, precipitation also
indicates a significant increasing trend in the study area [40]. Obviously, climate change
has profound impacts on the water cycle and ecosystem stability of arid regions [41–45].
Under the impacts of climate change and anthropogenic activities, the stability of arid
ecosystems is greatly affected. Thus, we propose that targeted management measures
should be applied based on ecosystem resilience. Ecological restoration in ecosystems of
low resilience or severe damage may be of first priority to maintain ecosystem stability.
Although resilience is almost uniformly used in the ecosystem-management literature to
refer to the ability of ecosystems to resist transition to alternative states or recover without
intervention, resilience, in reality, is a positive or a negative property of ecosystems depend-
ing on their state of degradation [13]. Thus, distinguishing between helpful and unhelpful
resilience is an essential step in ecosystem management. In this study, warm deserts, mead-
ows, and shrubs have high resilience (Figure 3), which can help them maintain stability;
thus we do not need to carry out additional human interventions for these ecosystems if
catastrophic disturbance is not present. In contrast, for forests, the RSL index is low. Among
them, the proportion of slightly nonresilient and resilient areas is small, and the average
value is also small. Once the forest is undergoing a retrograde succession into shrubs or
grassland (their resilience is higher than forest), we need to overcome the useless resilience.
The cost of ecological restoration is much higher than the original cost of maintaining
the ecological environment. We should pay attention to human intervention to prevent
ecosystem degradation. Similarly, we should also focus management on alpine steppes,
typical steppes, and desert steppes, and if necessary, apply timely artificial interventions to
prevent the reverse succession of them.

5. Conclusions

This study proposed a comprehensive resilience assessment index encompassing four
aspects of ecosystem resilience: latitude of ecosystem resilience, recovery time rate after
disturbance, and resistance to temperature and precipitation based on the CASA model and
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NPP data. The index was applied to evaluate the resilience of typical arid ecosystems in
Central Asia, and the results were consistent with existing results, indicating that the results
of this new method are reliable. As a step forward, this method considered representative
indices of three dimensions of ecosystem resilience, effectively avoiding the uncertainty
of previous results that were based on single or limited dimension indices. There was no
consistent positive correlation among indices, which suggests that the use of a single index
to evaluate resilience would result in great uncertainty. Thus, applying a comprehensive
resilience index is a more accurate approach to such problems. Ecosystem resilience of
the study area was generally low, dominated by slightly and moderately nonresilient
areas. High vegetation coverage and biomass do not always bring high resilience. Overall,
this method is based on the CASA model and has a specific physical basis rather than a
single statistical analysis. Simultaneously, it is easy to apply and can be used to evaluate
and compare the resilience from pixel to vegetation type or watershed (region) scales.
In general, this method/index is a useful supplement and improvement for ecosystem
resilience assessments research.
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Appendix A. Resilience Index Based on the WUE

The resilience index of the method-based WUE is defined as Rd, which is the ratio of
WUE in the driest year to the mean WUE of the entire period, and the greater Rd, the greater
resilience in Equation (A1):

Rd =
WUEd

/
WUE (A1)

In this study, we used WUE defined as the ratio of NPP to ET. The NPP was estimated
by Carnegie Ames Stanford Approach (CASA) [33,34,46,47]. The surface energy balance
algorithms estimated the ET for land (SEBAL) model [34,48]. The drought index used in
the study is represented by the ratio of annual precipitation to potential evapotranspiration
expressed by Kpe. The smaller the index of Kpe is, the drier it will be in Equation (A2):

Kpe = P/PET (A2)

where P is annual precipitation and PET is annual potential evaporation. We used the
Anusplin software (V4.3) to develop a gridded annual precipitation for the study area at
a resolution of 500 m based on the data of 68 national meteorological stations. The grid-
ded potential evapotranspiration was estimated by a parsimonious regional parametric
evapotranspiration model based on a simplification of the Penman–Monteith formula [49].

http://modis.gsfc.nasa.gov/
http://tahoe.usgs.gov/DEM.html
http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html
http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html
http://www.resdc.cn
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Appendix B. Resilience Index Based on the NDVI Anomaly

The vegetation response to short-term climate anomalies was modeled by considering
the NDVI anomaly as a linear combination of the temperature anomaly, drought index
(Kpe), and NDVI anomaly history in Equation (A3):

NDVIt = αNDVIt−1 + βKpet + φTt + εt (A3)

where NDVI is the standardized NDVI anomaly at time t, Kpet is the standardized Kpe
index at time t, It is the standardized temperature anomaly, and εt is the residual term at
time t, and α, β, and φ are the model’s coefficients. Standardization of the time-series was
performed to assure comparability between the model coefficients.

The absolute values of coefficient α (coefficient of NDVI anomaly history) between
zero and one represent systems returning to equilibrium, with large absolute values in-
dicating a low resilience, i.e., a slow return to equilibrium. While the β and φ (coeffi-
cients of temperature and drought index anomaly) represent the drought-resistance and
temperature-resistance metrics, respectively. The large absolute values of coefficient β and
φ indicate a low resistance to droughts/temperature anomalies, i.e., a large vegetation
response to short term droughts/temperature anomalies.

References
1. Craine, J.M.; Ocheltree, T.W.; Nippert, J.B.; Towne, E.G.; Skibbe, A.M.; Kembel, S.W.; Fargione, J.E. Global diversity of drought

tolerance and grassland climate-change resilience. Nat. Clim. Chang. 2012, 3, 63–67. [CrossRef]
2. Marx, A.; Erhard, M.; Thober, S.; Kumar, R.; Shafer, D.; Samaniego, L.; Zink, M. Climate Change as Driver for Ecosystem Services Risk

and Opportunities, in Atlas of Ecosystem Services: Drivers, Risks, and Societal Responses; Springer: Berlin/Heidelberg, Germany, 2019;
pp. 173–178.

3. Schirpke, U.; Kohler, M.; Leitinger, G.; Fontana, V.; Tasser, E.; Tappeiner, U. Future impacts of changing land-use and climate on
ecosystem services of mountain grassland and their resil-ience. Ecosyst. Serv. 2017, 26, 79–94. [CrossRef]

4. Holl, K.; Aide, T. When and where to actively restore ecosystems? For. Ecol. Manag. 2011, 261, 1558–1563. [CrossRef]
5. Moritz, C.; Agudo, R. The Future of Species under Climate Change: Resilience or Decline? Science 2013, 341, 504–508. [CrossRef]

[PubMed]
6. Valdecantos, A.; Baeza, M.J.; Vallejo, V.R. Vegetation Management for Promoting Ecosystem Resilience in Fire-Prone Med-

iterranean Shrublands. Restor. Ecol. 2008, 17, 414–421. [CrossRef]
7. Johnson, R.M.; Edwards, E.; Gardner, J.S.; Diduck, A.P. Community vulnerability and resilience in disaster risk reduction:

An example from Phojal Nalla, Himachal Pradesh, India. Reg. Environ. Chang. 2018, 18, 2073–2087. [CrossRef]
8. Peng, M.; Wen, Z.; Xie, L.; Cheng, J.; Jia, Z.; Shi, D.; Zeng, H.; Zhao, B.; Liang, Z.; Li, T.; et al. 3D Printing of Ultralight Biomimetic

Hierarchical Graphene Materials with Exceptional Stiffness and Resilience. Adv. Mater. 2019, 31, e1902930. [CrossRef]
9. Stork, N.; Coddington, J.A.; Colwell, R.K.; Chazdon, R.L.; Dick, C.W.; Peres, C.A.; Sloan, S.; Willis, K. Vulnerability and Resilience

of Tropical Forest Species to Land-Use Change. Conserv. Biol. 2009, 23, 1438–1447. [CrossRef]
10. Connell, S.D.; Ghedini, G. Resisting regime-shifts: The stabilising effect of compensatory processes. Trends Ecol. Evol. 2015, 30,

513–515. [CrossRef]
11. Holling, C.S. Resilience and Stability of Ecological Systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [CrossRef]
12. Hodgson, D.; McDonald, J.L.; Hosken, D.J. What do you mean, ‘resilient’? Trends Ecol. Evol. 2015, 503–506. [CrossRef] [PubMed]
13. Standish, R.J.; Hobbs, R.J.; Mayfield, M.M.; Bestelmeyer, B.T.; Suding, K.N.; Battaglia, L.L.; Eviner, V.T.; Hawkes, C.V.; Temperton,

V.M.; Cramer, V.A.; et al. Resilience in ecology: Abstraction, distraction, or where the action is? Biol. Conserv. 2014, 177, 43–51.
[CrossRef]

14. Yeung, A.C.; Richardson, J.S. Some Conceptual and Operational Considerations when Measuring ‘Resilience’: A Response to
Hodgson et al. Trends Ecol. Evol. 2016, 31, 2–3. [CrossRef] [PubMed]

15. Vogel, A.; Scherer-Lorenzen, M.; Weigelt, A. Grassland Resistance and Resilience after Drought Depends on Management
Intensity and Species Richness. PLoS ONE 2012, 7, e36992. [CrossRef]

16. Pimm, S.L. The complexity and stability of ecosystems. Nat. Cell Biol. 1984, 307, 321–326. [CrossRef]
17. Sasaki, T.; Furukawa, T.; Iwasaki, Y.; Seto, M.; Mori, A.S. Perspectives for ecosystem management based on ecosystem resilience

and ecological thresholds against multiple and stochastic disturbances. Ecol. Indic. 2015, 57, 395–408. [CrossRef]
18. Côté, I.M.; Darling, E.S. Rethinking Ecosystem Resilience in the Face of Climate Change. PLoS Biol. 2010, 8, e1000438. [CrossRef]
19. McClanahan, T.R.; Donner, S.D.; Maynard, J.A.; MacNeil, M.A.; Graham, N.A.; Maina, J.; Baker, A.C.; Beger, A.C.; Beger, M.;

Campbell, S.J.; et al. Prioritizing Key Resilience Indicators to Support Coral Reef Management in a Changing Climate. PLoS ONE
2012, 7, e42884. [CrossRef]

20. Oliver, T.H.; Heard, M.S.; Isaac, N.J.; Roy, D.B.; Procter, D.A.; Eigenbrod, F.; Freckleton, R.P.; Hector, A.; Orme, C.D.L.; Petchey,
O.L.; et al. Biodiversity and Resilience of Ecosystem Functions. Trends Ecol. Evol. 2015, 30, 673–684. [CrossRef]

http://doi.org/10.1038/nclimate1634
http://doi.org/10.1016/j.ecoser.2017.06.008
http://doi.org/10.1016/j.foreco.2010.07.004
http://doi.org/10.1126/science.1237190
http://www.ncbi.nlm.nih.gov/pubmed/23908228
http://doi.org/10.1111/j.1526-100X.2008.00401.x
http://doi.org/10.1007/s10113-018-1326-6
http://doi.org/10.1002/adma.201902930
http://doi.org/10.1111/j.1523-1739.2009.01335.x
http://doi.org/10.1016/j.tree.2015.06.014
http://doi.org/10.1146/annurev.es.04.110173.000245
http://doi.org/10.1016/j.tree.2015.06.010
http://www.ncbi.nlm.nih.gov/pubmed/26159084
http://doi.org/10.1016/j.biocon.2014.06.008
http://doi.org/10.1016/j.tree.2015.10.005
http://www.ncbi.nlm.nih.gov/pubmed/26607002
http://doi.org/10.1371/journal.pone.0036992
http://doi.org/10.1038/307321a0
http://doi.org/10.1016/j.ecolind.2015.05.019
http://doi.org/10.1371/journal.pbio.1000438
http://doi.org/10.1371/journal.pone.0042884
http://doi.org/10.1016/j.tree.2015.08.009


Water 2021, 13, 124 13 of 13

21. Walker, B.; Holling, C.S.; Carpenter, S.R.; Kinzig, A.P. Resilience, Adaptability and Transformability in Social-ecological Systems.
Ecol. Soc. 2004, 9, 3438–3447. [CrossRef]

22. Mouillot, D.; Graham, N.A.J.; Villéger, S.; Mason, N.W.H.; Bellwood, D.R. A functional approach reveals community responses to
disturbances. Trends Ecol. Evol. 2013, 28, 167–177. [CrossRef] [PubMed]

23. Briske, D.D.; Fuhlendorf, S.D.; Smeins, F.E. State-and-Transition Models, Thresholds, and Rangeland Health: A Synthesis of
Ecological Concepts and Perspectives. Rangel. Ecol. Manag. 2005, 58, 1–10. [CrossRef]

24. Meyer, K.; Hoyer-Leitzel, A.; Iams, S.; Klasky, I.; Lee, V.; Ligtenberg, S.; Bussmann, E.; Zeeman, M.L. Quantifying resilience to
recurrent ecosystem disturbances using flow–kick dynamics. Nat. Sustain. 2018, 1, 671–678. [CrossRef]

25. Campos, G.E.; Moran, S.M.; Huete, A.; Zhang, Y.; Bresloff, S.; Huxman, T.E.; Eamus, E.; Bosch, D.D.; Buda, A.R.; Gunter, S.A.; et al.
Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature 2013, 494, 349–352. [CrossRef] [PubMed]

26. Sharma, A.; Goyal, M.K. Assessment of ecosystem resilience to hydroclimatic disturbances in India. Glob. Chang. Biol. 2018, 24,
e432–e441. [CrossRef]

27. De Keersmaecker, W.; Lhermitte, S.; Tits, L.; Honnay, O.; Somers, B.; Coppin, P. A model quantifying global vegetation resistance
and resilience to short-term climate anomalies and their relationship with vegetation cover. Glob. Ecol. Biogeogr. 2015, 24, 539–548.
[CrossRef]

28. MODIS. Available online: http://modis.gsfc.nasa.gov/ (accessed on 1 November 2019).
29. USGS. Available online: http://tahoe.usgs.gov/DEM.html (accessed on 1 November 2019).
30. CMDC. Available online: http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html (accessed on

1 November 2019).
31. REDCP, CAS. Available online: http://www.resdc.cn (accessed on 1 November 2019).
32. Sannigrahi, S. Modeling terrestrial ecosystem productivity of an estuarine ecosystem in the Sundarban Biosphere Region, India

using seven ecosystem models. Ecol. Model. 2017, 356, 73–90. [CrossRef]
33. Piao, S.; Fang, J.; Zhou, L.; Zhu, B.; Tan, K.; Tao, S. Changes in vegetation net primary productivity from 1982 to 1999 in China.

Glob. Biogeochem. Cycles 2005, 19. [CrossRef]
34. Hao, X.; Ma, H.; Hua, D.; Qin, J.; Zhang, Y. Response of ecosystem water use efficiency to climate change in the Tianshan

Mountains, Central Asia. Environ. Monit. Assess. 2019, 191, 561. [CrossRef]
35. Saroar, M.; Rahman, M. Ecosystem-Based Adaptation: Opportunities and Challenges in Coastal Bangladesh: Policy Strategies for

Adaptation and Resilience. In The Anthropocene: Politik Economics Society Science; Springer: Cham, Switzerland, 2019; Volume 28.
[CrossRef]

36. Lam, V.Y.Y.; Doropoulos, C.; Mumby, P.J. The influence of resilience-based management on coral reef monitoring: A systematic
review. PLoS ONE 2017, 12, e0172064. [CrossRef]

37. Fatemeh, H.; Reza, J.; Hossein, B.; Mostafa, T.; Kenneth, C.D. Estimation of spatial and temporal changes in net primary
production based on Carnegie Ames Stanford Ap-proach(CASA) model in semi-arid rangelands of Semirom County, Iran. J. Arid
Land 2019, 477–494.

38. Jiang, Y.A.; Chen, Y.; Zhao, Y.Z.; Chen, P.X.; Yu, X.J.; Fan, J.; Bai, S.Q. Analysis on Changes of Basic Climatic Elements and Extreme
Events in Xinjiang, China during 1961–2010. Adv. Clim. Chang. Res. 2013, 4, 20–29. [CrossRef]

39. Xu, C.; Li, J.; Zhao, J.; Gao, S.; Chen, Y. Climate variations in northern Xinjiang of China over the past 50 years under global
warming. Quat. Int. 2015, 358, 83–92. [CrossRef]

40. Wang, H.; Chen, Y.; Chen, Z. Spatial distribution and temporal trends of mean precipitation and extremes in the arid region,
northwest of China, during 1960–2010. Hydrol. Process. 2012, 27, 1807–1818. [CrossRef]

41. Kundzewicz, Z.W. Climate change impacts on the hydrological cycle. Ecohydrol. Hydrobiol. 2008, 8, 195–203. [CrossRef]
42. Sun, S.; Sun, G.; Cohen, E.; McNulty, S.G.; Caldwell, P.V.; Duan, K.; Zhang, Y. Projecting water yield and ecosystem productivity

across the United States by linking an ecohydrological model to WRF dynamically downscaled climate data. Hydrol. Earth
Syst. Sci. 2016, 20, 935–952. [CrossRef]

43. Sorg, A.; Bolch, T.; Stoffel, M.; Solomina, O.; Beniston, M. Climate change impacts on glaciers and runoff in Tien Shan (Central
Asia). Nat. Clim. Chang. 2012, 2, 725–731. [CrossRef]

44. Etemadi, H.; Samadi, S.; Sharifikia, M.; Smoak, J.M. Assessment of climate change downscaling and non-stationarity on the
spatial pattern of a mangrove ecosystem in an arid coastal region of southern Iran. Theor. Appl. Clim. 2016, 126, 35–49. [CrossRef]

45. Li, W.; Li, X.; Zhao, Y.; Zheng, S.; Bai, Y. Ecosystem structure, functioning and stability under climate change and grazing in
grasslands: Current status and future prospects. Curr. Opin. Environ. Sustain. 2018, 33, 124–135. [CrossRef]

46. Crabtree, R.; Potter, C.; Mullen, R.; Sheldon, J.; Huang, S.; Harmsen, J.; Rodman, A.; Jean, C. A modeling and spatio-temporal
analysis framework for monitoring environmental change using NPP as an ecosystem indicator. Remote Sens. Environ. 2009, 113,
1486–1496. [CrossRef]

47. Yang, H.; Mu, S.; Li, J. Effects of ecological restoration projects on land use and land cover change and its influences on territorial
NPP in Xinjiang, China. Catena 2014, 115, 85–95. [CrossRef]

48. Allen, R.G.; Irmak, A.; Trezza, R.; Hendrickx, J.M.H.; Bastiaanssen, W.G.M.; Kjaersgaard, J. Satellite-based ET estimation in
agriculture using SEBAL and METRIC. Hydrol. Process. 2011, 25, 4011–4027. [CrossRef]

49. Tegos, A.; Malamos, N.; Koutsoyiannis, D. A parsimonious regional parametric evapotranspiration model based on a sim-
plification of the Penman–Monteith formula. J. Hydrol. 2015, 524, 708–717. [CrossRef]

http://doi.org/10.5751/ES-00650-090205
http://doi.org/10.1016/j.tree.2012.10.004
http://www.ncbi.nlm.nih.gov/pubmed/23141923
http://doi.org/10.2111/1551-5028(2005)58&lt;1:SMTARH&gt;2.0.CO;2
http://doi.org/10.1038/s41893-018-0168-z
http://doi.org/10.1038/nature11836
http://www.ncbi.nlm.nih.gov/pubmed/23334410
http://doi.org/10.1111/gcb.13874
http://doi.org/10.1111/geb.12279
http://modis.gsfc.nasa.gov/
http://tahoe.usgs.gov/DEM.html
http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html
http://www.resdc.cn
http://doi.org/10.1016/j.ecolmodel.2017.03.003
http://doi.org/10.1029/2004GB002274
http://doi.org/10.1007/s10661-019-7673-z
http://doi.org/10.1007/978-3-030-05237-9_5
http://doi.org/10.1371/journal.pone.0172064
http://doi.org/10.3724/SP.J.1248.2013.00020
http://doi.org/10.1016/j.quaint.2014.10.025
http://doi.org/10.1002/hyp.9339
http://doi.org/10.2478/v10104-009-0015-y
http://doi.org/10.5194/hess-20-935-2016
http://doi.org/10.1038/nclimate1592
http://doi.org/10.1007/s00704-015-1552-5
http://doi.org/10.1016/j.cosust.2018.05.008
http://doi.org/10.1016/j.rse.2008.12.014
http://doi.org/10.1016/j.catena.2013.11.020
http://doi.org/10.1002/hyp.8408
http://doi.org/10.1016/j.jhydrol.2015.03.024

	Introduction 
	Materials and Methods 
	Study Area 
	Data 
	Methods 
	Latitude of Resilience 
	Resistance 
	Recovery Time Rate 
	Comprehensive Resilience Index 
	Grading of Resilience Indicators 


	Results 
	Multidimensional Characters of Resilience 
	Comprehensive Resilience 
	Coverage, NPP, and Resilience 

	Discussion 
	The Improvement and Reliability of the Method 
	Resistance, Resilience, and the Stability 
	Ecosystem Resilience and Ecosystem Management 

	Conclusions 
	Resilience Index Based on the WUE 
	Resilience Index Based on the NDVI Anomaly 
	References

