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Abstract: When utilizing a finite volume method to predict outburst flood evolution in real geometry,
the processing of wet-dry front and dry cells is an important step. In this paper, we propose a
new approach to process wet-dry front and dry cells, including four steps: (1) estimating intercell
properties; (2) modifying interface elevation; (3) calculating dry cell elevations by averaging intercell
elevations; and (4) changing the value of the first term of slope limiter based on geometry in dry cells.
The Harten, Lax, and van Leer with the contact wave restored (HLLC) scheme was implemented to
calculate the flux. By combining the MUSCL (Monotone Upstream–centred Scheme for Conservation
Laws)-Hancock method with the minmod slope limiter, we achieved second-order accuracy in
space and time. This approach is able to keep the conservation property (C-property) and the mass
conservation of complex bed geometry. The results of numerical tests in this study are consistent
with experimental data, which verifies the effectiveness of the new approach. This method could
be applied to acquire wetting and drying processes during flood evolution on structured meshes.
Furthermore, a new settlement introduces few modification steps, so it could be easily applied to
matrix calculations. The new method proposed in this study can facilitate the simulation of flood
routing in real terrain.

Keywords: shallow water equations; wet-dry front; outburst flood; TVD-scheme; MUSCL-Hancock
method

1. Introduction

Glacier avalanche [1,2], debris flow [3–5], and landslide [6–8] in mountain areas
could trigger the occurrence of river blocking [9–12]. Some of this blocking produces
large-scale lakes, which leads to back flooding upstream and may inundate roads and
villages. Most dammed lakes breach in a short time after their formation, causing massive
water to be released catastrophically [9,13]. Yigong Lake was blocked by catastrophic
landslides in 1902 and 2000 [14] and formed outburst floods with peak discharges of
around 18.9 × 104 m3/s [15] and 12.4 × 104 m3/s [8], respectively; the Yarlung Tsangpo
gorge was blocked twice in 2018, with a peak discharge of 3.2 × 104 m3/s in the second
outburst flood [3,4].
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This kind of dynamic process can impose catastrophic damage to downstream people
and infrastructure [16]. Outburst floods may also have significant geomorphic and geologic
impacts; they have substantial erosive and transport capacity that can rapidly transform
river channels and bedforms [17–19], and may even lead to climate change [20] and a
global sea level decrease [21]. Outburst floods and their impacts even appear in the myths
and stories of many civilizations, such as the Bible and the Koran [22].

Back analysis of outburst flood is an impressive method to determine risk, which has
been used to reconstruct large-scale geomorphological dynamic processes that occurred
ten thousand years ago. In general, the submerge area and related velocity determine the
risk of outburst floods, and a shallow water dynamic model is a widely used and reliable
method to predict it [23–26].

Shallow water equations are popular in long-wave hydrodynamic simulation [27] and
are an effective way to analyze outburst flood routing. The Godunov-type finite volume
method is an effective and convenient method to calculate flood evolution in complex
geometry and is widely used in structured cells and unstructured cells [27]. There are
two popular forms for shallow water equations: (1) not consider gravity source term in
advection terms [28] and (2) consider the geometry in advection terms [29,30].

A TVD (total variation diminishing) scheme is used to limit numerical oscillations near
discontinuity [31–33]. Slope limiters such as the minmod limiter, double limiter, and van-
Leer limiter are popularly used to keep the solving scheme that has a TVD property [33].
By using a slope limiter, a monotone upstream-centered scheme for conservation laws
(MUSCL) reconstruction in the cell center provides second-order accuracy in space [34,35].
The MUSCL method is one of the most successful high-resolution schemes for hyperbolic
conservation laws and is applied widely [24,29,33].

Wet-dry front treatment is a key problem when applying shallow water equations
to real geometry. Sharp slope geometry especially can over-predict flux and generate
negative flow depth [27,29]. Specific treatments during calculation have been applied to
limit flux and the gravity source term or to modify geometry [27,29,36], thus or avoiding
extremely high flux in intercells and velocity in the cell center. In the process of variable
modifications, the limiter’s value of the dry cell would equal zero after modifying the local
geometry [27,29,36,37].

Many traditional treatments to the wet-dry front change the elevation of the dry cell
equal to the wet cell’s free surface elevation as shown in Figure 1a [27,29]. If the dry cell is
surrounded by four wet cells with different free surface elevations, four elevation modifi-
cations are necessary to achieve a balanced flux in the surrounded four cells (Figure 1b,c),
and it is very hard to achieve a matrix calculation during simulation as well. A matrix
calculation and less cell modification save time because matrix operators are faster than cell
loops [38]. In order to apply shallow water equations to a river with a complex geometry
and avoid more elevation modifications, we propose processing dry cells by adopting
the first term of the slope limiter function in dry cells to solve the wet-dry front problem
and accomplish matrix simulation in the whole calculation area. This method can avoid
modifications in the dry cell’s elevation and achieve a matrix calculation. This method
was tested with many cases and is applicable to a complex geometry for outburst flood
analysis.
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Figure 1. The traditional elevation modification of wet-dry front. (a) Modify elevation to the same as wet cell; (b,c) Two
times elevation modification of one dry cell.

2. Governing Equations and Schemes
2.1. Governing Equations

Two-dimensional shallow water equations are integral forms of Reynolds-averaged
Navier–Stokes equations. This equation presumptively neglects vertical momentum ex-
change and sets the pressure distribution as hydrostatic [39]:

U,t + F,x + G,y = S, (1)

where t represents time direction, x and y are two Cartesian coordinates, U is a variable
with vector form, F and G are fluxes vectors at two directions, and S is a vector represents
source term. The equation is a conserved equation. For general use, the conserved equation
is written as:

η

hu

hv


,t

+


hu

hu2 + g(η2 − 2ηZ)/2

huv


,x

+


hu

huv

hv2 + g(η2 − 2ηZ)/2


,y

=


0

−τbx/ρ− gηZ,x

−τby/ρ− gηZ,y

, (2)

τbx = ρgn2u
√

u2 + v2h−1/3, (3)

τby = ρgn2v
√

u2 + v2h−1/3, (4)

where η = Z + h is the elevation of the flood free surface, where the specific treatment to
initial shallow water equations adds geometry information to the advections [29], Z is the
elevation of the river bed, h is the flow depth, u is the flow velocity in the x direction, v is
the flow velocity in the y direction, τbx and τby are the bottom shear stress in the x and y
directions, g is gravity acceleration, and n is the Manning coefficient.

2.2. Finite Volume Method

The finite volume method has been used in many areas to solve partial equations [40].
The method is implemented by integrating partial equations over the space area for an
arbitrary grid. In this study, shallow water equations are hyperbolic equations, which can
be integrated as follows:

∂

∂t

∫
ε

UdΩ +
∫
ε

(
∂F
∂x

+
∂G
∂y

)dΩ =
∫
ε

SdΩ. (5)
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By using Green’s formula, Equation (6) can be described as:

∂

∂t

∫
ε

UdΩ +
∫
L

(F + G)dL =
∫
ε

SdΩ, (6)

where L is the mesh boundary of the integral line, and ε is the integral area, which is a
rectangular grid here. By using the integral form equation at mesh (i, j), the second term
becomes: ∫

L

FidL +
∫
L

GjdL = (Fi+1/2 − Fi−1/2)∆y + (Gj+1/2 − Gj−1/2)∆x, (7)

Un+1
i,j = Un

i,j −
∆t
∆x

(
Fi+1/2,j − Fi−1/2,j

)
− ∆t

∆y

(
Gi,j+1/2 − Gi,j−1/2

)
+ ∆tSi, (8)

where n is the time, and i + 1/2 and j + 1/2 are the predicted flux at the interface, predicted
by two Riemann states.

2.3. HLLC Riemann Solver for Fluxes Prediction

In order to solve the Riemann problem approximately, Harten Lax and van Leer
proposed the famous HLL Riemann solver in 1983, which is widely used by researchers
to solve shallow water equations today. The scheme requires estimations for the fastest
signal velocities from the discontinuity at the interface, resulting in a two-wave model
including shock waves, rarefaction waves, and discontinuity. Toro modified the scheme to
a three-wave model [33], and the solver was suited to calculate cases involving a wet-dry
front, so the HLLC (Harten, Lax and van Leer) approximate Riemann solver by Toro is
used in this paper.

2.4. Slope Limiter

The face value of variables required for the MUSCL-Hancock reconstruction step and
for the time updating step is:

Ui+1/2 = Ui + r∇Ui, (9)

where r is the distance vector, and ∇Ui is the gradient vector of variable in space. In order
to avoid numerical oscillations, we adopt a single slope limiter in this study. The formula
becomes:

Ui+1/2 = Ui + ϕ(r)r∇Ui, (10)

where ϕ(r) is a limiter function. We adopted the Minmod limiter in case tests. Special
gradients of variables were predicted by:

ri,j =


ηi+Fn,j+Gn−ηi,j
ηi,j−ηi−Fn,j−Gn

hui+Fn,j+Gn−hui,j
hui,j−hui−Fn,j−Gn
hvi+Fn,j+Gn−hvi,j
hvi,j−hvi−Fn,j−Gn

, (11)

where ri,j is slope in mesh (i, j), which includes two directions’ values. If intercell interpola-
tion is in the x direction, Fn = 1 and Gn = 0; if intercell interpolation is in the y direction,
Fn = 0 and Gn = 1.

2.5. MUSCL-Hancock Method

In the MUSCL-Hancock reconstruction step, the calculation is limited in a single cell.
Thus, it does not use the HLLC Riemann solver to predict the flux at the intercell. The
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corrected value in the cell center is Un+1/2
i , and the flux is calculated based on cell face

reconstruction, which is predicted by the cell slope limiter:

UMn
i+1/2 = Un

i +
1
2

ϕ(r)
(
Un

i −Un
i−1
)
, (12)

where UMn
i+1/2 is the reconstructed cell boundary vector. The predicted cell center value

is calculated by:

Ut+1/2
i = Ut

i + kx
(

F
(
UMn

i+1/2
)
− Fi+1/2

(
UMn

i−1/2
))

+ ky

(
G
(

UMn
j+1/2

)
− G

(
UMn

j−1/2

))
+

∆t
2

Si (13)

kx =
∆t

2∆x
; ky =

∆t
2∆y

.

As for the Riemann flux calculation, we use results from the MUSCL-Hancock step to
reconstruct the value around the interface. The slope limiter is the same as the MUSCL-
Hancock reconstruction step. The formula is:

UL
i+1/2 = Un+1/2

i +
1
2

ϕ(r)
(
Un

i −Un
i−1
)
. (14)

Riemann states in another direction to use the same method.

2.6. Stability Criteria

The numerical scheme is explicit. The stability is defined by the Courant–Friedrichs–
Lewy (CFL) criterion. Since this is a two-dimensional calculation case, the time step is
limited by local real-time results:

∆t = min

(
C∆x

|ui|+
√

ghi
,

C∆y
|vi|+

√
ghi

, ∆T

)
, (15)

where C is the Courant number, ranging between 0 and 1. In some cases, a stable ∆T could
give a more stable result. If the export results include a specific time point, ∆T should be
modified to a smaller time step to match the predicted time point.

3. Intercell Bed Elevation and Dry Cell

Since the flux calculation should follow the real physics law in the real world, the
interface property determines the flux calculation during flow routing in real river geometry.
We classified the interface property into four types based on flow depth and surface
elevation (as shown in Figure 2): (1) Two cells’ flow depth is higher than 0, which would
generate flux in these specific two cells. (2) Two cells between the interface are dry cells
such that both flow depths are equal to zero. (3) One is a wet cell and another is a dry cell,
but the elevation of the wet cell is higher than the dry cell. (4) One is a wet cell and another
is a dry cell, but the dry cell is higher than the wet cell.

Based on the physical property, the interface in the first and third type should con-
sider mass and momentum exchanges between the two cells during calculation. It is not
necessary to consider this effect for the cell interface in Type B and Type D.
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Figure 2. Classification of interface property. (a) Type A: wet cells at the left and right side, hL > 0,
hR > 0, hL and hR are flow depth in the left and right side of intercell respectively; (b) Type B: dry
cells at the left and right side of the intercell face; (c) Type C: wet and dry cells are connected through
the intercell face, the free surface elevation of the wet cell is higher than the dry cell; (d) Type D: wet
and dry cells are connected between the intercell face, and the free surface elevation of the wet cell is
lower than the dry cell.

Local modification of Z at the intercell is adopted. The modification is used based on
the physical property of the real condition (as shown in Figure 3); e.g., (1) the reflection
boundary would stop the flow from moving forward; (2) the dry cell has no flux. The
intercell property in Types A, B and C do not need modifications, and the intercell bed
elevation is:

Zi+1/2 = (Zi + Zi+1)/2, (16)

where Zi+1/2 is the elevation at the intercell; Zi and Zi+1 are cell center elevations at the ith
and (i + 1)th cell. Type D of the intercell face’s elevation is modified as:

Zi+1/2 = min(ηi, ηi+1). (17)

Figure 3. Modification of the intercell elevation. (a,b) The intercell does not need modification, which
is related to Type A and Type B; (c) the intercell elevation is modified to the wet cell’s elevation,
which is related to Type D; (d) the sharp slope cell is modified to the dry cell’s bed elevation.
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In the Type C intercell property, a sharp slope would produce an overpredicted flux in
the intercell. Based on the intercell property, the intercell bed elevation was modified as:

Zi+1/2 = max(Zi, Zi+1). (18)

Momentum needs to be modified while the intercell property is Type D. The velocity
component that is perpendicular and the limiter of the three variables of the shallow
water equations should be set to zero. For rectangular cell simulation, the calculation area
could be treated as a matrix. Many simulations are based on circulation to calculate the
whole simulated area, and they include a step that checks for cells that do not need flux
calculations. We want to skip this step due to the running circulation cost time. The specific
form of the shallow water equation includes η, and the unbalanced flux would be predicted
during our simulation which formed by a complex real geometry if the matrix is used
directly, for example (Figure 4):

Figure 4. The calculated parameters of a shallow water equation with no special treatment.

If the dry cell’s slope limiter function, Equation (11), is zero, the calculated flux would
be unbalanced:(

g(η2 − 2ηZ)/2
)

,x
=

g
[(

ηi
2 − 2ηiZi−1/2

)
−
(
ηi

2 − 2ηiZi+1/2
)]

2∆x
6= gηiZ,x. (19)

In order to achieve a matrix calculation and an automatic flux balance during simula-
tion, we adopted the “zero” slope-limiter function and modified the first term based on the
geometry. The elevation of dry cell was modified to:

ηi =
(Zi+1/2 + Zi−1/2)

2
, (20)

and the slope of the surface elevation of the dry cell was calculated as:

ri,j(ηi)
=

(Zi+1/2 − Zi−1/2)

2∆x
, (21)

where ri,j(ηi)
is the value of the first term of the slope limiter function, and ∆x is the cell

length in the x direction.
If the flow depth in the dry cell is zero, ηi+1/2 = Zi+1/2 in the interface, and cell

center’s value is given by Equation (20). The specific treatment to the dry cell is shown
below (as shown in Figure 5):
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Figure 5. The dry cell’s center elevation is calculated by the average of two intercell elevations. Intercell elevations are
predicted from the latest two steps that are based on the intercell type and the real conditions. (a,c) One side is a wet-dry
front and the one side is dry-dry; (b) both sides are a wet-dry front; (d) both sides are sharp slopes; (e) both sides are dry
cells; (f) flow chart of the method.

The balance in the dry cell is automatically reached:

(
g(η2 − 2ηZ)/2

)
,x
=

g
(
Zi+1/2

2 − Zi−1/2
2)

2∆x
=

g(Zi+1/2 + Zi−1/2)(Zi+1/2 − Zi−1/2)

2∆x
= gηiZ,x (22)

In the reflection boundary, where a higher left dry cell and a lower right wet cell
surround the intercell, ηi+1/2 = ηi−1/2 = ηi and ηi−1/2 = Zi−1/2. The flux balance is
reached automatically:

(
g(η2 − 2ηZ)/2

)
,x
=

g
(
−ηi−1/2

2 + ηi+1/2
2+2ηi+1/2Zi+1/2−2ηi−1/2Zi−1/2

)
2∆x

=
gηi+1/2(Zi−1/2 − Zi+1/2)

∆x
= gηiZ,x. (23)

If the flow velocity at all described cells is zero, the flux balance is controlled by
the wet-dry boundary and the dry cells. All the steps of this method are summarized in
Figure 5f.

4. Results and Discussion
4.1. Steady Condition Calculation of Flood

A test case was used to test the numerical scheme’s C-property. A static lake is kept
steady, and there is no disturbance. The calculation area is an 8000 m × 8000 m. In the dry
bed, there are two bumps:

Z(x, y) = max(0, ZB1, ZB2), (24) ZB1 = 2000− 0.00032
[
(x− 3000)2 + (y− 5000)2

]
ZB2 = 900− 0.000144

[
(x− 5000)2 + (y− 3000)2

] . (25)

The lake elevation is 1000 m, and the lower bump is submerged by the lake. The mesh
size is a rectangular mesh of 1 m × 1 m. The calculation time step is 1 s. The finish time is
8000 s.

After 8000 s, the lake remained static, the results in Figure 6 show that this approach
follows a C-property, the static keep balance automatically.
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Figure 6. C-property checking for a static lake. (a) Lake geometry; (b) results after 8000 s.

4.2. Two-Dimensional Smooth River Bed Test

A two-dimensional smooth bed test was adopted here. The case has an analytical so-
lution smooth bed. This test was adopted by many researchers to test their algorithm’s wet-
dry treatment and calculation accuracy [27,29,41,42]. The calculation area is a 4 m × 4 m,
and the origin of the coordinates is in the center of the calculation area. The mesh size is
0.1 m × 0.1 m. The bed is a parabola rotation:

Z(x, y) = h0

(
x2 + y2

a2 − 1
)

, (26)

where h0 is the initial flow depth of the origin of the coordinates, a is the distance between
the origin and the elevation equal to zero, and x and y are coordinate variables. Under
this condition, water flows on the smooth bed and cannot stop. The frequency of flow is
ω = 2π/T =

√
8gh0/a, in which T is the time of one cycle. In the analytical solution for

the process, the moving range is small:

η(x, y, t) = max

[
Z(x, y), h0

( √
1− A2

1− Acos(ωt)
− x2 + y2

a2

(
1− A2

(1− Acos(ωt))2 − 1

)
− 1

)]
, (27)

where A =
(
a4 − r4

0
)
/
(
a4 + r4

0
)
, and r0 is the farthest distance to the center. In the simula-

tion test, we consider the same parameter treatments as Song et al. [42], a = 1 m, h0 = 0.1 m,
and r0 = 0.8 m. We adopted a mesh size of 0.01 × 0.01 m. The initial condition is the same
as the analytical solutions in T/6, T/3, T/2 and T (Figure 7).

Figure 7. Cont.
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Figure 7. Simulated results compared with real analytical results. (a) Geometry of the calculation
area and the initial condition; (b–e) comparison between the simulated results and the analytical
solution at T/6, T/3, T/2, T.

4.3. Dam Breach over a Thump

This test case is a dam break flow over a thump. The experiment was carried at the
University of Brussels, Belgium [43]. Many researchers have used this case to test their
model on complex geometries [44,45].

The test simulated a sudden dam breach of flood flowing over a triangular hump.
The calculation area is a 38 × 1.75 m flume. A hump was set at 15.5 m, and a barrier lake
was formed upstream (as shown in Figure 8). The static lake’s flow depth is 0.75 m. The
peak of the triangular thump is at 28.5 m, with a height and bottom width of 0.4 and 6 m,
respectively. In the tail of the obstacle, there is a 0.15 m high gate, where flow depth is
also 0.15 m. Downstream, the first gate is the dry bed. Roughness of the calculation area
is n = 0.0125 s ×m−1/3. Four downstream monitoring locations were set, named G1, G2,
G3, and G4, and the measured data is the flow depth, located at 19.5, 25.5, 26.5, and 28.5 m
respectively. The mesh size for the calculation is 0.1 m × 0.1 m.

Figure 8. Flume test setup of the experiment.
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Figure 9 shows four representative moments of simulation. After 1 s, the flood front
arrives at the 19 m point. At 8 s, the flood flows over the obstacle, which causes backwater
and imposes disturbance on the tail lake. At 16 s, a higher run-up upstream lake formed
at the front of the obstacle, with waves upstream of the hump. A distinct hydraulic jump
develops at the tail lake. At 40 s, the water surface before the obstacle is dominated by
strong waves, while the tail lake becomes static. The flow upstream cannot flow over the
obstacle.

Figure 9. Free surface elevation during the flood evolution in the experiment. (a) At 1 s, flood flows
at the dry bed; (b) at 8 s, the flood flows up to the obstacle and has an influence downstream; (c) at
16 s, all the upstream water flows to the obstacle and a run-up forms; (d) at 40 s, the flow downstream
remains static, with waves at the upstream lake.

We extracted surface elevation data from the simulation results for comparison. Sim-
ulated results at G4 and G13 fit the monitored data very well, but the predicted water
surface at G10 and G11 is slightly lower than the monitored data, G20 is slightly higher
than measured data, which has been captured in many cases [44]. At the lower stage, the
simulated results were similar to simulated results later. The short-term-simulated higher
flow depth did not influence the real flood evolution at a later stage. Compared with the
same simulated work did by Tomas and Liao [44,45], our simulated results show similar
result in G10, G11, and G20. In G4 and G13, our result is closer to measured data compared
with their results, which shows better results (as shown in Figure 10).
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Figure 10. Monitored data compared with the simulated results at the four locations. (a) The
simulated result is similar to the measured data at G4; (b) initially, the simulated results at G10 is
lower but did not influence successive results; (c) the same higher simulated flow depth at G11 is
similar to G10, a short-term lower elevation; (d) the simulated results fit well with the measured data
at G13; (e) the simulated results fit well with the measured data at G20.

4.4. Dam Break Wave Propagating over Three Humps

The three humps test is a very famous test case proposed by Kawahara in 1986 [46,47].
Initially, the case was adopted to test the finite element model, which is wildly used. The
calculation area in this study is a 75 × 30 m flume, which has three humps. The boundary
is a fixed reflection boundary. The centers of the humps are A (30 m, 6 m), B (30 m, 24 m),
and C (47.5 m, 15 m). The maximum height of the humps is 1, 1, and 3 m, respectively. In
the upstream of x = 16 m, there is a lake with a depth of 1.875 m. The bed roughness is
n = 0.018 sm−1/3. The calculation geometry was calculated from the formulas below:

a = 1− 1
8

√
(x− 30)2 + (y− 6)2

b = 1− 1
8

√
(x− 30)2 + (y− 24)2

c = 3− 3
10

√
(x− 47.5)2 + (y− 15)2

Z(x, y) = max(0, a, b, c)

, (28)
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where a and b are geometric functions of the two lower humps, c is the geometry function
of the higher humps, and the elevation of the bed bottom is the maximum value of a, b,
and c. The mesh size is 0.5 m × 0.5 m.

Figure 11 shows the simulated results of six important moments. At 2 s, the water
reached two lower humps and started to flow over them. At 6 s, the flood flowed over the
two lower humps and started to reached the higher hump. At 12 s, the flood bypassed the
higher hump because it could not completely inundate the higher hump. At 30 s, the flood
occupied the calculation area. The formed higher flow depth downstream caused backflow.
At 100 s, there was still weak flow in the tank. At 300 s, the flow almost stopped and
formed a static lake in the tank, and the peaks of all three humps did not submerge. The
numerical model properly simulated complex wetting and drying processes and produced
similar results to those of other researchers [29,48].

Figure 11. Cont.
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Figure 11. Simulated flood evolution on a complex three-hump condition. (a) The flood starts to reach the first two low
humps at 2 s; (b) the flood flows over the two low humps at 6 s; (c) the flood flows downstream of the high humps at 12 s;
(d) the flood forms a higher flow depth downstream at 30 s; (e) there is some weak flow in the tank at 100 s; (f) the tank
maintains a static condition at 300 s.

5. Conclusions

We propose a new approach to process dry cells and wet-dry front cells via a Godunov-
type finite volume prediction method of flood evolution. Shallow water equations automat-
ically balance the gravity source term. The modification includes four steps: (1) identify
four types of intercells based on flow depth and surface elevation difference; (2) based
on the physical properties of the intercells, modify the bed elevation of the intercell, so
as to avoid non-physical flux predictions and gravity balance; (3) modify the dry cell’s
center elevation to equal the averaged elevation of the two surrounding intercell eleva-
tions; (4) change the first term of the slope limiter at the dry cell equal to the ratio of the
elevation difference between two intercell bed elevations dividing two times of mesh size.
This method was applied to a second-order MUSCL-Hancock-HLLC scheme in time and
space for flux and variable prediction in a real geometry. The intercell flux predicted by
the reconstructed method remained balanced with the gravity source term automatically,
which was proved by mathematical derivations. Four simulated cases showed that the
method has a C-property in a complex geometry and achieves the same results as those of
many other researchers. Results in the analytical case and the experiment monitoring cases
fit each other very well. During all the processing steps, modification could be finished in
one step, such that cells did not need to be checked through circulation. This new method
can increase the convenience and efficiency of matrix calculations and has a potential for



Water 2021, 13, 221 15 of 16

faster GPU (Graphics Processing Unit) simulation and parallel computing. It could be used
in real world outburst flood simulation with high efficiency.
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