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Abstract: The ability to adequately and continually assess the hydrological catchment response to
extreme rainfall events in a timely manner is a prerequisite component in flood-forecasting and
mitigation initiatives. Owing to the scarcity of data, this particular subject has captured less attention
in Rwanda. However, semi-distributed hydrological models have become standard tools used
to investigate hydrological processes in data-scarce regions. Thus, this study aimed to develop
a hydrological modeling system for the Nyabarongo River catchment in Rwanda, and assess its
hydrological response to rainfall events through discharged flow and volume simulation. Initially,
the terrain Digital Elevation Model (DEM) was pre-processed using a geospatial tool (HEC-GeoHMS)
for catchment delineation and the generation of input physiographic parameters was applied for
hydrological modeling system (HEC-HMS) setup. The model was then calibrated and validated at
the outlet using sixteen events extracted from daily hydro-meteorological data (rainfall and flow)
for the rainy seasons of the country. More than in other events, the 15th, 9th, 13th and 5th events
showed high peak flows with simulated values of 177.7 m3s−1, 171.7 m3s−1, 169.9 m3s−1, and
166.9 m3s−1, respectively. The flow fluctuations exhibited a notable relation to rainfall variations
following long and short rainy seasons. Comparing the observed and simulated hydrographs, the
findings also unveiled the ability of the model to simulate the discharged flow and volume of the
Nyabarongo catchment very well. The evaluated model’s performance exposed a high mean Nash
Sutcliffe Efficiency (NSE) of 81.4% and 84.6%, with correlation coefficients (R2) of 88.4% and 89.8% in
calibration and validation, respectively. The relative errors for the peak flow (5.5% and 7.7%) and
volume (3.8% and 4.6%) were within the acceptable range for calibration and validation, respectively.
Generally, HEC-HMS findings provided a satisfactory computing proficiency and necessitated fewer
data inputs for hydrological simulation under changing rainfall patterns in the Nyabarongo River
catchment. This study provides an understanding and deepening of the knowledge of river flow
mechanisms, which can assist in establishing systems for river monitoring and early flood warning
in Rwanda.
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1. Introduction

The major inter-annual variability in rainfall patterns occurring due to climate change
continues to increase flood risk over large parts of the globe [1,2]. Additionally, conse-
quences of worldwide demographic explosion such as urbanization intensify impervious
surfaces, which in turn influence the increase in stormwater runoff within urban catchments
and thus, impact the recurrence of flash flooding [3,4]. Various studies have evaluated the
hydrological response of different river catchments to climate variations [5,6] and found
that future climate changes may lead to alterations in both magnitude and frequency of
river flow.

The knowledge of discharged streamflow and volume amounts within a given catch-
ment is important for sustainable water resources project planning [7,8] and heavy rainfall-
induced disaster risk management. Estimating the flow peaks and their related volumes
can easily be simplified by adopting a simulation concept and understanding the rainfall
patterns [9]. The relationship between the rainfall amount and flows over a catchment is a
complex process that varies based on the scale of operation, required accuracy, computer fa-
cilities, and the nature of the hydrologic extent being modeled [10,11]. Understanding this
process requires a strong hydrologic analysis that allows the estimation of flow characteris-
tics such as the peak rate and volume through simulation [12,13]. The type of simulation
approach depends on the purpose, model operation, data availability, and simplicity of
application [9,14]. However, the constraints posed by the scarcity of ground-based weather
recordings makes the quantitative simulation of river flow processes and their transmission
to the outlet one of the greatest challenges in the field of hydrology [15], particularly in
developing countries. Most catchments in these countries are inadequately and poorly
gauged [16], having a limited record period. Owing to this, running models that carry
acceptable flow simulations are required, especially for poorly or ungauged catchments.

Several modeling alternatives have been established to simulate hydrological pro-
cesses. Based on the data availability and complexity of the hydrological systems, these
models include but are not limited to the Modular Modeling System (MMS) [17,18], the
Water Erosion Prediction Project (WEPP) Model [19,20], the Soil and Water Assessment
Tool (SWAT) [21,22], the Topography Based Hydrological Model (TOPMODEL) [23,24], the
European Hydrological System (MIKE-SHE) Model [25,26], semi-distributed models like
the Hydrological Simulation Program-Fortran (HSPF) [27] and Hydrological Engineering
Center Hydrological Modelling System (HEC-HMS) [28–30]. Due to having the lowest
number of input parameters compared to other modeling approaches, HEC-HMS has
become the most popularly used and has proved to be accurate in predicting the spa-
tiotemporal catchment response in both short and longtime events under different soil and
climatic conditions [9,31]. Regarding flood forecasting, the model is also very practical
thanks to its valuable application in catchments with a limited amount of input data.

Recent improvements in remote sensing (RS) and geographic information system (GIS)
mapping can assist in the provision of quantitative measurements of catchment geomorphol-
ogy, which can be used in simple as well as complex hydrological methods [32,33]. Thus,
integrating geospatial techniques with the choice of a suitable model with minimum input
data requirements, simple structure, and rational precision is crucial [34,35]. HEC-HMS
is a favorable hydrologic model that adjoins the aforementioned criteria and thus, has
been applied for this current study. Apart from its simple operation and ability to simulate
flow and volume in both short and longtime rainfall/flood events, the model is generally
accepted for use in ungauged and poorly gauged catchments. This is because of its ability
to represent real hydrological processes with confident parameter quantification in the
catchment [36].

From an extensive literature review, it was evident that existing studies on hydrologic
simulations are still deficient in developing countries where the effects of climate variation
on hydrological processes have not been fully and appropriately understood. Similarly, this
specific subject captured less attention in Rwanda owing to different difficulties, among
which, the paucity of ground-based weather recordings both in space and time remains
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challenging. This situation adds to the intricacy of understanding the multifaceted relation-
ships between rainfall and hydrological processes in the area. Consequently, alarming flash
flood incidences are recorded in the area, where the Nyabarongo catchment is the most
affected, as a result of rapid hydrological responses right after prolonged heavy rainfall [37].
These incidences have caused substantial damage to properties and infrastructure and
disruptions to the socio-economic activities of citizens [38].

Despite the increasing body of literature dedicated to the Nyabarongo River catchment,
that concerning this specific subject is deficient. The studies that tried to communicate the
issue are either not synoptic or not up to date in terms of time and modeling approach.
Taking into account this research gap, the current research is expected to play a preliminary
role for further studies related to the nexus between climate change and hydrology in
Rwanda and other different regions with similar characteristics. The few existing studies
in the area have assessed urban flood forecasting using satellite remote sensing data, and
hydrologic and hydraulic models with an emphasis on the Nyabugogo, a very small
catchment crossing only a few districts of the entire country [39,40]. Ukurikiyeyezu [41]
investigated the Sebeya and Muvumba (very small catchments) to assess the basin’s
streamflow patterns but only limited to an outdated period on a monthly scale. Moreover,
Munyaneza, Ufiteyezu [42] used an old rational method traced back to the mid-19th
century to predict river flows in the agricultural Migina catchment and recommended
the development of flow models using advanced methods such as semi and distributed
hydrological modeling; which have been used in this study.

Nonetheless, only two studies have considered the entire Nyabarongo catchment while
giving a sole focus to USLE-based assessment of soil erosion by water [43]; Sendama [44]
calibrated their HBV-light model using only a meteorological remote-sensing product for
predicting streamflow, but also exposed a limitation related to the lack of validation of the
obtained results, in that living uncertainties affected the model’s reliability. Additionally,
the conducted studies did not consider the separation of rainfall seasons (long and short)
constituting flooding periods.

All the aforementioned shortcomings, as well as its significant role in sustaining life
to the surrounding community, its seasonal flow fluctuations, and being the catchment
with the most available flow data for validation purposes, make the Nyabarongo River
catchment (the largest river in Rwanda) an appropriate study area for this research. This
research will contain effective information related to the integrated response of the catch-
ment to climatic variables that is otherwise absent, and thus, guide the implementation
of catchment planning and early flood warning activities. This study also serves as a
complementary work, adding to previous research within the same scope, as well as con-
tributing new insights associated with the mechanisms of river floods and the behavior of
the Nyabarongo River catchment system under different rainfall events and seasons. The
objectives of this study were to (i) develop a hydrological modeling system and delineate
the physiographic features of the Nyabarongo River catchment; (ii) assess the catchment’s
hydrological response to rainfall events; (iii) calibrate and validate the hydrological model-
ing system for simulating the discharged peak flow and volume of the Nyabarongo River
catchment; and (iv) quantify the degree of variation between simulated and observed flow
hydrographs for further hydrological analysis.

2. Dataset and Methods
2.1. Catchment Description

Rwanda is a country endowed with abundant water resources distributed in a very
dense hydrological network consisting of lakes, marshlands, and rivers [45]. The country
is made of two hydrographical basins defined by a landmark line of waters known as the
Congo–Nile divide that runs from the north to the south. To the east of the Congo–Nile divide
lies the Nile basin with two main river catchments, namely, the Akagera and the Nyabarongo.
The latter is located between 1◦18′ S to 2◦34′ S latitude and 29◦5′ E to 30◦35′ E longitude
with an approximated length of 151.5 km, draining a total area of 8478.24 km2 [43]. The
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Nyabarongo catchment (Figure 1) goes along a path up to the north-western region of the
country, then crosses the center to the south-east, to form the focal tributary of the Kagera
River, flowing into Lake Victoria. It also flows easterly via small lakes and swampy valleys
in the plains of Bugesera-Gisaka. Moreover, it flows over 300 km from its source in the
West into Lake Rweru (the outlet of the catchment) in South Eastern Rwanda, lateral to the
border with Burundi [46,47]. As the largest river catchment in the entire country, it covers
different districts from all the provinces countrywide, including the highly urbanized
region of Kigali city [48]. Topographically, the catchment’s elevation ranges between
1332 m to 4480 m above sea level [43]. Like the rest of the country, this relief profile
contributes to the variation in weather patterns [49,50]. The area enjoys tropical climatic
conditions, with two rainy seasons each year. The first season is known as the long rainy
season (March to May), and the second the short rainy season (September to November)—
both periods in which heavy rainfall-induced hazards are expected.

Water 2021, 13, x FOR PEER REVIEW 17 of 25 
 

 

divide lies the Nile basin with two main river catchments, namely, the Akagera and the 
Nyabarongo. The latter is located between 1°18′ S to 2°34′ S latitude and 29°5′ E to 30°35′ 
E longitude with an approximated length of 151.5 km, draining a total area of 8478.24 km2 
[43]. The Nyabarongo catchment (Figure 1) goes along a path up to the north-western 
region of the country, then crosses the center to the south-east, to form the focal tributary 
of the Kagera River, flowing into Lake Victoria. It also flows easterly via small lakes and 
swampy valleys in the plains of Bugesera-Gisaka. Moreover, it flows over 300 km from its 
source in the West into Lake Rweru (the outlet of the catchment) in South Eastern Rwanda, 
lateral to the border with Burundi [46,47]. As the largest river catchment in the entire 
country, it covers different districts from all the provinces countrywide, including the 
highly urbanized region of Kigali city [48]. Topographically, the catchment’s elevation 
ranges between 1332 m to 4480 m above sea level [43]. Like the rest of the country, this 
relief profile contributes to the variation in weather patterns [49,50]. The area enjoys trop-
ical climatic conditions, with two rainy seasons each year. The first season is known as the 
long rainy season (March to May), and the second the short rainy season (September to 
November)—both periods in which heavy rainfall-induced hazards are expected. 

 
Figure 1. Geographical location map of the Nyabarongo River catchment; (a) Location at the continent level; (b) Location 
at the country level; (c) An aerial outlook of the Nyabarongo River [51]; (d) Normalized difference vegetation index of the 
catchment with the Nyabarongo River and lakes. 

2.2. Data Collection and Processing 
Hydro-meteorological (rainfall and flow) along with physiographic data (digital ele-

vation model, land use/cover, and soil type) are significant inputs in rainfall-discharged 
flow modeling (Table 1). Rainfall characteristics were considered as representative of the 
supply of water to the catchment—a portion of which reaches the outlet as discharge. 
Generally, hydrologic models often require time-series of precipitation and observed 
flow, which help in model calibration and validation [52]. However, the topographical 

Figure 1. Geographical location map of the Nyabarongo River catchment; (a) Location at the continent level; (b) Location at
the country level; (c) An aerial outlook of the Nyabarongo River [51]; (d) Normalized difference vegetation index of the
catchment with the Nyabarongo River and lakes.

2.2. Data Collection and Processing

Hydro-meteorological (rainfall and flow) along with physiographic data (digital
elevation model, land use/cover, and soil type) are significant inputs in rainfall-discharged
flow modeling (Table 1). Rainfall characteristics were considered as representative of the
supply of water to the catchment—a portion of which reaches the outlet as discharge.
Generally, hydrologic models often require time-series of precipitation and observed flow,
which help in model calibration and validation [52]. However, the topographical features
of the country hindered and limited the installation and maintenance of sufficient rain
gauge networks required for capturing the variability in rainfall over the space. Moreover,
weather radars, as an alternative for precipitation data capturing, are not a viable choice
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for this study area owing to the presence of radar beam blockage resulting from the
surrounding mountains. Thus, this study considered the available hydrological data (daily
rainfall and observed flow) from 2011 to 2018 recorded at the Rweru gauging station (the
outlet of the study area) and collected from the Rwandan Water Portal and the Rwandan
Meteorological Agency (RMA). This period was selected due to the availability of both
rainfall and flow data with no gaps. These data are from the rainfall seasons from March to
May (long rainy) and September to November (short rainy).

Table 1. The spatial databases for datasets included in this data.

Data Type Spatial Resolution Source

Digital Elevation Model (DEM) 1 arc-second (~30 m, raster data) Earth Explorer (USGS)
LULC map 30 m × 30 m (raster data) Landsat 8 OLI (USGS)

Soil properties map 30 arc-second (raster data) FAO-UNESCO Soil Map of the World
Rainfall data Daily rainfall (2011–2018) Rwandan Meteorological Agency (RMA)

Flow data Daily flow (2011–2018) Rwandan Meteorological Agency (RMA) and Rwanda Water Portal

Besides this, a 30 m resolution (1 arc-second) digital elevation model (DEM) from the
Shuttle Radar Topographic Mission (SRTM) provided by the National Aeronautics and
Space Administration (NASA; www.dwtkns.com/srtm30m/ accessed on 17 May 2021)
was used to extract the topographic characteristics of the study area. Additionally, land
use/cover (LULC) and soil properties (Figure 2a,b) play an imperative role in catchment hy-
drology [53]. The latter were applied in order to model accurate hydrologic processes. The
LULC was obtained by processing Landsat-8 imagery with low cloud cover assembled by
the United States Geological Survey (USGS) and classified using the maximum likelihood
classification (MLC) technique in ENVI software version 5.3. Atmospheric and radiometric
corrections were executed with the Fast Line-of-Sight Atmospheric Analysis of Hypercube
(FLAASH) tool to lessen atmospheric effects and radiometric errors, in order to increase
the interpretability and quality of the image before the classification procedure. The data
on soil properties were extracted from a raster file of the global soil type using ArcGIS 10.8.
The soil properties map was fully prepared in detail using information from the World Har-
monized Soil Database (HWSD) viewer, downloaded at http://www.fao.org/soils-portal/
data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/ (accessed
on 9 February 2021).

2.3. HEC-HMS Model Description and Catchment Delineation

HEC-HMS software was established by the United States (US) Army Corps of Engi-
neers (http://www.hec.usace.army.mil/software/hec-hms accessed on 3 February 2021).
This study utilized the current version 4.7.1 to simulate rainfall-discharged flow processes.
Initially, the collated DEM was exploited and pre-processed using the Arc Hydro tool,
then applied the Hydrologic Engineering Center-Geospatial Hydrologic Modeling (HEC-
GeoHMS), a geospatial tool extended in ArcGIS 10.8 to generate spatial data relating to the
stream network and terrain features (Figure 3). Moreover, the tool helped to produce the
required parameters which could be used as input data for the HEC-HMS setup [28]. In
the catchment delineation process and subbasins hydrological parameters, a threshold of
75 km2 drainage area was given for stream definition and physiographic characteristics,
including the basin slope and centroid, river length, and longest flow path, among others.
The LULC and soil properties were then combined to assign curve numbers (CN) using the
generated CN lookup attributes (Table S1); each LULC category was classified, according
to the resulting hydrological soil classes based on the texture classes (Figure 2a–c). After
all the above steps, the catchment boundaries and drainage paths were transformed into
a structured hydrologic database that denoted the catchment response to rainfall using
HEC-GeoHMS [54]. The HEC-HMS setup comprised four imperative components: namely,
the basin model, meteorological model, control specifications, and time-series data man-
ager [55]. The basin model consisted of the delineated hydrologic elements (subbasin,
junction, reach, source, sink, reservoir, diversion, outlet) and their connectivity, characteriz-

www.dwtkns.com/srtm30m/
http://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://www.hec.usace.army.mil/software/hec-hms
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ing the flow of water to the drainage system, while the meteorological model detailed the
elements over which precipitation input is temporally and spatially distributed throughout
the catchment. Additionally, the control specification denotes the time of simulation, and fi-
nally, the time series data manager dealt with input data [56]. The model ran by combining
the information populated in these four units to attain the results.
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(b) Streams; (c) Filled sinks; (d) Slope; (e) Flow direction; (f) Flow accumulation; (g) Defined stream segmentation and
drainage points; (h) Catchment grid delineation.

2.4. Parameter Estimation in HEC-HMS and Methods

HEC-HMS produces results using different algorithms that represent each element of
the flow process, including those that compute the volume and direct runoff [9,28]. These
algorithms are based on input value parameters such as the losses, transform, and routing
of meteorological data. The selection of these methods is based on their suitability and
limitations, accessibility of data, hydrologic conditions, researcher recommendations, etc.

2.4.1. The Loss Method

This method is applied to estimate the excess runoff volume by calculating the water
which has been intercepted, infiltrated, stored, evaporated, and withdrawn from rainfall.
Various approaches have been applied to model and produce values for this parameter,
but the Soil Conservation Service (SCS) curve number (CN) approach has been applied
in this study due to its simplicity in estimating the volume from a rainfall event and the
fact that it is reinforced by empirical data. This method is a function of LULC and soil
properties as the major runoff-producing catchment characteristics from an amount of
rainfall. The SCS-CN approach established by the Soil Conservation Service [57,58] was
computed using the following equation:

Q =
(P− Ia)

2

P− Ia + S
(1)

where Q is the direct runoff (volume in mm for the total event), P is the cumulative rainfall
for the event in mm, Ia for the initial abstraction, and the potential maximum retention (S).

However, the loss method allows the choosing of the process used to calculate the
rainfall losses (Ia) absorbed by the ground, calculated as 20% of the total maximum retention
(S) of the catchment. It also requires the soil curve number (SCS curve number) for each
delineated sub-basin. Ia and S are computed using Equations (2) and (3), respectively.

Ia = 0.2S (2)

S = 25.4
(

1000
CN

− 10
)

(3)

2.4.2. Transform Method

The transform method is used to simulate the process of direct runoff and excess
rainfall on the catchment as well as transform rainfall excess into point runoff via a unit
hydrograph. For this process, this study used the SCS unit hydrograph approach, whereby
the standard lag time (TLag) is entered as an input parameter to evaluate the time between
rainfall and peak flow in the catchment; it is estimated using Equation (4), as proposed by
USDA [59]:

TLag =
L0.8(S + 1)0.7

1900× Y0.5 (4)

where TLag is the lag time in hours, S is the maximum retention, L is the hydraulic length
of the catchment, and Y is the slope of the sub-basin.

2.4.3. Routing Method

Routing methods simulate the attenuation of flood runoff when traveling through
the reach due to channel storage effects [9]. Numerous techniques for this simulation are
applied to flood routing in gauged basins, due to their requirement of large amounts of
observed data. Owing to the scarcity of extensive observed data, this study applied the
routing technique proposed by Song, Kong [60], built based on the Muskingum model,
with parameters derived from the physical characteristics of the river reach. This technique
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has been satisfactory and proved to remove the difficulties in predicting flow character-
istics in poorly gauged and ungauged catchments. Its advantage lies in its simplicity
and its being the only diffusion-wave routing model which is accurate enough to be
suitable for hydrologic modeling applications [61]. This method necessitates the rout-
ing parameters K and X [54], estimated using the geometric shape and characteristics
of the channel cross-section, which simulate the relative involvement of hydrodynamic
and kinematic diffusion. K represents the storage-time constant, while X is a weighted
factor usually ranging between 0 and 0.5. These were then computed using the following
Equations (5) and (6), respectively:

K =
0.69n0.6LC0.4

3600Q0.2
0 S0.3 (5)

X =
1
2
− 0.35Q0.3

0 n0.6

S1.3C0.8L
(6)

where n denotes the manning roughness coefficient that represents the resistance to water
flows in the channels. Its values are tabulated and represented in the literature from
different reference books and articles based on expert experiences and knowledge of
different distinctive river channels in terms of physical features [62–65]. Hence, n was
set to 0.035 for the Nyabarongo River catchment, described as an open natural channel
flow composed by major rivers, some types of vegetation, and dominated by farmlands.
L represents the hydraulic length of the river reach (m), C specifies a coefficient defining
celerity, S is the slope, and Q0 is the reference flow (m3·s−1) for a given reference flow event
computed according to Wilson and Ruffini [66], using Equation (7):

Q0 = Qi +
1
2

(
Qj − Qi

)
(7)

where Qi and Qj represent the minimum and peak flow, respectively. Note that a stand-
alone GIS-based terrain analysis program supported the estimation of all the above vari-
ables in the determination of routing parameters.

2.5. Calibration and Validation

Before a hydrological model can be considered as having reliable outputs, it needs
to be calibrated and validated through an observed flow (Figure 4). The simulated and
observed flow should be compared to test how well they fit and deduce the credibility of
results produced by the model. The accessible hydrometeorological data is divided into
two parts for calibrating and validating the model; in this study, 16 rainfall events (Table 2)
recorded in the period from 2011–2018 were selected and split into 2 categories, such that
60% (2011–2015) were used for calibration and the remaining 40% were used for validation
(2016 to 2018).

The comparison of the observed against the simulated flow was done at the outlet
(computation point) where the observed flow gauging station was available. It should
be noted that there are always uncertainties in the modeled parameter values. Therefore,
some adjustments of the parameters are often required to closely fit the observed and
simulated discharged flow. For this task, the automatic optimization process embedded
within HEC-HMS was exploited using the univariate gradient optimization package and
the peak-weighted root mean square error (PWRMS) objective function to move from the
initial parameter to the final best parameter estimates [28]. Thus, the degree of variation
between simulated and observed hydrographs was quantified. The latter was helpful in
the sensitivity analysis for identifying the parameters which had most influence on the
model performance for the study area.
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Table 2. Rainfall events selected for calibration and validation.

Events Start Date Start Time End Date Start Time Remark

1 LR: 21 Mar 2011 00:00 18 May 2011 00:00 calibration
2 SR: 06 Sep 2011 00:00 15 Nov 2011 00:00 calibration
3 LR: 10 Mar 2012 00:00 27 May 2012 00:00 calibration
4 SR: 13 Sep 2012 00:00 19 Nov 2012 00:00 calibration
5 LR: 15 Mar 2013 00:00 12 May 2013 00:00 calibration
6 SR: 09 Sep 2013 00:00 13 Nov 2013 00:00 calibration
7 LR: 11 Mar 2014 00:00 14 May 2014 00:00 calibration
8 SR: 12 Sep 2014 00:00 15 Nov 2014 00:00 calibration
9 LR: 20 Mar 2015 00:00 18 May 2015 00:00 calibration

10 SR: 23 Sep 2015 00:00 22 Nov 2015 00:00 calibration
11 LR: 24 Mar 2016 00:00 22 May 2016 00:00 Validation
12 SR: 12 Sep 2016 00:00 15 Nov 2016 00:00 Validation
13 LR: 12 Mar 2017 00:00 14 May 2017 00:00 Validation
14 SR: 18 Sep 2017 00:00 23 Nov 2017 00:00 Validation
15 LR: 10 Mar 2018 00:00 12 May 2018 00:00 Validation
16 SR: 13 Sep 2018 00:00 15 Nov 2018 00:00 Validation

LR: Long rainy and SR: Short rainy.

2.6. Performance Evaluation

As the most common metrics used to forecast the accuracy of the model for the
selected loss and transform methods, the Nash Sutcliffe Efficiency (NSE; Equation (8)), the
correlation coefficient (R2; Equation (9)), and the relative errors (RE; Equation (10)) of the
peak flow and volume (REF,V) were computed to indicate the accuracy between observed
and simulated values:

NSE = 1−
∑n

j=1
(
Xj − Yj

)2

∑n
j=1
(
Xj − X

)2 (8)

R2 =

[
∑n

j=1
(
Xj − X

)(
Yj − Y

)]2

∑n
j=1
(
Xj − X

)2
∑n

j=1
(
Yj − Y

)2 (9)

REF,V =

∣∣Yj − Xj
∣∣

Xj
∗ 100 (10)
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where n is the flow duration in Equation (8), and the number of errors in Equation (9); Yj is
the simulated data value at time j; Xj is the observation data value at time j; while x and y
are the average of observation and simulated values, respectively.

3. Results and Discussion
3.1. Physiographical Attributes of the Delineated Catchment

In HEC-HMS, the catchment is conceptually represented as a mesh of sub-areas
interconnected by channel links [67]. For the hydrologic modeling project, the obtained
results from the pre-processed topographic terrain using the geospatial hydrologic analysis
module are tabulated in Table 3.

Table 3. Physiographic characteristics of the delineated Nyabarongo catchment.

No SB Area (Km2) Slope Mean River Slope Hydraulic Length (m) Main River Length (m)

1 W1230 863.61 2084.79 −0.013902 41,001.49 12,868.13
2 W1140 1139.6 1758.01 0.004494 88,558.16 37,835.82
3 W960 ** 710.51 1626.83 0.015872 48,008.99 25,294.14
4 W1290 951.6 1809.49 0.012851 59,373.68 36,844.79
5 W900 772.62 2146.6 0.022433 56,614.21 27,817.45
6 W720 1239.9 2165.07 0.027237 62,084.87 31,250.99
7 W870 1186.8 1651.9 0.00835 72,337.23 22,147.99
8 W690 1613.6 1846.41 0.013222 71,698.25 31,959.94
9 R440 ** 736.9 0.002714 - - -

**: means subbasin or reach at the outlet.

Note that negative numerals do not specify minus as in algebraic expressions, but
simply differentiate the up and downhill slopes. The parameter estimates representing the
loss and transform model per each sub-basin are tabulated in Table S2.

As demonstrated in the resulting schematic catchment model (Figure 5) with all the
hydrologic elements, the delineated Nyabarongo catchment was subdivided into eight
sub-basins, twenty-three reaches, their related junctions, and one outlet, depending on
the set critical area threshold for stream generation. All other generated initial values
per reach can be found in Table S3. As in this study, the considered reach (R440) was the
one related to the outlet where the calibration took place. Each subbasin was shown to
be connected to the upstream node of its downstream reach, which is a junction defined
by the reach coordinates (Figure 5). The sub-basin areas ranged from 710.51 sq.km to
1613.6 sq.km, while the length of the main rivers ranged from 4.7 to 44.8 km. Analogous
with the classified LULC of the area (Figure 2a), the third sub-basin (W960) contain-
ing the catchment’s outlet, was the most urbanized. In line with this finding, previous
studies [68,69] reported that urbanizing catchments greatly impact the hydrologic process
in terms of flood peak advancement and increases in surface runoff. The associated pres-
ence of prevalent impervious surfaces alters the dynamics of infiltration by reducing the
quantity of water that can immerse into the ground [70,71]. Additionally, cropland was the
dominant land use class through the entire catchment. This result also gives a reflection
on the amount of runoff that can produce the catchment, in conjunction with previous
studies [72–74] reporting that the runoff becomes excessive to various degrees in cropland,
urban landscapes, and bare surfaces. Thus, this result implicates the probability of high
surface runoff generation leading to flooding in this area.

3.2. Hydrological Response of the Catchment under Rainfall Events

The generated physiographic parameters and their values, along with the hydro-
meteorological data, were introduced into the HEC-HMS model to simulate peak flow
and volume through calibration and validation, and therefore, determine the hydrological
response of the catchment.
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3.2.1. Calibration and Optimization

After appropriate calibration for each selected loss, transform method, and routing
reach, the hydrological response of the catchment was measured through the simulated
peak flow and volume, as they went in parallel with maximum downstream flooding
based on rainfall events [75,76]. The obtained model outputs (peak flow/volume) were
reasonable in comparison to the observed data at the gauging station, although for some
events, the model largely over or underestimated the peaks prior to optimization (Table 4).
This situation can evoke the over-reach of mitigation initiatives or unsatisfactory planning
for probable situations unless there is a careful sensitivity analysis [77,78]. To obtain this
condition, an optimization session was conducted to bring the simulated and observed
flow/volume closer. After optimization, the model simulated the values reasonably close
to the observed flow values for the overall simulation events. However, the model could
not fully generate values that exactly fit the observed and simulated data, due to some
uncertainties arising from either the edifice of the model concept itself, or the variables,
observed inputs, or interconnection processes. The urbanizing situation at the outlet
may also create uncertainties if the surface model does not fully consider the intricate
infrastructure of the urbanized location.

Except events 1, 5 and 9 during the calibration process, the simulation results have
shown a tendency to overestimate the peak before optimization, while 40% of the events
(events 1, 2, 5, 9) have underestimated the peak flow after optimization. Besides this, an
underestimation of the volumes was depicted for all the events prior to optimization, while
none of the events were shown to overestimate the volume after optimization. Similar
to this study, Hussain, Wu [28] and Arheimer and Lindström [79] argued that the under-
estimation of high peak flows during the rainy season can be attributed to unregulated
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observation data or slight increases in flow at the beginning of the season, owing to the
early arrival of the rain. Overall, it was noted that the optimization step played a pivotal
role for events which largely over or underestimated the flow and volume compared to the
observed values. From these obtained results, it is clear that the amount of flow depends
on the received rainfall. Thus, it can be said that the existing hydrological response of the
Nyabarongo River catchment is directly associated with the rainfall seasons of Rwanda; a
result which is in agreement with Kibria, Ahiablame [80] and Khalil, Rittima [81], where
the trend magnitude for seasonal streamflow increased in fall and wet seasons compared
to other seasons. Such results suggest that the catchment’s hydrology is vulnerable to
any change in climate as well as its related rainfall patterns over a period of time, as
also confirmed by previous studies [82–84]. This trend is almost the same over the entire
hydrological system of Rwanda, characterized by high peak flows mainly during the pe-
riods of March to May (long rainy) and moderate flows during September to November
(short rainy). Note that in the remaining periods, such as June to August (long dry) and
November to February (short dry), which were not considered in this study, only low flows
are expected. The high and moderate flows are among the main factors contributing to
flooding incidences in districts in which the Nyabarongo River runs, including Kamonyi,
Kicukiro, Nyarugenge, Kamonyi, Muhanga, Gakenke, Ruhango, and Rulindo, among
others [49,85].

Table 4. Observed and simulated peak flow/volume before and after optimization.

Selected Events Peak Flow (cms) Volume (mm) Accuracy Assessment

Events Start and End Date SBO SAO Obs SBO SAO Obs REF
(%)

REV
(%) R2 NSE

1 LR: 21 Mar–18 May 2011 98.5 100.8 109.8 103.83 105.77 117.55 8.9 11.14 84.7 81.8
2 SR: 06 Sep–15 Nov 2011 97.8 86.4 89.4 115.58 127.92 140.94 3.4 10.2 88.8 81.6
3 LR: 10 Mar–27 May 2012 136.8 132.4 123.0 144.83 162.32 182.22 7.0 6.4 92.6 89.4
4 SR: 13 Sep–19 Nov 2012 112.2 97.9 95.2 122.7 131.82 139.0 2.8 5.4 86.8 74.3
5 LR: 15 Mar–12 May 2013 166.9 166.9 174.5 140.04 148.59 156.98 4.5 5.6 94.5 93.5
6 SR: 09 Sep–13 Nov 2013 90.2 83.4 82.1 145.52 144.61 156.08 1.6 7.9 81.8 74.2
7 LR: 11 Mar–14 May 2014 133.4 134.6 126.9 146.73 169.19 173.68 5.7 2.6 89.7 80.2
8 SR: 12 Sep–15 Nov 2014 88.4 85.3 82.1 107.13 110.4 122.63 3.7 11.0 86.6 81.8
9 LR: 20 Mar–18 May2015 169.7 171.7 192.5 200.52 204.73 218.53 12.1 6.7 90.6 82.8

10 SR: 23 Sep–22 Nov 2015 148.0 132.7 125.8 120.87 133.86 147.97 5.2 10.5 87.7 74.4
Mean 5.5 7.7 88.4 81.4

Where cms: cubic meter per second; SBO: simulation before optimization; SAO: simulation after optimization; Obs: observation.

3.2.2. Sensitivity Analysis of Parameters

Generally, the development of acceptable flow simulations in a catchment does not
necessarily result in accurate performances of runoff production processes [77]—this is
because diverse parameters in the comprehensive catchment model are reported to be sen-
sitive; and thus, influence the calibration processes of the model. The analysis determined
the parameters whose modification significantly affected the outputs of the model. The
parameter values required for calibration were calculated and given as initial values at the
time of calibration to the selected model. The modeled hydrograph results (Figure 6) that
managed to capture the observed hydrograph with a good fit were maintained while poor
results proceeded to the optimization stage. As reported by Belayneh, Sintayehu [86], and
Zheng, Li [87], the initial abstraction and its related maximum retention, curve number
(CN), lag time, and Muskingum parameters were the most significantly sensitive parame-
ters in the model. In this study, the parameters showed some dynamicity in their values
compared to the initial values, except for lag time, which remained insensitive to the
calibrated events and was not influenced by differences in rainfall (Table 5), as similarly
evidenced by Hamdan, Almuktar [54]—who recently found simulated flow to be less
affected by the delay between the maximum rainfall amount and the peak discharge in the
Al-Adhaim River catchment covered by agricultural land. The Muskingum parameters
have been shown to be the most sensitive, with a high influence on the simulated peak flow
and volume values. This conformed with a previous study [88] which modeled the rainfall–
runoff relationship in the upper Awash catchment, Ethiopia. The latter was followed by
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the initial abstraction and its related maximum retention—the reason being that rainfall
characteristics normally play a noteworthy role in the ascertainment of abstraction duration,
and thus, in the calculation of flow hydrographs. This has also been reported by previous
studies, not only for small catchments [77,89], but also for large-scale catchments [90].
Finally, changes in CN values often show a dynamic and quantitative impact on simulated
discharged flow and volume. Therefore, selecting an appropriate CN value is necessary for
generating consistent outputs in hydrological modeling, owing to its reported sensitivity to
the simulated flow and volume. In this study, the CN parameter was also found to be more
sensitive to rainfall excess, percolation, and permeability mechanisms compared to the
hydrological soil groups (Figure 2b), as similarly discussed by preceding studies [91,92].
From the same perspective, a recent study specified that a given amount of rainfall may
generate completely different discharged flow and runoff volumes under different assigned
CN during hydrological modeling phases [93]. Nevertheless, the sensitivity analysis in this
study justifies the necessity of acquiring appropriate land surface characteristics such as
the LULC and soil information, in order to attain a more precise estimation of the CN of
the study area.
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Table 5. Initial and optimized values for the parameters in the sensitivity analysis.

Selected Events Ia S CN TLag K X

Events Period IV OV IV OV IV OV IV OV IV OV IV OV

1 LR

10

14.9

50.03

74.5

83.516

78.2

68.4

68.4

0.08

0.05

0.34

0.48
2 SR 8.5 42.5 89.8 68.4 1.98 0.21
3 LR 12.9 64.5 82.9 68.4 1.67 0.41
4 SR 14.4 72 78.2 68.4 2.2 0.43
5 LR 7.9 39.5 80 68.4 0.13 0.37
6 SR 14.5 72.5 59.6 68.4 0.34 0.49
7 LR 13.7 68.5 88.9 68.4 3.48 0.39
8 SR 15.1 75.5 91.6 68.4 0.03 0.28
9 LR 7.2 36 75 68.4 2.59 0.31
10 SR 8.9 44.5 42.2 68.4 1.78 0.4

Mean - 12.4 62 80.66 68.4 1.43 0.38

IV: Initial values, OV: Optimized values.

3.2.3. Validation

Model validation runs the model using similar inputs and calibrated parameter esti-
mates. After optimization of the parameters, some events displayed values that decreased
as the agreement between observed and simulated values increased, and others increased
as goodness-of-fit increased. In this validation process, the model results exposed a slight
overestimation of the peak flow and underestimation of the volumes for all the events
except event 13, which had estimated values closer to acceptable levels (Table 6). This
latter finding has also been detected by earlier hydrological modeling studies [9,94], with
such findings addressing the uncertainty involved in model simulations. Nonetheless, the
significance of this type of study is not to portray an exact value, but rather, to provide an
estimation for a comprehensive understanding of probable future scenarios for researchers
and policymakers.

Table 6. Observed and simulated peak flow and volume for validation process.

Selected Events Peak Flow (cms) Volume (mm) Accuracy Assessment (%)

Events Start and End Date Simulated Observed Simulated Observed REF REV R2 NSE

11 LR: 24 Mar–22 May 2016 152.1 148.1 141.48 156.84 2.6 10.8 88.3 81.8
12 SR: 12 Sep–15 Nov 2016 94.8 88.9 100.46 105.37 6.2 4.8 90.5 86.1
13 LR: 12 Mar–14 May 2017 169.9 172.7 245.9 242.56 1.6 1.3 94.4 91.5
14 SR: 18 Sep–23 Nov 2017 94.4 88.1 131.85 140.89 6.7 6.8 87.9 81.5
15 LR: 10 Mar–12 May 2018 177.7 174.8 265.98 266.85 1.6 0.3 92.2 91.2
16 SR: 13 Sep–15 Nov 2018 87.3 83.4 107.28 111.46 4.5 3.8 85.9 75.8

Mean 3.8 4.6 89.8 84.6

Generally, the results (Tables 4 and 6) revealed a higher peak flow during the 15th,
9th, 13th, and 5th than in other events, with simulated values of 177.7 m3s−1, 171.7 m3s−1,
169.9 m3s−1, and 166.9 m3s−1, respectively. The latter were recognized as plausible
compared to the amount of rainfall (hyetograph) received in their respective events
(Figure 7); showing 2018, 2015, 2017 and 2013 as having high magnitudes of rainfall
spells compared to the remaining periods. In line with this, recent studies conducted in
East Africa revealed that it is obvious that with an increasing trend in rainfall variability,
seasonal changes in the discharged flow are a possible outcome [95,96]. This can be said to
be true in our case study, since the discharged flow fluctuations exhibited a notable relation-
ship with rainfall variations following the rainy seasons; which also indicates a substantial
influence of rainfall patterns on hydrological processes [97]. Moreover, existing studies
revealed a great susceptibility of river catchments toward climatic variations [97–100]. In
particular, these studies argued that temporal variations in rainfall patterns contribute to
the modification of flow regimes and have a direct impact on discharged flow [99]. Thus,
discharged flow peaks in rivers are prone to these types of variations, which can further
lead to hydrometeorological-induced hazards such as flash floods. This study, therefore,
suggests that flash flooding will likely increase across the Nyabarongo catchment, but
that this will vary based on catchment characteristics and spatial changes in climate. This
suggests a need for giving attention to vulnerable zones, particularly in built-up areas
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known to host many lives and properties at risk, with a lack of retention or strong drainage
systems [49].
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Figure 7. Rainfall hyetographs distribution per event.

The plots of the observed over simulated flow hydrographs have been shown to follow
a similar trend (Figure 8) and peak timing (Table S4). This confirmed the capability of
the model to produce accurate predictions of discharged flows and volumes for different
rainfall or flood events. However, it was generally evidenced that the land surface is soaked
during the monsoon season, and it is known that rain falling in the catchment will flow as
streamflow [99,100]. Thus, besides rainfall, the dynamic between non-climatic elements
such as LULC and soil type might be a direct or indirect influencing driver for current and
future discharged flow under biogeophysical mechanisms. On the other hand, since flow
records lack the ability to combine irregularities in the catchment scale, real impacts can be
better experimented on in flow modeling using global circulation models—a subject that is
recommended for future exploration in this study area.

3.3. Statistical Tests for Accuracy and Performance of the Model

Conforming with recent studies [28,101], the relationships between the simulated
and observed peak flow (Figure 9) have been calculated using different metrics for both
calibration and validation processes. For instance, the correlation coefficient (R2) disclosed
decent results (>80%) in all events, with an overall average of 88.4% and 89.8% for calibra-
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tion and validation, respectively. Besides this, the NSE metric also exhibited satisfactory
findings between the observed and simulated values, with an average of 80.9% and 84.6%
for calibration and validation, respectively (Tables 4 and 6). Statistically, lower acceptable
average relative error percentages for all the events were also found for discharged flow
(5.5% and 3.8%) and volume (7.7% and 4.6%) for calibration and validation, respectively.
Overall, the model results have improved during the validation period using the optimized
values. These findings are judged as being very much in agreement with the national
criteria for flood forecasting in China, arguing that the rainfall–runoff model is considered
effective when the error percentage of simulated volume is less than 20% [102]. Hence,
HEC-HMS showed a better performance, computing efficacy, and predictive capability in
simulating the discharged peak flow and volume for the Nyabarongo River catchment.
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4. Conclusions

In this study, the discharged peak flow and volume simulation of the Nyabarongo
River catchment in Rwanda were examined for corresponding rainfall events using a
developed hydrological model and its algorithms, integrated with geospatial analyses.
A total of sixteen events were selected covering the rainfall seasons, of which ten events
were used for calibration and the remaining six used for validation at the catchment outlet.
The performance evaluation of the model was determined using graphical and statistical
approaches which revealed that the observed flow fitted well with the simulated discharged
peak flow. After calibration and validation, the findings confirmed that the hydrological
response of the Nyabarongo River catchment was directly associated with the rainfall
seasons of Rwanda. Thus, with a slight increase in rainfall, there would be a risk of a
surge in river flow which could consequently instigate widespread downstream flooding
in the area.

In conclusion, HEC-HMS and its geospatial extension (HEC-GeoHMS) proved their
capacity to simulate and estimate discharged flow based on different datasets and could,
therefore, be used in other ungauged or poorly gauged adjacent catchments with similar
features. The findings produced by this model could also be used as a decision support
system in order to reduce downstream flooding risk in the catchment, as they can pro-
vide managers and decision-makers with vital information to help them take optimistic
and effective initiatives for heavy rainfall-induced hazards. As a suggestion for such
initiatives, the construction and design of drainage structures with sufficient conveyance
capacity could be implemented in this area. Despite the good performance of the devel-
oped model, the study contains some limitations that cannot be disregarded in future
research. For instance, one set of LULC data was used and no attention has been given to
variations in land surface characteristics such as land use and soil properties, which have
the potential to influence hydrological transformation within the catchment. Hence, the
application of detailed hydrological models which integrate land-use change effects on
hydrological processes may also improve the understanding and knowledge of current and
future discharged flows. Owing to this, this study strongly recommends an investigation
into the joint effects of non-climatic and climatic drivers on the hydrological response of
the catchment. Moreover, due to the scarcity of long-term in-situ data, remote-sensing
data with global circulation models can be taken into account to authenticate the drivers’
behavior, particularly for ungauged or poorly gauged catchments. Finally, more hydro-
meteorological and weather stations must be established or revived across the country for
future long-term assessments.
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