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Abstract: The rock mass erosion of dam spillways, a phenomenon involving the interaction between
the hydraulic load of water and the capability of the rock mass to resist its destruction, remains a
critical safety issue. The erosion resistance of a rock mass can be estimated through several erodibility
indices, including those of Kirsten, Pells or Bollaert. Several indices have been developed to link
rock resistance to the hydraulic parameters of water, i.e., the hydraulic load applied on a rock mass.
The developed indices use the average flow velocity, the average shear stress on the bottom of the
flow channel, the stress applied to the internal joints of fractured rock mass, the dynamic impulse
force, and the power dissipation of water to represent the erosive force of water. From these indices,
several methods of assessing hydraulic erosion have been developed, and all use the threshold line
concept. Nonetheless, several uncertainties are associated with these methods. This paper presents
and discusses the various means of calculating the erosive force of water as a hazard parameter for
predicting potential rock erosion. The representativeness of these approaches is also discussed, and
we clarify nuances associated with each method. We then provide guidelines for future research
aimed at improving estimates of the erosive force of the water within spillway flow channels.

Keywords: hydraulic erodibility; hydraulic jump; hydraulic load; plunging flow; power dissipation;
rock mass

1. Introduction

The notion of the hydraulic erodibility of a rock mass emerged around 1900 after
observations of the degradation of rock masses under bridges [1]. Several cases of erosion
downstream of dam spillways have since been observed, for example, the Tarbela dam
in Pakistan in 1976 [2] and the Kariba dam in Zambia in 1962 [3]. Much research has
focused on understanding this phenomenon, and several methods have been developed
for evaluating the hydraulic erodibility of a rock mass using semi-empirical and semi-
analytical methods. These methods have applied the concept of the “threshold line,” [4,5] a
correlation between a hydraulic hazard parameter (e.g., shear stress, hydraulic power, and
hydraulic energy) and the capacity of the rock to resist destruction. This concept is based
on three erosion mechanisms in particular: dynamic block removal, brittle fracturing, and
the continuous fragile fracturing of the rock mass [6–8]. Turbulent flow is the flow mode
that can produce these different erosion mechanisms.

Erosion by the removal of blocks is a process that depends on the water pressure
within the joints of the fractured rock mass. The amplitude of the fluctuating pressure
changes with time during a turbulent flow, and the pressure applied inside the rock joints
can increase pressure directly below the blocks. Moreover, the rock mass is eroded by
the dynamic expulsion of the blocks when the lifting pressure under the block exceeds
the resistance force of the block in the rock mass (Figure 1). The parameters affecting the
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resistance of the block are the submerged weight of the block (Gb), the pressure on top of
the block (Fo), and the shear resistance along the sides of the block (Fsh).

Figure 1. Erosion by block removal (Bollaert [6,7] named this process dynamic block impulse).

The second mechanism enabling the erosion of a rock mass is brittle fracturing or
instant hydrofracturing. This mechanism occurs when the intensity of the fluctuating
pressure-induced stress in the joints is greater than the resistance of the rock, and, hence,
the rock mass breaks into small pieces owing to fragile failure (Figure 2).

Figure 2. Erosion by brittle fracture or instant hydrofracturing [7].

The final mechanism of erosion is continuous fragile fracturing or fatigue erosion.
This mechanism occurs when the instantaneous brittle fracture of rock mass is not possible,
as the intensity of the stress in the joints does not exceed the resistance of the rock mass.
The rock mass is eroded, however, by fatigue pressure loads that exist in the joints. This type
of erosion is highly dependent on time (Figure 3).
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Figure 3. Erosion by the continuous fragile fracturing of a rock mass or hydrofracturing by fatigue [7].

From these three erosion mechanisms, various indices have been developed to repre-
sent the resistance of a rock mass. These indices include the Kirsten index (Kh), Bollaert’s
in situ resistance of a rock mass (KI,in), and the indices of Pells, which are the geolog-
ical strength index for erodibility (eGSI) and the rock mass erodibility index (RMEI).
The hydraulic hazard parameter of water has been mainly represented by the dissipation
of energy rate (ΠUD in kW m−2), although other parameters have been used. For example,
Bollaert et al. [6] estimated the hydraulic hazard parameter of water in terms of the stress
applied in a joint present within a rock mass (KI in MPa m1/2) and in the form of force
dynamic impulse or block lifting force (Iimpuls in Kg m s−1). Pells et al. [9] illustrated
that the average flow velocity

(
u in m s−1) and the average shear stress on the bottom

surface of flow channel (τb in Pa) are suitable indicators for representing the hydraulic
erosion hazard for a fractured rock mass. Among these above-listed parameters, energy
dissipation was selected by Bieniawski [10], Moore [11], Annandale [4,12], Kirsten [13], and
Pells [5] (among others) to estimate the hydraulic hazard parameter of different possible
flow conditions in spillways. Annandale [4] maintained that the dissipation of hydraulic
power (ΠUD) provides a good approximation of turbulent fluctuations. Moreover, a large
combination of spillway geometry and flow types can be associated with a given measure
of ΠUD. Because the determination of ΠUD is relatively easy to perform, this also greatly
favors the use of ΠUD.

Although the resistance indices of the rock mass and the hydraulic power indices have
been commonly used to evaluate the hydraulic erodibility, these methods have produced
inconsistencies in some cases. These inconsistencies likely stem from two sources: the esti-
mation of erosive force and the uncertainty linked to the indices for defining the resistance
of a fractured rock mass. Previously, Boumaiza et al. [14] evaluated the weaknesses of
the resistance of rock mass indices for the hydraulic erosion process. Here, we review the
indices of the erosive force to determine whether erodibility assessment methods are also
influenced by these hydraulic power indices and therefore represent (or not) a source of
the produced inconsistencies in assessments of the hydraulic erodibility of a rock mass.
Because of the large number of proposed indices, we review the various estimation meth-
ods of indices developed to represent the erosive force of water (waterpower) for various
spillway flow modes. We highlight the advantages and disadvantages of each index and
discuss the representativeness of each. We suggest that these indices do not effectively
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represent the erosive force of the water; we therefore offer potential research avenues to
develop a better characterization of the erosive force of water.

In the following sections, we summarize the types of spillways and their operating
mode. The different methods for estimating the hydraulic hazard parameters for rock
mass erosion are then presented, including the estimation of the average shear stress at the
bottom surface of a flow channel, the average flow velocity in open channels, the applied
stresses inside joints, the block lifting force, and the dissipation of power or energy from a
flow channel. We also discuss the limitations of these methods.

2. Types of Spillways and Their Operating Mode

The overflow structures in dams can be divided into two categories on the basis
of their frequency of use: spillways (fuse-plug or emergency spillways) and regulation
structures (service or auxiliary spillways). A spillway returns the excess water arriving at
the dam during periods of flooding to the river. The return period of flooding determines
the frequency of this occasional use. In contrast, regulation structures manage the flow
rate, ensuring a relatively continuous transfer of water to the river. Despite the significant
operational differences between the two structures, their designs and configurations are
similar. Structures in each category vary in their specific configurations depending on site
topography and geology. These on-site properties determine the types of spillway that are
installed, for example [15]:

• ogee spillway,
• chute spillway,
• side-channel spillway,
• shaft or tunnel spillway,
• siphon spillway,
• and free over-fall spillway.

The energy of the discharging water must be dissipated before returning to the river;
therefore and depending on the operational mode of the specific spillway, these structures
are equipped with a flow channel or a transition zone between the end of the profiled
threshold and the final dissipation zone of an evacuation structure (Figure 4a). In other
cases, a simple basin, constituting a plunge pool, dissipates the energy immediately at the
foot of the spillway (Figure 4b,c). The flow channels dissipate and direct the torrential
regime flow toward the final dissipation zone. In this latter case, the observed flow modes
differ depending on the nature of the channel, i.e., flows on an inclined slope, hydraulic
jumps, flows at knickpoints, and plunging flows into the receiving pool.

Figure 4. Cont.
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Figure 4. Types of spillways. (a) Typical longitudinal section through an unlined spillway of a large
embankment dam; (b) schematic representation of a free jet, and (c) schematic representation of
discharge over a drop structure.

Several spillways around the world have been designed and built involving a combi-
nation of a discharge channel and a dissipation or stabilization zone. Examples of these
combined spillways include the Robert-Bourassa dam spillway (Baie-James, QC, Canada)
and the Hell Hole dam spillway (Placer County, CA, USA) [15]. Moreover, in most cases,
the dissipation structures are excavated into the rock mass, including the plunge pool or
the combination of an evacuation channel and dissipation zone. An important aspect of
these unlined spillways is the phenomenon of hydraulic erosion of rock mass. For these
spillways, the proper estimation of the erosive force of water is critical.

3. Methods for Estimating the Erosive Force of Water in Spillways

Various methods have been applied to estimate the erosive force of water in erosion
processes, and different indices of erosive force have been obtained, including the average
shear stress at the bottom surface of a flow channel, the average flow velocity in open
channels, the applied stresses inside joints, the block lifting force, and the dissipation of
energy from a flow channel.

3.1. Average Shear Stress at the Surface of the Flow Channel

The velocity profile of a fluid is proportional to the applied shear force, and the
linear proportionality factor is the dynamic viscosity (τ = µ · du/dy) [5,16]. Given that the
viscosity of water is well known, the average shear stress at the bottom surface of a flow
channel therefore mainly depends on the variation of flow velocity, which is a function
of the nature of the flow. The calculation of shear stress varies, however, depending on
the type of flow. The shear stresses for a uniform flow depend on the slope of the flow
channel. In the case of non-uniform flow, the total energy gradient is used to estimate the
shear stresses in the channel. Figure 5 illustrates possible cases of the distribution and
variation of flow velocity. The cases depend on the nature of flow; in the first case, the
velocity of a flow is uniform (Figure 5a), whereas the second case has a variable velocity
for a non-uniform flow (Figure 5b). Depending on the nature of the flow, shear stress on
the bottom of the channel can be estimated using either Equation (1) or Equation (2):

τb = ρ · g · RH · S cos θ (Uniform flow), (1)

τb = ρ · g · RH · S f cos θ (non− uniform flow), (2)

where µ is the dynamic viscosity of water, u is the flow velocity, RH is the hydraulic radius,
S is the slope of the channel equal to dz/dx, x is the distance along the channel, z is the
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elevation above a datum, g is the gravitational acceleration, θ is the angle of inclination
of the channel, and S f is the total energy gradient equal to dH/dx = H f /L · cos θ, and
H f is the energy loss by friction (in m) over distance L, which can be determine using
Equation (19) (Section 3.2).

Figure 5. Schema of (a) uniform and (b) non-uniform flow (modified from Graf and Altinakar [17]).

It should be noted that τb represents the mean hydraulic shear stress on the surface
of the channel. The actual shear stress at each point along the channel can always vary
because of the presence of relatively rougher parts of the channel. Given this variability, the
shear stress term (τb) is generally replaced by the shear velocity (u∗), which is calculated
using Equation (3):

u∗ =

√
ρ · g · RH sin θ

ρ
=
√

g · RH sin θ & τb = ρu2
∗. (3)

According to Streeter [18], estimating the shear stress in a flow channel is quite
complex for turbulent flow because of the variable internal shear stress, which depends on
the velocity over the entire depth of the flow profile and the substantial changes along a
channel. A simple solution, for this case, is to substitute the dynamic viscosity (µ) with the
eddy viscosity (η) to calculate the shear stress for turbulent flow (Equation (4)) [18]. For this
to be possible, the eddy viscosity must be estimated for each flow type, as this parameter is
not a constant characteristic of the fluid and varies throughout the profile of the fluid over
time. This parameter depends upon the density of the fluid, the velocity gradient, and the
mixing length, and it generally varies from point to point in the flow field:

τt = η.
du
dy

(4)

In addition to Equations (1)–(4), expressions exist for estimating the shear stress at the
surface of a flow channel. Table 1 summarizes some existing methods used to calculate this
surficial shear stress. Most of these methods are adapted for calculating the local average
shear stresses of straight and prismatic flow channels of rectangular, trapezoidal, and
circular sections, either with or without a flat or compound bed. Moreover, these methods
differ in their assumptions, which can lead to divergent shear stress estimates. We detail
some of the methods presented in Table 1 below.
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Table 1. General characteristics of methods for calculating the shear stress at the surface of a flow channel.

Method Cross-Sectional Shape Boundary Roughness
Distribution

Lundgren and Jonsson (1964) General Homogeneous and rough
Flintham and Carling (1988) Rectangular, trapezoidal Homogeneous
Pizzuto (1991) General Homogeneous
Christensen and Fredsoe (1998) General Homogeneous
Khodashenas and Paquier (1999) General Homogeneous
Ramana Prasad and Russell Manson (2002) Rectangular, trapezoidal Homogeneous
Berlamont et al. (2003) Rectangular, circular (with or without a flat bed) Homogeneous

Yang and Lim (2005) and Yang et al., 2004 Rectangular, trapezoidal, circular, V-notch,
compounded Homogeneous

Guo and Julien (2005) Rectangular Homogeneous and smooth
Seckin et al. (2006) Rectangular Homogeneous and smooth
Severy and Felder (2017) Rectangular Homogeneous and smooth

3.1.1. Merged Perpendicular Method

The merged perpendicular method (MPM) is a geometric method for calculating the
local shear stress in an irregular cross section of a channel. This method is derived from
the normal area method, which relies on the concept of hydraulic radius separation based
on the subdivision of a cross-sectional region delimited by walls into three subareas that
correspond to the lateral walls and channel bed [19]. The wetted area is then divided into
small subareas using the lines normal to the wetted perimeter (Figure 6).

Figure 6. Schematic illustration of the areas determined by the merged perpendicular method [19].

The local shear stress (τi) is thus obtained using Equation (5):

τi = ρ · g · R · J f , (5)

where R is the local hydraulic radius, and J f is the average energy slope. Subsequently,
the average boundary stresses acting on the channel bed and sides are determined by the
numerical integration of the local values. However, this method neglects secondary flow
structures and the momentum transfer in an irregularly shaped channel. Moreover, the
roughness distribution along the wetted perimeter is not considered when the wetted area
is divided into subzones.

3.1.2. Ramana Prasad and Russell Manson Method

This method is based on an analytical approach for calculating the percentage of shear
force (%SFw) carried by the sidewall in prismatic channels of a trapezoidal cross section
having a homogeneous roughness [20]. The percentage of shear force is given in terms
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of the width–depth ratio (b/h) without accounting for the effect of secondary currents
(Equation (6)):

%SFw =
100τ(w)

τ(w) + τ(b)

( P(b)
P(w)

) =

 25
(

4− b
h

)
b
h ≤ 2

100
b
h

b
h ≥ 2

(6)

where P(b) and P(w) represent the wetted perimeter of the bed and sidewalls, respectively.
Knowing %SFw, the following equations are used to determine the shear stress of the bed
and the walls of a channel ( τ(b) and τ(w)):

τ(b)
ρghJ f

= (1− 0.01%SFw)
(

1 +
P(w)

P(b)

)
τ(w)

ρghJ f
= 0.01%SFw

(
1 +

P(b)
P(w)

) (7)

3.1.3. Yang and Lim Method

This method uses an analytical approach for calculating the distribution of shear
stresses in prismatic channels and is based on the concept of excess energy transport
over a minimum relative distance within a uniform and fully developed turbulent flow.
The relative distance is defined as the ratio of the shortest geometric distance to the energy
dissipation capacity (EDC) of the boundary. For a smooth boundary, the characteristic
length representing the EDC of the boundary is scaled using the viscous length scale
(ν/u∗) [21], where ν is the kinematic viscosity of the fluid, and u∗ is the shear rate. And
for an approximate limit, the characteristic length is scaled using the roughness height
of the limit. From this concept, Yang and Lim divide the flow zone into subzones on the
basis of the shape of the cross section and the roughness of its wetted perimeter; however,
secondary currents are not considered. The distribution of average shear stresses along the
bed

(
τ(b)

)
and side wall

(
τ(w)

)
for a smooth trapezoidal channel are determined using

Equations (8) through (11): 
τ(b)

ρghJ f
= 1 + h

b
1

tan β − ψ h
b

1
sin β

τ(w)

ρghJ f
= 1

2 ψ
(8)

where h is the flow depth, b is the width of the channel bed, β is the angle between the
sidewall and the water surface, and ψ is the ratio of the EDC of the lateral wall to the
EDC of the bottom

(
ψ = u∗(b)/u∗(w)

)
. Equation (8) is applicable and valid under the

following conditions: {
b
h ≥ 2 1−cos β

sin β

(1− ψ cos β) ≤ 0
(9)

The conditions of Equation (9) regarding the applicability of Equation (8) involve the
case where the intersection of the dividing lines is located above the water surface in wide
channels. In those cases where the dividing lines are located below the water surface in
narrow and deep channels, the average stress at the limits is given by Equation (10):

τ(b)
ρghJ f

= b
4h ξ

τ(w)

ρghJ f
= b

4hψ2 ξ
(10)
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where ξ is the slope of the dividing line, which is defined as ξ = sin β
ψ−cos β . Similarly, for

wide channels, Equation (10) is only valid if:{
b
h ≤ 2 1−cos β

sin β

(1− ψ cos β) ≤ 0
(11)

Thus, for channels having a rough and homogeneous trapezoidal section, the local
bed and sidewall average stresses are obtained using Equations (8) and (10), with ψ = 1,
assuming that the dividing lines are the bisectors of the internal base angles of the trapezoid.

3.1.4. Guo and Julien Method

Guo and Julien present a formula for determining the average shear stress of the bed
and sidewalls within a smooth rectangular open channel. The method uses conformal
mapping, assuming in a first approximation a constant vortex viscosity without considering
the effect of secondary currents [22]. In a second approximation, they use two grouped
empirical correction factors for the effects of secondary currents, the variable viscosity of
the vortices, and other possible effects to calculate the shear stresses (Equation (12)):

τ(b)
ρghJ f

= 4
π Arctg

[
exp

(
−πh

b

)]
+ 4

π
h
b exp

(
−h
b

)
τ(w)

ρghJ f
= b

2h

(
1− τ(b)

ρghJ f

) (12)

3.1.5. Method of Seckin et al.

Drawing on the studies by Knight et al., Seckin et al. [23] use nonlinear regression to
develop equations derived from an experimental analysis to obtain the percentage total
mean shear force on the base and the smooth walls of the wetted perimeter in terms of
the width-to-depth ratio. From the percentages of the shear force (%SFw), Knight et al.
produce equations to determine this average shear stress (Equation (13)):

τ(b)
ρgRS f

= (1− 0.01%SFw)
(

1 + 2H
B

)
τ(w)

ρgRS f
= 0.01%SFw

(
1 + B

2H

) (13)

where R is the hydraulic radius, S f is the energy gradient, B is the width of the channel,
H is the channel depth, and %SFw is the percentage of the shear force acting on the walls
along a unit of channel length, determined by Equation (14):

log(%SFw) = −1.4026 log(B/H + 3) + 2.6692
or

SFw = exp(α), in which α = −3.23 log(B/H + 3) + 6.146
. (14)

Reanalyzing the Knight et al. equations, Seckin et al. [23] use a shifted power adjust-
ment model to find %SFw. They then use various function models to estimate the average
wall and bed shear stress of a channel. Seckin et al. [23] apply a rational function model to
determine the average bed shear stress, τ(b), and a logistic model to determine the average
wall shear stress τ(w). The developed respective equations are:


τ(b)

ρgRS f
=

a+b(B/H)

1+c(B/H)+d(B/H)2 , where a = 0.946, b = 0.117, c = 0.088 and d = 0.0011
τ(w)

ρgRS f
= a

1+b exp[−c(B/H)]
, where a = 0.011, b = −0.989 and c = 0.00034

, (15)

where a, b, c, and d represent constants.
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3.1.6. Severy and Felder Method

By performing flow tests in a smooth rectangular channel, Severy and Felder [24]
develop an equation to calculate the average shear stress of a channel from detailed
measurements of flow velocity. They use three approaches to compute the boundary shear
stress: the logarithmic law within the inner flow region, the velocity defects law in the
outer flow region, and the direct-step method. Relying on the equations of Schlichting and
Montes, Severy and Felder develop Equation (16) as a function of a resistance factor to
calculate the local shear stress (Equation (16)):

τ0 =
1
8

f ρV2 (16)

where V is the flow velocity, and f is the Darcy-Weisbach friction factor for gradually
varying flows, in this case determined by:

f =
8 · g · S f ·

(∫ y=Y98
y=0 (1− C)dx

)2(DH
4

)
q2

w
(17)

where S f is the energy gradient, x is the longitudinal distance in the direction of flow
propagation, y is the perpendicular elevation from the channel bed, Y98 is the character-
istic flow depth, C is the fraction voids in the flow, qw is the discharge, and DH is the
hydraulic diameter.

In summary, shear stress is a physical measure of the normal force applied to a
channel. Shear stress is intrinsically linked to the nature of the velocity profile and indirectly
represents many hydraulic characteristics. Pells [5] selected the mean shear stress of the
channel as an appropriate indicator of the erosive force of water. Van Schalkwyk [25]
and Pells [5] demonstrated that the amount of observed erosion is well correlated with
shear stress. Most researchers hold that the erosion caused by the flow of water in the
channel is due to the shear stress exerted by the water at the bottom surface of the flow
channel. However, Annandale [7] showed that this notion is only valid for laminar flow;
for turbulent flow, the erosion capacity of water depends on the pressure fluctuations
exerted by the water rather than shear stress. Moreover, shear stress cannot explain all the
probable mechanisms of erosion, including erosion by the dynamic expulsion of blocks
recessed in a rock mass or erosion by fragile fracture of the rock mass into small pieces
because of turbulent flow. In addition, the average shear stress in the flow channel is a
hard-to-estimate parameter that can cause considerable uncertainty in estimates of the
hydraulic head under differing flow conditions within the spillways (e.g., hydraulic jump).
Most equations used to evaluate this parameter (Equations (5)–(17)) were developed for
narrow, smooth-wall flow channels (e.g., pipes) and then applied analytically to other
types of channels. Most of these equations have also been developed using assumptions
that do not apply to spillway flow channels, including the homogeneity of the shear stress
of the flow channel, the non-inclusion of secondary currents in a flow channel, and the
non-differentiation of subcritical and supercritical flows. Finally, these methods are based
on different assumptions, which can lead to an approach-dependent shear stress estimate.
Their use in the cases of flow channels of spillways is therefore highly questionable.

3.2. Average Flow Velocity in Open Channels

The average flow velocity (u) can be calculated on a plane that is perpendicular to the
flow direction and is given by the shearing movement in a fluid. This movement leads to
the continuous dissipation of energy and depends considerably on the profile of the flow
channel surface, the viscosity of the fluid, and the nature of the flow. Various flow resistance
coefficients, including the expressions of Darcy-Weisbach, Chézy, and Manning, are known
to represent the resistance to flow [26] in the calculation of the average flow velocity.
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First, assuming τ0 ∝ u2, Chézy [5,26] defined a resistance coefficient to represent
the resistance to flow and developed an equation to calculate the average flow velocity as
Equation (18):

u = C
√

RH .S; where C =

√
ρ.g
K

(18)

where τ0 is the shear stress, C is the resistance coefficient of Chézy, u is the average cross-
sectional flow velocity, and K is a probability coefficient or relative roughness coefficient.

Experiments on fluid flow in pipes led Darcy and Weisbach [5,26] to develop a flow
resistance coefficient ( f ) and derive an equation for calculating the average flow velocity on
a smooth surface. Subsequently, this index was applied to open-channel flows by replacing
the diameter of the pipe with an effective diameter representative of the hydraulic radius
of a flow channel. The resulting analytical equation is presented as Equation (19):

u =

√
8g
f

√
RH .S f cos θ; where H f = f

L
de f f

u2

2g
= f

L
RH

u2

8g
, (19)

where H f is the energy loss by friction (in m) over a distance L, and de f f is the effective
diameter of channel function for the hydraulic radius of the channel (de f f = 4RH).

Moreover, the calculation of the shear stress in a channel can be performed using
Darcy’s coefficient. Equation (20) was developed for this purpose:

τb = ρ.u2 f L
H f 8

H f

L. cos θ
cos θ =⇒ τb =

f
8

ρ.u2 (20)

Manning [5,26] calculated the average velocity of a uniform flow from a channel with
a flow resistance coefficient of n via Equation (21). It is noted that the Manning coefficient
(n) depends not only on the shape and roughness of the channel but also on the nature of
the flow itself. Hence, this parameter is generally an approximation in calculations, and
the known values are specific to river systems:

u =
1
n

RH
2/3S1/2; where n =

RH
1/6

C
= RH

1/6

√
f

8g
(21)

In addition to Equations (19)–(21), other equations exist for relating flow velocity to
the coefficient of resistance to flow. Knowing that flow resistance is influenced by various
parameters, including the shape of the cross section, the non-uniformity of the limits of the
flow channel, and the instability of the flow—in addition to the viscosity and the roughness
of the walls of a flow channel—flow resistance can be classified into four components:
surface or skin friction, form resistance, wave resistance from free surface distortion, and
the resistance associated with local acceleration or flow unsteadiness [27]. When the
Weisbach coefficient of resistance (f ) is applied, flow resistance can be expressed as:

f = F (Re, K, η0, N, Fr, U) (22)

where F represents a function, Re is the Reynolds number, K is the relative roughness
coefficient (usually expressed as ks/R, where ks is the equivalent wall surface roughness
and R is the hydraulic radius of the flow), η0 is the cross-sectional geometric shape, N is the
non-uniformity of the channel in both profile and plan, Fr is the Froude number, and U is
the degree of flow unsteadiness. The parameters of this equation are independent, and the
four resistance components (surface, form, wave, and unsteadiness) interact nonlinearly so
that any linear separation and combination are artificial.

The internal and external laws of the boundary layer theory are used to explain some
components of flow resistance and better define the flow resistance with respect to these
parameters. The theory of the boundary layer refers to a zone in a flowing fluid where
the viscous effects are as important as the effects of inertia in terms of magnitude. Within
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this layer, the tangential velocity with respect to the wall changes very quickly, having no
velocity at the wall and a greater-than-zero velocity outside this layer. Thus, the boundary
layer represents the interface zone between a body and a surrounding fluid.

According to this theory, the distribution of the velocity (u) along the normal di-
rection (y) to the wall is correctly described by the internal law (or the law of the wall)
where the viscous effect dominates and the external law (or velocity defects low) [16,28].
The expressions defined by these laws are:

u
u∗

= F(y∗, k∗) where : y∗ =
u∗y

ν
, and (23)

U − u
u∗

= F
(y

δ
, Hs

)
(24)

where u∗ is the shear velocity (Equation (3)), k∗ is the Von Karman’s constant, y∗ is a
constant equal to u∗y/ν, ν is the kinematic viscosity of the fluid, U is the free stream
velocity at the far end of the outer law, and δ is the boundary layer thickness. Hs is often
called a shape factor, a nondimensional parameter associated with the pressure gradient
and Reynolds number, and it is usually expressed as the ratio between the displacement
and momentum thicknesses of the boundary layer.

Knowing that the inner and outer laws are not mutually exclusive, there is a region
of overlap between the lower limit of the outer law and the upper limit of the inner law
(Figure 7). To characterize this transition zone, researchers have developed equations to
satisfy both laws. Rouse presented a logarithmic function that applies to the laws expressed
by Equations (23) and (24), and the power-law distribution of Chen is also used [27].
These equations are presented respectively in Equations (25) and (26). More information
on the logarithmic function and power-law distribution can be found in of Nezu et al. [29]:

u
u∗

= c1 log y∗ + c2, and (25)

u
u∗

= c3(y∗)
m, (26)

where c1, c2, and c3 are constants for a given channel. From these equations, the open-
channel resistance can be derived and extended from the resistance of a uniform flow in a
circular rigid pipe.

Figure 7. Regions of the inner and outer laws of the boundary layer [19].

The closest open channel counterpart of a circular pipe (besides a half circle) is the
two-dimensional (2D) wide channel. With the shape factor held constant for 2D wide
channels or circular pipes, Equations (23) and (24) imply that, referring to Equation (22),
the resistance to a steady uniform flow is solely a function of the Reynolds number Re and
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the relative roughness K = ks/R, provided that the Froude number is not high and its
effect is negligible. Hence, the resistance factors become:

f ,
n

R1/6 ,
C
√

g
, = F

(
Re,

Ks

R

)
, (27)

where ks is the equivalent wall surface roughness, and R is the hydraulic radius.
From Equation (27), various resistance coefficients in the form of Darcy-Weisbach can

be derived, depending on Re:

- For a uniform and regular laminar flow with a Re < 500, the resistance factor is
obtained as

f = KL/Re , (28)

where KL = 24 for wide channels and KL = 16 for circular pipes.
- For 700 < Re < 25,000, the resistance factor for a smooth pipe (and often used as an

approximation for wide channels) is

f = 0.224/Re0.25 . (29)

- For Re > 25,000, the resistance factor becomes

1√
f
= −K1 log

(
ks

K2R
+

K3

4Re
√

f

)
, (30)

where K1, K2, and K3 represent Colebrook-White coefficients for a regular uniform
flow in open channels with a rigid impermeable limit [27].

These Colebrook-White coefficients are implicit in the determination of f. To overcome
this drawback, Churchill [30] and Bray [31] assumed full flow in a pipe to then propose an
equation for calculating the flow resistance as:

f =
1
4

[
− log

(
ks

14.8R

)
+

5.76

(4Re)
0.9

]−2

. (31)

From Equation (31), Yen suggested a formula to calculate the flow resistance for large
open channels having a Re > 3000 and a ks/R < 0.05 [27]:

f =
1
4

[
− log

(
ks

12R

)
+

1.95
Re0.9

]−2
. (32)

For Equations (27)–(32), flow resistance is determined in terms of limit shear, that
is, from the perspective of the relationship between force and momentum. This concept
determines the flow resistance of open channels in terms of the slope of the impulse
resistance along a channel for a channel cross section. However, other work has shown
that resistance to flow can also be examined from the concept of energy in terms of the
energy loss when a fluid moves across a surface, as well as in terms of the energy slope
or, more precisely, the gradient of the mean motion of the dissipated energy. Yen and
Akan [32] suggest the rather than applying Equation (28), Equation (28) can be used for the
momentum equation of laminar sheet flow under rain-full conditions with an intensity i:

fm =

[
24 + 660

(
i

3
√

gν

)0.4
]

1
Re

. (33)

In summary, Equations (19)–(21) indicate that the average flow velocity is directly
related to the pressure that is applied to the surface of a rock mass or inside a joint. There-
fore, the average flow velocity is a key element for determining the specific forces that are
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applied to a rock mass. However, the average flow velocity is sensitive to the problem
of “non-uniqueness” in the field of hydraulic erosion. Pells [5] and Van Schalkwyk [25]
reported that the average velocity could not be used as a representative value in hydraulic
hazard parameters for erosion prediction. Moreover, the average flow velocity is propor-
tional to the flow resistance coefficient, which can be defined by knowing the roughness
of the flow channels and spatial variation along the flow channel. To specify the flow
resistance, the resistance coefficients of Darcy-Weisbach, Chézy, and Manning are used to
estimate mean flow velocity. The equations detailed above (Equations (28)–(33)) illustrate
the diverse means of determining resistance coefficients, and this diversity of approaches
can explain the confusion among users and the inconsistencies among the produced values
for the resistance coefficients. The application of these flow resistance coefficients in flood
spillways also remains uncertain. Indeed, the theory of the boundary layer served as a
basis in the development of some resistance coefficients and this theory would be less
effective for flow channels with very rough surface. Under the flow conditions considered
for rough unlined spillways, the roughness elements may exceed the thickness of the
boundary sublayer (fully turbulent flow) and the velocity profile is fully developed, that is,
the thickness of the boundary layer is equal to the depth of the outflow [5]. According to
Yen [27], the inner law region (Figure 7) below the transition zone is generally thin and it is
difficult to measure velocity, especially when the roughness of the wall is large.

The multiple equations established to determine the resistance to flow of a channel
fluid represent the derivative and the extent of the resistance of a uniform and constant
flow in a rigid circular pipe. These coefficients are approached either from the perspec-
tive of impulse resistance (resistance slope) or energy loss (energy movement gradient).
These various Darcy-Weisbach, Manning, and Chézy resistance coefficients can be related
(Equation (27)), and there is no clear theoretical advantage of one coefficient over the other.
The C (Chézy) coefficient is, however, the simplest to use, although there is no generally
accepted table or figure of C values. The n (Manning) coefficient has the advantage of being
nearly constant and almost independent of flow depth, Reynolds number, or ks/R for fully
developed turbulent flow on a rigid and rough surface [27]. Determining the resistance
coefficient values by Manning, obtained from field data, relies on the head loss energy
concept applied to channel reaches. The f (Darcy-Weisbach) coefficient has the advantage
of being directly linked to the development of fluid mechanics, and there are known values
for this coefficient, the most reliable source for the values of f being the Moody diagram.
Generally, f is regarded as a point value related to the velocity distribution, although some
hydraulic engineers extend it to cross-sections or reach values and consider it as an energy
loss coefficient. Thus, it appears appropriate to refer to the Darcy-Weisbach f for point
resistance, whereas Manning’s n can serve for cross-sectional and reach resistance coeffi-
cients. Previous field experiments suggest that n is a simpler coefficient when accounting
for the effects of other parameters beyond the Reynolds number and relative roughness, as
well as from a fluid mechanics perspective. A drawback of Manning’s formula is that it is
dimensionally non-homogeneous [27].

In general, these flow resistance coefficients are not representative of the roughness of
a flow channel of a spillway; for example, the Darcy-Weisbach coefficient was specifically
developed for pipes having a smooth surface and was then analytically modified for use in
open-channel flows. Manning’s coefficient is more applicable to river systems; however,
the roughness values of an uncoated channel of high-speed spillways is generally greater
than those estimated from river systems. Moreover, in practice, the resistance varies
among points, in particular along the flow channels of the spillway, whereas the resistance
coefficient for a cross section or a range of channels is a spatially weighted average of
local resistance. Yen [27] concludes that despite the success of resistance coefficients in
presenting complex physical processes in flows, much remains to be studied, including the
effects of channel geometry and flow instability on resistance to the flow.
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3.3. Applied Stresses inside Joints and the Block Lifting Force

Bollaert [6,8,33,34] estimated the hydraulic load on the rock mass by considering the
hydrodynamic tensile load of the joints, represented by the stress intensity factors in the
various erosion mechanisms. First, erosion is defined as resulting from instantaneous brittle
fracture (hydrofracturing), where the hydraulic head is defined by a stress factor (KI). This
index represents the stress induced by the water pressure inside the joints and, hence, the
brittle fracturing occurs when the intensity of the stress in the joints, owing to fluctuating
pressure, is greater than the resistance of the rock mass (Figure 2). The semi-analytical
index developed by Bollaert is presented in Equation (34):

KI = 0.8 · Pmax · F ·
√

π · L f , (34)

where 0.8.Pmax represents 80% of the maximum instantaneous dynamic pressure in the
diving tank, F is the correction factor, which depends on the types of cracks when it is
persistent, and L f is the total length of a joint.

In cases where brittle fracture is not likely, another mechanism dominates, i.e., fatigue
erosion or the progressive hydrofracturing of a rock mass. If the intensity of the stresses
in the joints does not exceed the fracture toughness of the rock mass, the existence of a
continuous fluctuating pressure in the joints can ultimately lead to the failure of the rock
because of fatigue (Figure 3). In this context, Bollaert considered the hydraulic head via a
stress intensity amplitude factor (∆KI), which corresponds to the difference in intensity
of maximum and minimum stresses inside a joint or, in a rough estimation, could be
considered equal to 40% of KI .

In a fractured rock mass characterized by a system of joint sets that form a block
assembly, erosion occurs by the dynamic expulsion of the blocks through water pressure as
a lifting force. Bollaert [6,8,33,34] estimated this load by considering the essential lifting
force of the individual block. This lifting force can be expressed as a dynamic impulse
index that is obtained by the temporal integration of the net forces applied to a block.
These forces include the force applied on top of the block (Fo), the lifting force beneath the
block (Fu), the submerged weight of the block (Gb), and the friction along the sides of the
block (Fsh) (Figure 1). The equation developed to define the lifting force of an individual
block is presented in Equation (35):

I =
∫ ∆tpulse

0
(Fu − Fo − Gb − Fsh) · dt = m ·V∆tpulse, (35)

where V∆tpulse is the velocity of the fluid in the joint, and m is the mass of the rock block.
In summary, the Bollaert index [6,8,33,34] defining the erosive force of water on a

rock mass illustrates effectively the three mechanisms of erosion and the importance of
the pressure dynamics in hydraulic erosion. These indices (KI and I) illustrate the erosive
force of water, as they are developed on the basis of various erosion mechanisms of a
fractured rock mass. To correctly apply these indices, however, some considerations must
be addressed. First, these indices are not applicable to other flow modes at spillways; for
example, they do not apply to parallel flow along the bottom of the channel and hydraulic
jumps. Moreover, the first two factors depend mainly on the maximum instantaneous
dynamic pressure (Pmax). This pressure depends in turn on the average velocity of the jet at
the impact point

(
Vj
)

and the dynamic pressure coefficient. The latter coefficient is obtained
by multiplying the quadratic mean pressure coefficient

(
C′pa
)

by a pressure amplification
factor in the joints

(
Γ+
)

and then adding a mean dynamic pressure coefficient
(
Cpa
)
.

The expression developed to calculate the instantaneous dynamic pressure is presented in
Equation (36):

Pmax = 10−6ρ ·
(
Cpa + Γ+ · C′pa

)
·

V2
j

2g
, (36)
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where the parameters Cpa and C′pa depend on the toughness of the rock mass and are
obtained experimentally. Nonetheless, the toughness of the rock mass is an irrelevant
criterion for the erosion of fractured rocks, and no setup can determine the toughness of
a rock [7]. The parameter L f in Equation (34) represents the total length of a single joint.
However, from the field data obtained by Pells [5], this parameter does not adequately
represent the geometry of an entire erosion zone because it is determined using a reduced
physical model that is not representative of a fractured rock mass.

The second index developed by Bollaert, the lifting force of a block, also includes some
nuances as to its reliability for estimating the erosive force of water. The first is that the
index does not consider the shear strength along the sides of the blocks (Fsh). Moreover,
according to Figure 1, the net lifting force of a block also depends on the joint openings.
As the openings become larger, the amount of water seeping into the joints increases, which
directly influences the pressure below the blocks. Therefore, this index of dynamic block
uplift once again ignores an important parameter contributing to the resistance of a block to
erosion. Furthermore, the indices developed by Bollaert [6,8,33,34] apply only to plunging
jets, and, hence, these indices are not applicable to other flow conditions. As a result, they
must be improved to not only determine the erosive hydraulic force of the plunging jets
for which they have been developed but also for their application to other flow modes.

3.4. Indices of Energy Dissipation

The dissipation of energy in spillways depends mainly on the flow condition, which
is primarily a function of spillway shape. Therefore, hydraulic powers should vary among
flow conditions. Several authors have thus developed expressions to calculate the dissi-
pation of energy in relation to the variation of the total energy gradient

(
dE
dx

)
to define

the erosive force of water within spillways. Van Schalkwyk [25] evaluated the energy
dissipation for plunging flows. Annandale [4] attempted to develop an expression for
estimating the energy gradient for calculating energy dissipation in plunging jets, hydraulic
jumps, and knickpoint flows. Similarly, Pells [5] developed expressions to determine the
variation of the hydraulic gradient for plunging jets and hydraulic jumps.

Van Schalkwyk [25] used the ratio between the total power of flow (T) and the surface
on which it is dissipated (A) to estimate the energy dissipation, following Equation (37):

P =
T
A

, where T = ρgQ, (37)

where Q is the water flow rate, and H is the total head.
Equation (37) was then applied to different flow modes observed at spillways to

estimate the energy dissipation of each. Accordingly, energy dissipation for an inclined
channel was calculated on the basis of the power loss over a distance. The energy released
owing to variations of the total head corresponds to the slope of the hydraulic gradient,
and the produced equation is presented in Equation (38):

P = ρgqS, where S =
dH
dx

and
dT
dx

= ρgQS, (38)

where q is the flow rate per unit length of channel width
(

q = Q/B f

)
, and B f is the

channel width.
Van Schalkwyk [25] then reformulated Equation (37) to calculate energy dissipation

for a plunging flow by selecting a coefficient of 3 as the energy gradient for the plunging
jet. Equation (39) presents the modified Equation (37) for calculating the energy dissipation
at a plunging flow:

P = 3gq. (39)

Equations (38) and (39), developed by Van Schalkwyk, are only applicable to inclined
uniform flow and plunging jets; however, some considerations should be noted. For
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example, the flow within the inclined flow channels of spillways is not uniform; and using
a coefficient of 3 as the energy gradient for a plunging jet needs to be evaluated further, as
the energy gradient of a plunging jet is highly variable. These equations are therefore not
sufficiently comprehensive to evaluate the erosive force of water within spillways.

Annandale [4] also proposed equations for calculating the erosive force of water
within spillways. When the density of water, the unit flow rate, and the energy loss of a
flow are accounted for, the resulting equation is:

P = γ · q · ∆E, (40)

where ∆E is the energy loss depending on the type of flow, and q is the specific discharge
rate equal to the flow rate divided by channel width. Considering a flow channel with a
length (w) and depth of water (d) that is measured perpendicular to the flow direction, the
unit discharge rate is calculated using Equation (41):

q =
Q
w

=
u× A

w
=

u · w · d
w

= u · d. (41)

From Equation (40), Annandale [4] developed several equations to estimate the erosive
hazard parameter for various flow modes at spillways, including for lunging jets, hydraulic
jumps, and knickpoint flows.

In regard to plunging jets, Figure 8 shows the characteristic parameters considered by
Annandale, where energy loss (∆E) is calculated as a function of specific discharges (q1 and q3).
From this, Annandale [4] developed Equations (42) and (43) to determine the energy dissi-
pation for a plunging jet:

P = γ · q · yc.

∆z
yc

+
3
2
− yl

yc
− 1

4

(
3
2
+

∆z
yc

)1 +
1.06√
∆z
yc

+ 3
2

2
 (depends on q1), (42)

P = γ · q · v2

8g

1 +
1.06√
∆z
yc

+ 3
2

2

(depends on q3), (43)

where yc is the critical depth of the jet, ∆z is the height of the spillway, v is the average flow
velocity, and yl is the downstream flow depth.

Figure 8. Schematic representation of a plunging flow according to Annandale [4].
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For a fluid flowing as a hydraulic jump, the significant parameters considered by
Annandale for this type of flow are represented in Figure 9, and the relevant equation is
presented in Equation (44):

P = γ · q

yl +
q2

2gy2
l
− yl

2

(√
1 + 8Fr

2
l − 1

)
− q2

2g
− 4

y2
l

(√
1 + 8Fr

2
l − 1

)2

. (44)

Figure 9. Flow conditions of a hydraulic jump [4].

According to Annandale [4], the maximum dissipation of a knickpoint flow occurs
at the point where the angle of the flow channel changes from a low to a steep angle
(Figure 10).

Figure 10. Schematic of a knickpoint flow [4].

Equation (45) is subsequently used to estimate the energy dissipation for a knick-
point flow:

P = γ · q
(

1 + cos(θ − α)

1− cos(θ − α)
Kl

(
v2

g

2g

)
+ S f · L

)
, (45)

where Kl is a probability coefficient estimated at 1 (on the pretense that it provides consistent
results), θ is the angle approximated by superimposing the theoretical ogee shape onto the
channel bed geometry, and α is the slope angle of the channel.

The equations used by Annandale [4] to estimate the energy dissipation for various
flow modes lack clarity and detail and have thus been criticized; for example, Pells [5]
points out that the Annandale equation ignores the hydraulic jump length (∆x) in the defi-
nition of flow dissipation (i.e., the expression is ρgq∆E rather than the correct form ρgq ∆E

∆x ).
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This issue was modified by Annandale [7] by using ∆x = 1 m and mentioning that this
value provides a conservative estimate in the absence of effective data. Henderson [35]
demonstrated that the length of dissipation is a significant parameter at ∆x = 6y2 (y2 is
the height of the water downstream of the flow channel), where the Froude number lies in
the 4.5 < Fr < 13 range. Moreover, for the specific discharge rate between 1 and 50 m2 s−1,
Annandale’s analytical solution overestimates the unit energy dissipation [5]. This dis-
sipation length is also ignored in the analytical solution of the unit power dissipation
of a knickpoint flow condition and downstream of a jet. Finally, the equation provided
by Annandale [4] for calculating the energy dissipation of the back roller (Equation (43))
disregards the length of the energy dissipation. These criticisms therefore discourage the
use of the Annandale equations in this context.

Pells [5] developed Equation (46) to calculate the erosive force of water in the flow
channel of the spillways:

Π = ρgQ

(
Pr

ρg
+

u2

2g

)
, (46)

where Pr is the water pressure, and ρ is the density of water.
The dissipation of the fluid energy represents the velocity at which the power is

expended, corresponding to the flux gradient. Hence, by multiplying the slope of the total
energy line by ρgQ, a simplified form of the energy dissipation equation is presented in
Equation (47):

ΠUD = ρ · g · q dE
dx

. (47)

From Equation (47), Pells [5] developed equations related to the various flow modes
found in spillways. Figure 11 illustrates the different parameters that are considered in
plunging flow. From these parameters, the estimation of the energy loss in plunging flows
over distance (between points 1 and 4 of Figure 11) is presented in Equation (48):

∆E = z1 + y1

3
2
− 2√

2α + 3
2

−

(√
2α + 3

2

)2

8

, (48)

where z1 is the height of the spillway, y1 is the height of the water from the surface of

the discharge point, and α is a coefficient depending on z1 and y1

(
α =

√
3
2 + Z1

y1

)
. By

combining Equations (47) and (48), Pells [5] proposed an equation (Equation (49)) to
calculate the energy dissipation for a plunging flow:

ΠUD = ρ · g · q1
dE
dx

=
ρ · g · q1√

2z1y1

z1 + y1

3
2
− 2√

2α + 3
2

−

(√
2α + 3

2

)2

8


. (49)

Subsequently, Pells [5] estimated the energy dissipation for a hydraulic jump flow, a
flow characterized by an abrupt change in the flow regime. By knowing the initial velocity
and depth, the downstream depth of the flow can be calculated. Thus, it is possible to
calculate the variation in velocity and the energy loss between two points (from upstream
to downstream). The resulting equation is presented in Equation (50). By combining Equa-
tions (47) and (50) and applying a distance about 6y2 between points (for 4.5 < F2

r1 < 13) [35],
Equation (51) allows calculating the energy dissipation for a hydraulic jump:

∆E = y1 +
q2

2gy2
1
− y1

2

(√
1 + 8F2

r1 − 1
)
− 4q2

2gy2
2

(√
1 + 8F2

r2 − 1
)2 , (50)
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ΠUD =
ρ · g · q

6y2

y1 +
q2

2gy2
1
− y1

2

(√
1 + 8F2

r1 − 1
)
− q2

2g
(

y1
2

(√
1 + 8F2

r2 − 1
))2

, (51)

where y2 is the height of the water downstream of the flow channel.

Figure 11. Schematic of a plunging flow according to Pells [5].

In summary, the analytical methods for estimating energy dissipation presented by
Pells [5] appear to be more reliable than other approaches. Generally, energy dissipation
is a widely used index for evaluating the hydraulic erodibility of a rock mass and is used
to represent the erosive force of water in most modes of hydraulic erosion assessments.
These methods are ΠUD vs. RMEI [5], ΠUD vs. eGSI [9], and P = f (Kh) [4,7,11,13,25]. This
energy dissipation index is used because of its simplicity rather than its effectiveness in
representing the erosive force. That is, owing to the absence of a reliable index and the
complexity of estimating the actual erosive force of water within a spillway, energy dissipa-
tion is used as a simple indicator of erosive hydraulic force. According to Pells [5], the use
of energy dissipation by itself is common, although it does not present all the complexities
of the erosion process; an infinite number of combinations of spillway geometry and flow
modes can be potentially associated with a given measure of energy dissipation. Moreover,
a direct interpretation of energy dissipation infers that it is not a direct measurement of
erosive capacity but rather represents energy loss linked to the conservation of heat and
not to the work performed. It is thus evident that there exists the need to develop an
improved index for calculating the erosive force of water to assess the erosion of a fractured
rock mass.

4. Discussion

The indices reviewed in this paper were developed to represent the erosive force or
hazard parameter of water for the purpose of determining rock erosion in the spillways
of hydroelectric projects. The previous sections exhaustively discuss the advantages and
disadvantages of each method for estimating the erosive force of water.

The non-representativeness of average velocity (u) is linked to its sensitivity to the
problem of “non-uniqueness” in the realm of hydraulic erosion. In short, the average shear
stress at the surface of the flow channel (τb) is designated as being representative of the
hazard parameter of the water within the spillways. However, shear stress cannot explain
all possible erosion mechanisms within the spillways, e.g., erosion via the dynamic removal
of blocks or erosion by the brittle fracture of large blocks into smaller blocks. This inability
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to fully explain the erosion mechanisms and the difficulty of estimating shear stress are
among the limitations when using this factor to calculate the erosive force of the water.
Energy dissipation as an erosive force does not include all the complexities of the erosion
process and is used to calculate the erosive hazard parameter of water mainly because it is
simple to determine, not because of its representativeness.

In regard to the semi-analytical solutions of Bollaert [6,8,33,34], they can be used
for estimating the erosive force of water as they better explain the principles behind the
different mechanisms of hydraulic erosion of rock mass; however, there are some criticisms
of these indices. The first index, developed on the basis of the stress applied to joints (KI),
includes parameters that are difficult to determine for a rock mass. Among them, L f (the
total length and shape of the joints) is not representative, as it was developed using a
scale model that is not representative of the fractured zone of a rock mass. In addition,
uncertainty is associated with the determination of the empirical variables, including
Cpa, C′pa, and Γ+. The second index, the dynamic impulse of the blocks

(
Iimpuls

)
, also

disregards some important parameters that influence the accuracy of the model, such as
the shear strength (Fsh) along the block sides. Another essential parameter for estimating
the lifting force of a block (see Figure 1) is the opening of the joints, a parameter directly
influencing the pressure below the blocks, the latter an important parameter neglected
by the lifting force of the blocks. Generally, the most important parameter for estimating
the Bollaert indices is the maximum dynamic pressures or the peak pressures applied
within joints. However, Pells [5] mentions that the pressure fluctuation follows a Gaussian
distribution; thus, no pressure peak is observed in the joints. Thus, these indices are only
applicable to plunging flows, and modifying the existing indices becomes essential.

Our review found that the main shared factor related to the indices used to represent
the erosive force is the pressure applied to the discontinuities of the rock mass. Among all
the mechanisms controlling hydraulic erosion, erosion by dynamic block removal appears
to be the most common erosion mechanism of fractured rock masses, as evidenced by
several cases of erosion observed at the flow channels of spillways around the world.
These cases of erosion by removal of the blocks mainly concern the spillways with inclined
flow channels. Figure 12 shows in detail the mechanism of erosion by removal of the
blocks in the inclined flow channels of the spillways. This remark therefore emphasizes
that different flow modes within spillways share similar dynamics of erosion; hence, the
dynamic expulsion index of the blocks seems more suitable than the other indices to
represent the erosive force of water. Nonetheless, the dynamic expulsion index must be
improved, as it neglects important parameters, including shear strength and joint opening.
Moreover, this index is only applicable to plunging flows.

The dynamic expulsion index should be modified to determine the erosive force of
water for the various flow modes occurring in spillways. This includes flows on inclined
channels, hydraulic jumps, and knickpoints. The mechanism of rock mass erosion in
relation to these flow modes is defined using parameters such as the pressure above
and under the block, the submerged weight of the block, the opening of the joints, the
arrangement of the joints with respect to the direction of flow, and the shear forces along
the sides of the block.

Figure 12. The block removal erosion mechanism for flow parallel to the bottom of the flow channel
(modified from Annandale [4]).
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In this regard, the critical unanswered questions include determining the uplift pres-
sure in the joint as a function of the parameters of the joint and identifying the influence
of or the interaction between the pressure and joint geomechanical parameters, including
the joint profile, opening, and roughness of the joint surface. Other relevant parameters
are the effect of the submerged weight of the blocks and the surface profile of the open
channels on this erosive hydraulic force (the pressure). Future studies should include the
characterization of the dynamic pressure variation applied to the discontinuities of the rock
mass to reduce these uncertainties.

5. Conclusions and Future Research Directions

This paper identifies the most important parameters affecting hydraulic power, such
as the instantaneous dynamic pressure for the hydraulic erosion of the rock mass. We
also highlight the various geomechanical parameters that can influence this pressure,
depending on the various known erosion mechanisms of the rock mass of the spillways. It
appears that no index is effective for the moment to represent the erosive force of the water,
however some of them can be improved.

Existing and ongoing studies include simulations at the laboratory scale via the use
of a physical model of an inclined channel spillway. These models must represent the
fractured rock mass as realistically as possible. Instrumentation is also essential to study
the pressure changes as a function of the variation in the parameters of the rock mass. This
additional information will permit assessing:

(1) Pressure variation in relation to block shape and size,
(2) Pressure variation in relation to joint opening,
(3) Pressure variation in relation to the arrangement of the joints relative to the flowing

direction of the water,
(4) Pressure variation in relation to different flow channel profiles,
(5) Relative displacement of the blocks as a function of the shear force along the joints

affected by pressure.

This experimental setup would help improve our understanding of rock mass erosion
and, hence, define the representative indices of hydraulic power and the resistance of the
rock mass. This experimental setup would favor developing a reliable method to evaluate
hydraulic erosion of fractured rock masses in spillways.

Author Contributions: Conceptualization, A.S.K.; methodology, A.S.K, A.S.; software, A.S.K.; vali-
dation, A.S.K., A.S., A.R. and M.Q.; formal analysis, A.S.K.; investigation, A.S.K.; resources, A.S.K.
and A.S.; writing—original draft preparation, A.S.K; writing—review and editing, A.S.K., A.S.,
A.R. and M.Q.; visualization, A.S.K., A.S., A.R. and M.Q.; supervision, A.S., A.R. and M.Q.; project
administration, A.S., A.R and M.Q.; funding acquisition, A.S. All authors have read and agreed to
the published version of the manuscript.

Funding: Natural Sciences and Engineering Research Council of Canada (NSERC), Hydro-Québec
for funding through the CRD program (CRD 537350).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the Natural Sciences and Engineering Research
Council of Canada (NSERC) and Hydro-Québec for funding the project.

Conflicts of Interest: The authors declare that they have no conflict of interest in regard to the content
of this document.



Water 2021, 13, 2950 23 of 24

Abbreviations

Symbol Description Units
A Cross-sectional area of a water flow m2

F Limit correction factor for stress intensity
H Total energy charge or water height m
K Relative roughness coefficient
L Pipe length m
N Non-uniformity of the channel in both profiles
Q Water flow rate m3 s−1

RMEI Rock mass erodibility index
S Gradient (slope) of ground
T Total power W
U Degree of flow unsteadiness
eGSI Geological strength index for erodibility
m Mass of rock kg

q
Unit discharge, the volumetric discharge per unit width

m2 s−1
of the channel

z Elevation above a datum m
(%SFw) Percentage of shear force
Fr Upstream Froude number
B f Width of a flow section measured at the water surface m
Fo Force on a block
Fu Force under a block
Gb Submerged weight of a rock block
H f Friction energy loss over a pipe length
IImpuls Dynamic impulse or block lifting force Kg m s−1

J f Average energy slope
Kh Kirsten’s index
KI,in In situ resistance of a rock mass MPa m1/2

Kl Sub-hydrostatic pressure factor of flow
L f Total joint length m

P(b), P(w)
The wetted perimeter of the bed and sidewalls of the flow channel,
respectively

RH Hydraulic radius m
S f Friction slope, the gradient of the total hydraulic energy line
V∆tpulse Flow or fluid velocity m s−1

dp Pipe diameter m
ks Equivalent wall surface roughness
yc Critical spray depth m
yl Downstream flow depth m
g Acceleration due to gravity m s−2

η0 Cross-sectional geometric shape
β Angle between the sidewall and the water surface ◦

θ Channel tilt angle ◦

ν Kinematic viscosity m s−1

ξ Slope of the dividing line
ρ Density of water kg m−3

ψ Ratio of the energy dissipation capacity
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