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Abstract: Optimization and sensitivity analysis of the kinetic parameters of the catalytic ozonation
process is crucial to improve water treatment, reactor design, and construction. This study evaluated
the optimization of the kinetic constants for Diclofenac (DCF) degradation during catalytic ozonation
with Goethite (FeOOH, as a catalyst) through different kinetic modeling approaches. A central
composite design was used to evaluate the effect of ozone dose and catalyst loading. The results
showed that FeOOH did not significantly influence the degradation of DCF, while the reactivity of
DCF with ozone was high (with >90% degradations in 20 min). However, the variation in catalyst
loading significantly affected TOC removal (>10%) and ozone use, with ozone efficiency in ozone
transfer (RU) 5% higher than ozonation. After evaluating the different kinetic models of reaction
speed by optimizing kinetic parameters and performing sensitivity analysis for the treatment of DCF
by catalytic ozonation, it can be concluded that the addition of FeOOH improved the kinetics of the
decomposition of ozone and the yield in the production of hydroxyl radicals.

Keywords: diclofenac; reaction kinetics; mechanisms; steady-state approximation; elemental
reactions; optimization

1. Introduction

Emerging contaminants (ECs) such as pharmaceutical compounds have reached a
critical level of presence in the environment [1,2]. Catalytic ozonation, as an advanced
oxidation process (AOP), has successfully degraded different pharmaceutical compounds
present in water [3–5]. Diclofenac (DCF), a pharmaceutical compound with high sol-
ubility, complex adsorption, toxic by-products, and conventional treatments, does not
degrade [6,7]. Numerous reports in the literature show high concentrations of DCF in
water bodies [7–9]. Therefore, degradation and mineralization of the DCF is the object of
study using AOP [6,10–12].

The fundamental parameters have been studied in various research works, such as
catalyst loading, ozone dosage, and reactor design [11–13]. Therefore, operating variables,
catalytic activity, mineralization, and size of reactors have improved significantly [1,4,13,14].
For example, to increase the efficiency of these parameters, the use of a modified flotation
cell has recently been proposed as a reactive system. This is used at an industrial level
to facilitate dense particle suspension and gas bubble dispersion within the reaction vol-
ume [14–17]. In 2019, Lara-Ramos et al. investigated this idea, where the intensification of
the advanced oxidation system by O3/TiO2/UV in a flotation cell was executed, leading to
cost reduction, and more minor limitations by mass transfer were highlighted [6].
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Furthermore, Iron-based catalysts such as Goethite (FeOOH) have been widely ac-
cepted for use in catalytic ozonation because of their abundance in nature, ease of synthesis,
and low toxicity [14,18–20]. In addition, FeOOH has a high density of hydroxyl radicals on
its surface that can attack the contaminant more efficiently. Recent literature reviews have
noted how this effect generally increases the rate of contaminant degradation compared
to ozonation in the absence of FeOOH [14,21]. Although the previous investigations have
allowed reaching a new level of maturity for the degradation of Ecs, the next step is to
model and optimize catalytic ozonation [22]. However, this step is more difficult to achieve
due to the complexity of the reaction mechanism depending on the evaluated system. For
each catalytic ozonation case study, its reaction mechanism is unique in how the catalyst
interacts with the targeted organic compounds and with ozone [23].

The nature of the interactions that occur on the surface of FeOOH continues to be
debated by researchers, since it is not easy to define the reaction mechanism for catalytic
ozonation [20]. However, recent research has described the reaction mechanism of catalytic
ozonation with using FeOOH as a catalyst resulting in the highly efficient promotion of
hydroxyl radicals as well as the possibility of the direct degradation of contaminants taking
place on the catalyst surface [17–20].

Table 1 summarizes some research on kinetic modeling of the catalytic ozonation
process for the treatment of water (contaminated with ECs). At the end of the 20th century,
most of the research on kinetic modeling focused on well-known and straightforward
compounds to study the fundamental kinetic steps of catalytic ozonation [24,25]. These
approaches were widespread and are still used today to describe wastewater treatment
kinetics due to the matrix of compounds [8,26]. Finally, progress has been made, and there
is mature research on new reactor designs [14,27,28] and catalysts [22,24,29,30].

The kinetic modeling of reaction mechanisms has made significant progress in the
description of water treatment with ozone. Among the most significant advances are
evaluating ECs mixtures [24,25] and including the hydrodynamic effects of new couplings
or reactor designs in the reaction mechanism [14,27,28,31–34]. The study and determination
of the reaction rate constants are essential to describe the phenomenology of chemical
processes. In the last decade, catalytic ozonization has aroused interest as the chemical
process for treating ECs, but first it is necessary to have rate constants for the catalytic
activity of catalysts such as FeOOH.

Based on the above, in the present work, different approaches for the kinetic modeling
of the reaction rate of the ozonization and catalytic ozonation processes were optimized,
studied, and compared. In addition, the degradation, mineralization, and RU were evalu-
ated in the treatment of DCF with the ozonization and catalytic ozonation processes.
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Table 1. Recent works are relevant to catalytic ozonation with FeOOH of diclofenac.

System

Source

Andreozzi et al.
(2001) [35]

Pocostales et al.
(2011) [22]

Khataee et al.
(2016) [36]

Yao, Hui & Hui.
(2017) [23]

Aghaeinejad-
Meybodi et al.

(2018) [27]
Guo et al. (2019) [24] Du, Chen & Lin.

(2019) [25]

Type of WW Synthetic Industrial Synthetic Gaseous Synthetic Synthetic Synthetic

Complexity Low High Low None Low Medium Medium

Contaminant Oxalic Acid
Diclofenac,

sulfametoxazole and
17a-ethynilstradiol

Nalidixic acid Toluene Fluoxetine
diclofenac,

gemfibrozil,
bezafibrate, etc.

Ibuprofen and acetyl-
sulfamethoxazole

Catalyst MnO2
γ-Al2O3 &

Co3O4/Al2O3

Clinoptilolite
nanorods MnO2/Graphene nano-γ-alumina α- or β- MnO2

multi-walled
carbon nanotubes

Reactor type semi-batch reactor Fixed-bed reactor Semi-batch Pyrex
reactor

Tube fixed-bed
micro-reactor

Semi-batch bubble
column reactor

Airtight acrylic
column reactor Unknown

Model nature Deactivable sites
kinetic model

Two-stage
first-order model

Pseudo-steady state,
empirical law, and

artificial neural
network

Langmuir-
Hinshelwood

dual-site

Artificial neural
networks Pseudo-second order Pseudo-second order

Model adjustment Visually good Visually good 0.98, 0.998, 0.991 0.9175 96.8% or 0.983 0.951–0.979 Unknown

Caveats None Model needs COD
removal calculations None

Model was fitted
with enthalpy and
entropy constraints

96.14% removal
efficiency was

achieved

Assumes oxidation
mainly by O3 and

OH•, other
means negligible

Global parameter
approximations
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2. Materials and Methods
2.1. Materials and Reagents

Diclofenac sodium salt (C14H10Cl2NNaO2, >98% HPLC area) and iron (III) hydroxide
oxide (Goethite, catalyst grade) were purchased from Sigma-Aldrich (Milwaukee, WI,
USA). Drinking tape water from Cali-Colombia was used for all the experimental trials
(physicochemical properties in Appendix A, Table A1).

2.2. Experimental Equipment

A Flotation Cell (FC, Denver type D-12 manufactured by METSO) was used for all
experimental tests. The FC had a stirring speed variation between 0 and 3000 rpm and
a reaction tank with a capacity of 2.3 L. In addition, an A2Z Model 5GLAB ozonizer
with a maximum capacity of 5000 mg/h was used (see Figure A1 in Appendix A). The
determination of ozone in the gaseous phase was carried out by means of an online ozone
meter (MINI-HICON, IN USA, San Diego, CA, USA), and the effluent gases were destroyed
with a 10% v/v KI solution. Meanwhile, some properties of the cell and ozonator are shown
in Table A2 of the Appendix A.

2.3. Experimental Procedure

The ozonation and catalytic ozonation tests with Goethite were carried out in a
reaction volume of 2 L, 1500 rpm, neutral pH, 30 mg/L of DCF, at conditions of 28 ◦C and
1015 hPa. There was no temperature control, but a variation of ±0.4 ◦C was recorded for
the 15 tests during the temperature monitoring. For the ozone dose and catalyst load, a
central composite design (CCD) was used, where the FeOOH load was varied between
0.196 to 0.904 g/L, and the variation of the ozone dose was between 1.4 and 7.2 mg/L
(see Figure A1 in Appendix A. Additionally, four catalytic ozonation tests were carried out
where ozone was kept constant (4.3 mg/min) and the FeOOH load was varied (between
0.1–1 g/L), and two ozonation tests (doses of 4.3–6.3 mg/min) were performed without
the presence of a catalyst.

In the ozonation tests, a DCF solution (30 mg/L) was added to the reaction tank,
a stirring speed of 1500 rpm was used, and the ozonator was turned on, adjusting the
desired ozone dose. The reaction time was 20 min. For catalytic ozonation tests, only the
above procedure was followed after adding the load of FeOOH and stirring at 1500 rpm for
10 min, then turning on the ozonator. The reactions between ozone and diclofenac stopped
by adding sodium thiosulfate at 0.1 N to the sample. Finally, these were filtered using a
Celltreat PVDF/L needle filter (millipore, 0.22 µm).

2.4. Analytical Monitoring

The diclofenac concentration in each sample of the different tests performed was
obtained with a UHPLC (UHPLC Dionex UltiMate 3000 equipped with a dual quaternary
pump, WPS3000SL autosampler, and DAD-3000 (RS) diode array detectors). The stationary
phase was a Hypersil Green PAH column (5 µm, 150 mm × 4.6 mm) and the mobile phase
consisted of 60% acetonitrile and 40% formic acid at 0.1 M. The detection wavelength was
276 nm, and the flow was 0.2 mL/min. Finally, the ozone concentration was measured
online using a Mini-Hicon IN-USA ozone analyzer (IN USA., San Diego, CA, USA).

2.5. Model Description
2.5.1. Mechanisms of Catalytic Ozonation

The presence of FeOOH as a catalyst in the ozonation process changes the oxidation
mechanism of ozonation alone (prevalence of direct and selective ozone attack, R1). In
addition, the Goethite surface provides active sites that improve OH• generation. Hydroxyl
radicals non-selectively degrade (R2) and enhance DCF mineralization.

Table 2 shows the mechanism of elemental reactions for the catalytic ozonation process.
Firstly, the homogeneous ozone decomposition begins with reactions involving hydroxyl
ions, perhydroxyl (HO2

−), radical superoxide anion (O2
−•), namely reactions R3–R6. Then,
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intermediate species, such as perhydroxyl radical (HO2
•), radical oxygen anion (O−•),

superoxide radical anion, and ozonide radical (O3
−•), react to form the hydroxyl radical

(see reactions R5–R10).
Secondly, from R11 to R16, the mechanism of the heterogeneous decomposition

reactions of ozone on the surface of Goethite is described. The catalytic activity begins
with the arrival of O3 (dipole agent) to the surface of FeOOH (with electrophilic H and
a nucleophilic O), where ozone binds to OH− on Goethite and HO2

− is formed, which
then reacts with more O3 to produce OH•. Finally, the water molecule is adsorbed and
dissociated to cover the vacancy of the Fe(III) site on FeOOH [37]. Thirdly, the reactions
of R17–R20 occur, where intermediate species can react and produce OH• or even ozone
(adsorbed-R20 or dissolved-R1).

Table 2. Heterogeneous catalytic elementary reactions in ozonation with Goethite [5,20,38,39].

No Elemental Reaction Reaction Rate Constant

Direct Reaction
R1 O3 + DCF ko3 → P(intermediarios o CO2) 6.0·107 M−1 min−1

Indirect reaction
R2 OH• + DCF kOH• → P(intermediarios o CO2) 4.5·1011 M−1 min−1

Homogeneous decomposition
R3 O3 + OH− k1 → HO−2 + O2 4.2·103 M−1 min−1

R4 O3 + HO−2 k2 → HO•2 + O−•3 1.32·108 M−1 min−1

R5 HO•2 k3/k−3 ↔ O−•2 + H+ k3 = 4.74·107 M−1 min−1 k−3 = 3.0·1012 M−1 min−1

R6 O3 + O−•2 k4 → O−•3 + O2 9.6·1010 M−1 min−1

R7 O3 + OH• k5 → HO•2 + O2 1.8·1011 M−1 min−1

R8 HO−2 + OH• k6 → HO•2 + OH− 4.5·1011 M−1 min−1

R9 O−•3 k7/k−7 ↔ O2 + O−• k7 = 1.26·103 min−1k−7 = 1.98·109 M−1 min−1

R10 O−• + H2Ok8/k−8 ↔ OH• + OH− Unknown
Heterogeneous decomposition

R11 FeOOH + O3k9/k−9 ↔ FeOOH(O3) Unknown
R12 FeOOH(O3) k10/k−10 ↔ Fe(O)OH + O2 Unknown

R13 Fe(O)OH + O3 + H2Ok11/k−11 ↔ FeOH . . .
+ OH• + O−•2 + O2 + H+ Unknown

R14 FeOH + O3 k12/k−12 ↔ FeOH(O3) Unknown
R15 FeOH k13/k−13 ↔ FeO• + HO •3 Unknown
R16 FeO• + H2O k14 → FeOH + OH• Unknown

Propagation and termination reactions

R17 HO •3 k15/k−15 ↔ H+ + O−•3
k15 = 1.98·103 M−1 min−1

k−15 = 3.12·1012 M−1 min−1

R18 HO •3 k16 → OH• + O2 6.6·106 min−1

R19 O−•3 + H2O k17 → OH• + OH− + O2 (1.2–1.8)·103 M−1 min−1

R20 FeOOH(O3) + DCFk18 → P Unknown

2.5.2. Description of Kinetic Reaction Models
Pseudo-First-Order Model

The reaction mechanism of the catalytic ozonation process consists of direct and
indirect reactions that coincide during the process. Therefore, the DCF degradation can be
described as the sum of the two reaction pathways [20]:

rDCF = −d(DCF)
dt

= −
[
kO3O3 + kOH•OH•

]
DCF (1)

where DCF is the concentration of diclofenac in M (mol/L), t is the reaction time in min,
kO3 and kOH• are the reaction rate constants for direct (ozone attack, in M−1 min−1), and
indirect (hydroxyl radical attack, M−1 min−1) reactions, respectively. The pseudo-first-
order fit is commonly used to determine the reaction rate in AOPs, assuming that ozone
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and hydroxyl radicals are the main pollutants oxidants [5]. So, the oxidation of the DCF
compound can be described as the sum of two reaction pathways as follows:

rDCF = −d(DCF)
dt

= −k′(DCF) (2)

where k′ is the pseudo-first-order reaction rate constant (in min−1), which is also equal to
k′ = kO3O3 + kOH•OH•.

Second-Order Model

The ozone reactions with many organic compounds present in water, such as the ozone
oxidation of caffeine and ibuprofen, can be described using second-order kinetics [14]. In a
second-order reaction, the sum of the exponents in the speed law is equal to two and can
be expressed as follows:

rDCF = −d(DCF)
dt

= −k′′(DCF)2 (3)

where k′′ is the pseudo-second-order reaction rate constant (in mol−1 min−1).

Mixed Order Reaction Model (MORM)

A combination of the pseudo-first and -second-order reaction kinetics was employed to
describe the DCF degradation profiles obtained under the different experimental conditions
studied for the ozonation and catalytic ozonation processes. The reaction rate expression
for this model is described as:

rDCF = −d(DCF)
dt

= −k′(DCF)− k′′(DCF)2 (4)

Steady-State Approximation Proposal

When the reaction kinetics of a process have several steps of comparable reaction
rates, the step that determines the rate is often not obvious. However, some intermediate
species are formed during the reaction steps that are not reactive or product. The steady-
state approximation (SSA) assumes that one intermediate in the reaction mechanism is
consumed as quickly as it is generated [40]. Thus, its concentration remains the same for
the duration of the reaction. The SSA is a method used to derive a rate law and can be
expressed as follows.

r̂Int• =
d(Int∗)

dt
=

n

∑
i−1

r̂i,Int•
∼= 0 (5)

where Int• is an intermediate species and n is the number of reactions where the Int• species
appears. The mathematical procedure reflecting the SSA resulted in a pair of differential
equations describing the DCF degradation and its dependence on the intermediate species
generated (see Table 1).

rDCF = −d(DCF)
dt

= −kO3O3 DCF− kOH•OH•DCF− k18
k9(FeOOH)O3

k−9 + k18DCF
DCF (6)

However, OH• must be found to function only the measured variables: DCF, O3,
and FeOOH. Using the reactions R1–R20 to find an expression of only these terms, the
following non-linear function was obtained for OH•:

d(OH•)
dt

=
(α− 3k4k•OH)O3OH• + (θ+ βOH) O3FeOOH

k−9+k18DCF2 + γOH•2 + ηO3
2

$O32 + (δ− α)O3DCF− λO3FeOOH + µ O3FeOOH
k−9+k18DCF − γOH•DCF

× rDCF (7)

where α = 3k6kO3, β = 3k6k-9k9k18, γ = 3k6kOH•, δ = 3k2kOH•, η = 3k2kO3, λ = 3k6k9,
θ = 3k2k18k-9k9, µ = β/k18, and$ = 3k2k5.
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Proposal Model Based on Elementary Reactions

A kinetic model of elementary reactions was developed where all possible transitory
states of intermediate species and their interactions are taken into account, with the final
purpose of carrying out a robust analysis of the kinetic constants of the catalytic ozonation
process reaction rates. A system of 21 differential equations representing the total order
elemental reactions kinetics was obtained and simultaneously solved. Some of these equa-
tions are shown in (8–12) as well as the generalized form for any species (see Equation (12)).

rDCF =
∂(DCF)

∂t
= −kO3O3DCF− kOH•OH•DCF− k18[FeOOH · · · (O3)]DCF (8)

∂(O3)
∂t = −kO3O3DCF− k1O3OH− − k2O3HO−2 − k4O3O−•2 − k5O3OH• − k9O3FeOOH + k−9[−FeOOH · · · (O3)]

k11O3FeOOH + k−11OH•O−•2 O2H+FeOH− k12O3FeOH + k−12[FeOH · · · (O3)]
(9)

∂(OH•)
∂t = −k•OHOH•DCF− k5OH•O3 − k6OH•HO−2 − k−8OH•OH− + k8O−• + k11O3FeOOH− k−11OH•O−•2 O2H+FeOH

+k14FeO• + k16HO•3 + k17O−•3
(10)

∂(FeOOH)

∂t
= −k9O3FeOOH + k−9

k9O3FeOOH
k−9 + k18DCF

(11)

ri =
∂(Ci)

∂t
= −∑

i
kijCiCj + ∑

j,k
kj,kCjCk (12)

The complete set of equations is described in Appendix A (see Equations (A1)–(A20)).
When adjusted, this system of equations requires the remaining twelve unknown kinetic
parameters that complete the numerical description of the proposed reaction mechanism,
nine of which belong to the new surface reactions for FeOOH.

General Assumptions for Kinetic Models

In SSA’s kinetic modeling approach, it assumes a minimal description of reaction
kinetics. Since the number of differential equations and kinetic constants is simplified, this
approach assumes a net production rate for the Int• in the reaction mechanism close to or
equal to zero. Therefore, in SSA, the reaction rate equations cannot express the reaction
mechanism effects in determining the step reaction conditions [40].

The kinetic models of elementary reactions are more fundamental approaches in
which the reaction pathways between reactants and their intermediaries are explained in
detail. In this type of kinetic model approach, a limited number of assumptions are needed,
and the rate parameters are more fundamental in nature [5].

The next assumptions were established to reach the final set: (I) The reaction only
occurs in the aqueous phase, and therefore water concentration is constant. (II) The catalytic
surface does not suffer significant changes in its optical properties, surface area, and active
sites throughout the process. (III) No gaseous phase reactions are considered. (IV) Ozone
mass transfer from a gaseous phase to catalyst is negligible. (V) The reaction refers only to
the organic substrate without considering the nature of its intermediates. (VI) Perfect mix
was assumed for species and pseudo species dissolved in the liquid phase. Additionally,
the effects of molecular mass transfer were not considered because the complexity of the
system of differential equations was not increased. Furthermore, it can be assumed that
ozone diffusion easily transports it to the liquid phase mass.

2.5.3. Hatta Number and Ozone Efficiency in Ozone Transfer

Hatta dimensionless number (Ha) establishes the relative importance of the chemical
reaction and the mass transfer rates [33]. In addition, the magnitude of Ha allows to define
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whether the degradation of a pollutant by oxidation with ozone is in a slow kinetic regime
(Ha < 0.02), diffusional (0.02 < Ha > 0.3), moderate (0.3 < Ha < 3), or fast (Ha > 3) [14].

Ha =

√
k′′DO3C0

kL
(13)

where k′′ is the rate constant of the direct reaction (see Equation (3)) between ozone and the
DCF concentration, C0 is the initial DCF concentration (30 mg/L of DCF = 1.01 · 10−4 M),
DO3 is the ozone diffusivity in water, and kL is the mass transfer coefficient in the liquid
phase. The ozone efficiency in ozone transfer (RU) was expressed as follows [20]. Using
RU, it is possible to quantify the ozone consumption and the efficiency of ozone utilization
for a reactor during ozonation.

RU =
[O3]C
[O3]T

(14)

where [O3]T is the total concentration of applied ozone and [O3]C is the concentration
of ozone consumed (for more information, a detailed description can be found in the
methodology of Lara-Ramos et al. [14]).

2.5.4. Numerical Optimization Method

For calculating the kinetic rate constants of the reaction of the kinetic models of SSA
and elementary reactions, the fourth order Runge–Kutta method (RK4, with an absolute
error tolerance of 10−4) and the algorithm of the direct search for Nelder–Mead (NM).
Figure 1 shows the solution algorithm used to fit the kinetic constants of the kinetic model
reactions. The implementation and simulation of the kinetic models were carried out in
the specialized programming software MATLAB R2020a. Multiple successful direct NM
searches were carried out for different initiation vectors and then compared to ensure an
adequate minimum objective function value.
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The key steps of the numerical procedure of the Nelder–Mead algorithm are outlined
in green in the algorithm flow diagram (reflection, expansion, contraction, and shrink).
In addition, the starting vector (X0) that allowed to define a new vector (Xf) during the
iterations of steps (n) of the simulation was defined based on the weighted analysis of
the average magnitudes of the kinetic constants of the reaction speeds reported in Table 2.
Finally, RK4 integration is repeated throughout each NM iteration and whenever there is
an objective function value comparison that does not satisfy the tolerance criteria.

After achieving the most suitable parameters with the computer program, a sensi-
tivity analysis was carried out to gauge their confidence values. Finally, using the same
algorithm but changing the variable from kinetic parameters to [FeOOH] y [O3], their
optimal operational values were optimized with the maximum degradation percentage
objective function.

The model used to adjust the kinetic parameters of the degradation reaction are
those of non-linear multiparametric optimization, which is based on the evaluation of
the standard deviation of the objective function of the global sample to determine the
error between the experimental data (Ci,Exp) and those calculated (Ci,Cal) by the model of
Gou et al. [41].

Fobj =

√√√√√√ 1
N− 1

N

∑
j=1

Ci,exp

(
C0

i j, Cm,catj, . . .
)
−Ci, cal

(
α1,α2, C0

i j, Cm,catj, . . .
)

Ci,exp

(
C0

i j, Cm,catj, . . .
)

2

(15)

3. Results
Degradation, Mineralization y RU of DCF

Figure 2 shows the percentages obtained for the degradation, mineralization, and RU
of the ozonation and catalytic ozonation processes. The percentages of mineralization and
degradation of diclofenac increase with increasing ozone dose for ozonation tests. Mean-
while, for the catalytic ozonation process, the percentage of DCF degradation decreases.
This could indicate that the ozone molecule direct attacks decrease due to the heteroge-
neous ozone decomposition into OH• and homogeneous decomposition in ozonation [14].
The previous behavior in degradation percentages is corroborated by the results of DCF
mineralization shown for the tests with a variation of the ozone dose with loads of 0.8 g/L
and 0.55 g/L of FeOOH, in which the degradation decreased (<10%) and mineralization
percentage increased (~5%).

Furthermore, the results of ozone efficiency in ozone transfer shown in Figure 2
indicate that as the catalyst load increases, ozone consumption increases, as can be seen
with 4.3 mg/min of ozone applied and varying FeOOH load of 0.1–1 g/L. RU percentages
are increased. Therefore, a possible cause of RU improvement may be an increase in OH•

production due to the catalytic activity of FeOOH in the decomposition of the ozone
molecule. Parallel to that, the results obtained for catalytic ozonation in the CCD show
that there is a positive effect in the use of ozone (see RU) by increasing the FeOOH load,
which translates into higher percentages of mineralization. For example, in a test with
[O3]T = 4.3 mg/min and 0.904 g/L of FeOOH, mineralization of 38.6% was obtained, and
a RU 37.21% better in RU than the other tests at the same ozone dosage condition.

DCF degradation improves with increasing ozone dose, both for ozonation and cat-
alytic ozonation. Similar results were reported in the following works [6,14]. The mineral-
ization and the RU of the catalytic ozonation improved with the increase in the FeOOH
load, which would demonstrate that the surface of the Goethite decomposes the ozone into
non-selective reactive species such as OH• that increase the mineralization of intermediates
(reluctant to ozone attack) [6,42] and [O3]C in the liquid phase.
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4. Discussion
4.1. Pseudo-First-Order, Second-Order, and MORM Reaction Rate Kinetic Model Fits

Table 3 shows the reaction rate constants for three kinetic models, their respective
correlation coefficient (R2), Hatta, and the reaction kinetic regime for the ozonation and
catalytic ozonation processes. For Ha and the kinetic regime, a second-order kinetic model
is assumed.

Table 3. Reaction rate constants/R2 for different reaction models, Hatta and kinetic regime as a function of the process and
operating conditions.

Process Operating Conditions Kinetic Models

Hatta/Kinetic Regime
Pseudo-First-Order Second-Order MORM

[O3]T (mg/min) Catalyst
Loading (g/L) k′ (min−1)/R2 k′′ (M−1 min−1)/R2 k′ (min−1) −

k′′ (M−1 min−1)/R2

Ozonation
2.4 0.0 0.1016/0.98 51.267/0.84 0.0899–6.4429/0.97 0.01/very slow
6.4 0.0 0.4118/0.99 7.82·102/0.81 0.3638–0.0158/0.99 0.03/diffusional

Catalytic ozonation
4.3 0.1 0.1561/0.96 1.56·102/0.93 0.1108–0.3104/0.84 0.01/very slow
4.3 0.3 0.1721/0.98 1.86·102/0.95 0.1597–7.68·102/0.99 0.01/very slow
4.3 0.8 0.2037/0.96 3.17·102/0.92 0.0171–1.08·104/0.99 0.02/diffusional
4.3 1 0.2266/0.96 4.65·102/0.96 0.1861–0.3711/0.97 0.02/diffusional
6.4 0.8 0.1215/0.91 86.7880/0.74 0.0739–0.2623/0.77 0.01/very slow
2.4 0.8 0.065/0.99 17.8360/0.95 0.0283–5.49·102/0.98 0.005/very slow
6.4 0.3 0.2955/0.95 4.79·102/0.99 0.1214–1.33·104/0.99 0.02/diffusional
2.4 0.3 0.0896/0.99 31.5340/0.97 0.0883–38.21/0.99 0.01/very slow
4.3 0.196 0.2171/0.99 3.85·102/0.86 0.1879–0.0405/0.99 0.02/diffusional
4.3 0.55 0.0435/0.99 9.8636/0.97 0.0407–20.5171/0.98 0.003/very slow
7.2 0.55 0.171/0.99 1.44·102/0.93 0.0807–2.79·103/0.99 0.01/very slow
1.4 0.55 0.3406/0.93 8.26·102/0.97 0.1640–1.88·104/0.99 0.03/diffusional
4.3 0.904 0.1003/0.99 38.9310/0.97 0.0625–7.23·102/0.99 0.01/very slow

In the ozonation process, the reaction rate of diclofenac by direct attacks of the ozone
molecule increases significantly with the increase in the dose of ozone applied (see column
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four for k′′). Similarly, the masked contribution of the O3 and OH• attacks represented by
k′ (with R2 closer to 1 than k′′) increases (see Figure 3b,e,h). As can be seen, the reaction rate
constant for the pseudo-first-order increased by 305.31% and the second-order constant by
1425.35% when going from an ozone dose of 4.3 mg/min to 6.3 mg/min. Additionally, the
ozone dose increases for ozonation, from a slow kinetic regime (Ha = 0.01) to a diffusional
one (Ha = 0.03) for the tests of 2.4 mg/min and 6.4 mg/min, respectively. Comparable
behavior for k′ and k′′ were reported for caffeine degradation under similar operating
conditions [14,33,34].
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Figure 3. For ozonation and catalytic ozonation: prediction of experimental data using pseudo-first-order (a,b), second-order
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The increase in the FeOOH load in the catalytic ozonation significantly improved the
attacks of O3 and OH• on the DCF molecules (see in Table 3 tests with [O3]T = 4.3 mg/min
with the variation of FeOOH from 0.1 g/L to 1 g/L), based on the values shown in
Sections 3 and 4 for the reaction constants k′ and k′′, with a suitable data correlation for
both constants (see R2 and Figure 3). Meanwhile, it is important to note that CCD tests with
low catalyst loading have high values of second-order reaction rate constants, which could
mean that direct oxidation (attacks by O3) and indirect oxidation by OH• predominate, as
can be seen in Figure 2.

On the other hand, there is no direct relationship between the catalyst load and the
kinetic regime, which is related to the low Ha values for the catalytic ozonation of DCF.
Finally, the literature has demonstrated the positive effect of the FeOOH catalytic activity
on ozone decomposition and the mineralization of organic pollutants [14,33,39,42,43].

Figure 3 shows the prediction of experimental data from the CCD for the catalytic
ozonation process for the kinetic models of the reaction rate of the pseudo-first-order model
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(a), second-order model (d), and MORM (g). The fit of the three kinetic models is acceptable
for the CCD data, based on the standard deviation (Stx,y) and correlation of experimental
and calculated data (see Figure 3c,f,i). However, in the test with [O3]T = 6.4 mg/min and
0.8 g/L of FeOOH, both the second-order model and MORM did not adjust their data. This
test is closer to the pseudo-first-order model (R2 = 0.91 and seen Figure 3c), which indicates
a masked oxidation effect between O3 and OH•. Meanwhile, the MORM showed a higher
correlation for some tests (R2 = 0.99 and seen Figure 3i) than the individual models, such
as [O3]T = 4.3 mg/min and [O3]T = 1.4 mg/min with 0.196 g/L of FeOOH and 0.55 g/L of
FeOOH, respectively. The MORM describes the masked attacks of the different oxidant
species (k′) [22,44] and direct ozone attacks (k′′) [24,25].

The ozonation tests (for [O3]T = 2.4 mg/min and 6.4 mg/min) and catalytic ozonation
tests under the conditions of [O3]T = 4.3 mg/min and variation of the catalyst load from
0.1 g/L to 1 g/L of FeOOH are shown in Figure 3b,e,h). Firstly, the fits (see Table 3)
and prediction data for ozonation are higher for the pseudo-first-order kinetic models
and model MORM than for the second-order model, for which a better correlation and
estimation of data can be obtained. However, Beltran et al. [45] found that DCF reacted
almost everything with ozone with a moral ratio of ~8:1. Secondly, the prediction of
trends and correlation for the catalytic ozonation tests increases with FeOOH loading
for the second and MORM kinetic models, while for the pseudo-first-order model, the
correlation remains constant (R2 = ~0.9). Finally, the approximations of kinetic models of
pseudo-first-order, second-order, and MORM between them are subject to the evaluated
operational conditions and do not differentiate between direct and indirect oxidation of
the DCF. Additionally, these parameters do not have the phenomenological significance of
the two evaluated processes.

4.2. Steady-State Approximation Proposal

Table 4 shows the optimized values for the kinetic constants of the reaction rate for the
SSA model. It is essential to point out that the SSA model pseudo parameters encompass
some of the literature values (shown in Table 2). Therefore, the constants of the elemental
reactions are broken down and shown in Table 4. Meanwhile k2, k5 y k6 remained in the
magnitude and order of their theoretical counterpart proposed by Beltran et al. [5] and
Hoigné et al. [46].

Table 4. Reaction rate constants for the SSA kinetic model.

Parameter (M−1 min−1) Value

Direct ozone attacks (kO3 ) 6.97 × 102

Hydroxyl radical attacks (kOH•) 2.02 × 1011

Ozone adsorption on FeOOH (k9) 4.59 × 103

Ozone desorption (k-9) 2.00 × 107

Adsorbed ozone attacks (k18) 8.60 × 107

The magnitude of the reaction constants for direct and indirect oxidation are different
from those reported by Hoigné et al. [46] (see R1 and R2 in Table 2). As can be seen in
the case of indirect oxidation kOH• , a magnitude of 2.02 × 1011 was obtained compared
to 4.5 × 1011. For direct oxidation, kO3 had a difference in the order of 105 between
the refueled and the calculated value. Due to the characteristics of the process and the
experimental conditions, these two reaction kinetic constants are fundamental to give a
partial description of the catalytic ozonation process’s adequate phenomenology. Therefore,
it is necessary to carry out a sensitivity analysis.

Meanwhile, the above differences could be explained by considering that the system
studied by Hoigné et al. [24] corresponds to the ozonation of diclofenac without a catalyst.
Although both systems use ozone, the inclusion of Goethite in the reactive system and how
it interacts with ozone completely change the reaction system and mechanism.
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On the other hand, the DCF degradation by attacks of O3 molecules transferred
to the Goethite surface by adsorption is represented by the reaction constant k18. The
reaction rate constant k18 is 123,385.94 times the value of kO3 , from which the above two
hypotheses can be proposed. Firstly, the FC promotes the contact of the ozone bubbles
with the catalyst particles [47,48]. Secondly, some of the ozone contained in the bubbles
that interact with FeOOH can adsorb onto the catalyst surface [33]. Finally, the adsorbed
ozone can participate in DCF degradation by direct attacks or indirect oxidation through
the formation of OH• (O3 decomposition) [6,14].

Figure 4 shows the experimental data prediction (ozonation and catalytic ozonation),
calculated OH•, and data correlation for the proposed SSA kinetic model. The trends
for the experimental data shown in Figure 4a,b indicate that the SSA model adequately
predicts most tests for ozonation and catalytic ozonation. However, the tests with a
catalyst load greater than or equal to 0.550 g/L of FeOOH and ozone doses greater than
4.3 mg/min present scattered data from the trend lines proposed by the SSA model. This
decreases the correlation between the data and increases the standard deviation of the
SSA model (see Figure 4d). As an example of the previous results, we can mention the
tests with a catalyst load of 0.800 g/L and 0.550 g/L, with ozone doses of 6.4 mg/min
and 7.2 mg/min, respectively.
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Figure 4. Prediction of experimental data using the SSA kinetic model for ozonation and catalytic ozonation (a,b), moles of
OH• calculated (by SSA) (c), and correlation of experimental and calculated data (d).

Figure 4c shows the generation of OH• calculated based on the SSA kinetic model and
based on the theoretical trends presented for catalytic ozonation. As can be seen, for low
ozone doses (<3 mg/min) and catalyst concentrations above 0.5 g/L, FeOOH increases the
generation of OH•, and after 8 min of operation, the concentration of hydroxyl radicals sta-
bilizes (the catalytic activity on ozone reaches the stable state). This is because the FeOOH
catalyst provides the active sites on which ozone decomposition occurs. Therefore, the
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higher the concentration of the catalyst, the greater the number of active sites. Meanwhile,
this increase may favour other intermediate steps for a high ozone dose (>4 mg/min).
However, the SSA kinetic model is limited in predicting intermediate steps and species.

The percentage correlation (R2 = 0.96) and percentage standard deviation (Sty,x = 0.18)
of calculated and experimental data obtained through the SSA model allow us to infer an
adequate prediction compared to the second-order kinetic model for trends in reaction rate
for DCF degradation, by ozonation and catalytic ozonation processes (see Figure 4d).

The crucial advantage of SSA is that fewer reaction kinetic constants are required to
describe the ozonation and catalytic ozonation process’s reaction rates. In contrast, the
disadvantage of SSA is a more limited description of the reaction mechanism. Additionally,
the reaction mechanism dynamics cannot be described over time since they cannot account
for the changes in the intermediate steps that could be important for the catalytic ozonation
process as a function of the change in reaction conditions [40].

4.3. Degradation, Mineralization y RU of DCF

Table 5 shows the optimization of the parameters or kinetic constants corresponding to
the PBRE model for ozonation and catalytic ozonation. The kinetic constants of reaction rate
with the highest numerical magnitude belong to reactions where OH• has been generated
(4.10 × 1010 M−1 min−1) or related to its generation (see kinetic constants of FeOOH).

Table 5. Reaction rate constants for the SSA kinetic model.

Parameter (M−1 min−1) Value Parameter (M−1 min−1) Value

Direct ozone attacks (kO3 ) 2.55 × 103 OH• generation on the FeOOH surface (k11) 2.12 × 109

Hydroxyl radical attacks (kOH•) 4.10 × 1010 Parasitic reaction on OH• (k-11) 5.49 × 102

OH• generation by H2O and O−• (k8) 4.92 × 1013 O3 adsorption on FeOH (k12) 5.86 × 109

Parasitic reaction on OH• (k-8) 8.32 × 107 O3 desorption on FeOH (k-12) 74.03
Ozone adsorption on FeOOH (k9) 5.95 × 107 Generation of hydrogen trioxy radical (k13) 4.06 × 106

Ozone desorption (k-9) 4.29 × 1010 Hydrogen trioxy radical decomposition (k-13) 7.25 × 102

O3 decomposition into oxygen (k10) 1.96 × 109 OH• generation on the FeOOH surface (k14) 0.16
O3 generation (k-10) 0.667 Adsorbed ozone attacks (k18) 1.90 × 108

The adjusted value for the PBRE model of the reaction rate constant for the direct
attacks of the ozone molecule on the DCF is comparable or greater by one or two orders of
magnitude in the power of ten than the values reported in the literature [6,49,50]. However,
it is lower in three order magnitudes in the power of ten than reported in Table 2. Similarly,
the adjusted value for the indirect oxidation reaction cost of DCF is similar to that reported
in the following works [1,49,50].

Meanwhile, the adjusted values for the kinetic rate constants related to FeOOH and
the generation of OH• have relatively high numerical values, except for the kinetic constant
for the surface generation of OH• (see k14). Thus, the adjustment of the reaction constants
involving FeOOH indicates an important catalytic activity of this catalyst.

Figure 5 shows the experimental data prediction (ozonation and catalytic ozonation),
calculated OH•, and data correlation for the kinetic model of elemental reactions.

The trends for the experimental data are shown in Figure 5a,b indicate that the PBRE
model predicts the experimental data less satisfactorily than the SSA model. The tests with
the lowest correlation (see Figure 5c) and prediction are those of ozonation and, in the
case of catalytic ozonation, those with the highest dose of ozone applied. However, the
PBRE predicts some tests satisfactorily, e.g., [O3]T = 2.4 mg/min with 0.8 g/L FeOOH and
[O3]T = 6.4 mg/min with 0.8 g/L FeOOH. The above results may indicate that the PBRE
performs better in tests where catalytic activity is improved by increasing catalyst loading.

Figure 5c shows the generation of OH• calculated based on the PBRE model and the
theoretical trends presented for catalytic ozonation. The generation of OH• can be observed
as a function of the FeOOH load. Which shows that Goethite tends to improve the catalytic
activity of ozone. In contrast, the test with [O3]T = 6.4 mg/min and 0.8 g/L presented the
highest theoretical generation of OH• compared to [O3]T = 6.4 mg/min and 0.8 g/L of
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FeOOH. This result is corroborated with the results of RU, TOC, and degradation shown in
Figure 2. It is important to note that after 8 min of operation, most tests begin to produce
hydroxyl radicals for all the catalytic ozonation tests evaluated in this work.
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Figure 5. Prediction of experimental data using the kinetic model elemental reactions for ozonation and catalytic ozonation
(a,b), moles of OH• calculated (c), and correlation of experimental and calculated data (d).

The percentage correlation (R2 = 0.69) and percentage standard deviation (Sty,x = 0.56)
of calculated and experimental data obtained through the PBRE model present a lower
prediction compared to the SSA and the second-order reaction kinetic model for the trends
of the reaction rate of DCF during the ozonation and catalytic ozonation processes (see
Figure 5d).

The PBRE mechanism approach allows the description of the transient evolution of
the reaction kinetics. Besides, it facilitates the description of the variation of each of the
intermediate species involved in the ozonation and catalytic ozonation process, without
the need for drastic approximations or hypotheses on the kinetics and intermediate steps
of chemical reactions [5].

4.4. Sensitivity Analysis

Figure 6 shows the sensitivity analysis results for the kinetic parameters of two models
that describe the reaction rate of DCF. The results obtained from the sensitivity analysis
indicate that the indirect oxidation of DCF by OH• attacks is the kinetic parameter with
the most significant contribution to the reaction kinetics of the ozonation and catalytic
ozonation processes, both for the PBRE kinetic model with 94.9% and for the SSA with
91.67%. Additionally, the second kinetic parameter with the most significant influence
on the reaction kinetics in the ozonation and catalytic ozonation processes during DCF
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degradation is kO3 , representing the direct attack reaction of ozone molecules to DCF
(45.47% for PBRE and 7.77% for SSA).
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The importance of OH• in the DCF degradation (indirect oxidation) is demonstrated
by the magnitudes of kOH• (previous sections). Moreover, the sensitivity analysis has also
been corroborated by Guo et al. and Lara-Ramos et al. [24,51]. Similarly, numerous works
reported in the literature have demonstrated the direct oxidation of DCF by direct attacks
of the ozone molecule [6,10,24].

On the other hand, the sensitivity analysis also shows the importance of FeOOH,
since, as can be seen in Figure 6, the kinetic parameters related to the adsorption and
generation of OH• contribute to the reaction rate of catalytic ozonation with 32.57% and
24.33%, respectively, for the PBRE kinetic model. The importance of the catalytic activity
of FeOOH in the decomposition of ozone and pollutant degradation has been reported in
other works [14,20,33,39]. However, these results are for the SSA model. It is impossible to
determine the importance of each elemental reaction by the set of masked parameters.

4.5. Optimal Ozone Dosage and Catalyst Loading

Sensitivity analysis makes it possible to identify the appropriate and optimal kinetic
parameters to adjust the DCF reaction kinetics in catalytic ozonation. These results are
now used to project the optimal ranges of operating conditions, giving the best results in
terms of DCF degradation (including TOC removal) from minimum ozone dose or catalyst
loading values, as shown in Figure 7. For this, the results in DCF degradation have been
plotted (see Figure 7a) for the nine catalytic ozonation experiments for the operational
conditions, ozone dose, and FeOOH load presented in Table 3. The optimal operating
conditions are projected to the extremes of [O3]T and load of FeOOH.
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The response surface analysis for the operating conditions and percentages of DCF
degradation indicates that the most significant operating parameter is the ozone dose. In
contrast, the increase in the catalyst load can decrease the degradation percentages of DCF.
The projection of a higher performance of DCF degradation with increasing ozone dose is
a behavior reported by Lara-Ramos et al. [6], Moreira et al. [26], and Beltrán et al. [4].

On the other hand, the PBRE and SSA models were simulated with the adjusted
parameters in the ozone dose intervals between 1.4 and 6.4 mg/min and catalyst loading
between 0.2 and 0.8 g/L. The SSA model reveals the vital contribution when increasing
[O3]T in the degradation of DCF. However, it also projects an essential contribution of the
FeOOH load in catalytic ozonation. Additionally, the SSA model proposal indicates that the
most appropriate dose to carry out catalytic ozonation should be greater than 4.5 mg/min.

Meanwhile, the projection of the PBRE model shows that there is a synergy between
the ozone dose and the FeOOH load applied. This indicates the positive effect on DCF
degradation of the ozone dose, but in the same way with doses 1.4–4 mg/min, the degra-
dation percentage can be improved by increasing the FeOOH load. The above shows that
Goethite has catalytic activity on ozone, which agrees with catalytic ozonation studies
reported in the literature [38,39,42].
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5. Conclusions

In this work, a kinetic study was developed with different reaction rate kinetic models
for ozonation and catalytic ozonation processes. In addition, DCF as a model compound
was degraded and mineralized by using an FC as a reagent system.

The study of the reaction rate under the kinetic approaches of pseudo-first-order,
second-order, MORM, SSA, and PBRE demonstrate the vital contribution of the ozone
molecule in DCF degradation. On the other hand, it is impossible to determine the contri-
bution of OH• through kinetic models of pseudo-first-order, second-order, and MORM.
However, they are frequently used to describe the reaction kinetics of the processes as a
first approximation. Therefore, the SSA and PBRE kinetic models are fundamental to indi-
cating the ozone molecule’s importance and OH• on the degradation and mineralization
of ECs such as DCF. This kinetic study theoretically demonstrated that ozone has a more
significant contribution to DCF degradation (both in ozonation and catalytic ozonation).
At the same time, OH• contributes and improves mineralization in catalytic ozonation.

The kinetic constants of reaction rate and their sensitivity analysis allow to identify the
variables or operative factors of most significant importance in the processes of ozonation
and catalytic ozonation, e.g., the ozone dose and FeOOH load. Additionally, the results
obtained for the different kinetic approaches in this study allow to project the operating
conditions with the highest performance in DCF degradation. Therefore, it allows to
optimize the operating conditions in treating matrices or organic compounds present in
water such as DCF.

Finally, this kinetic study of reaction rates illustrates the benefits of the flotation cell as
a reactive system in future applications at the industrial level for the processes of ozonation
and catalytic ozonation.
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Appendix A

Appendix A.1. Physicochemical Properties of Drinking Tap Water in Cali, Valle del Cauca

Table A1. Physical and chemical parameters of drinking tape water Cali [6].

pH uScm Dissolved Solids (ppm) Temperature (◦C)

7.3 ± 0.03 150 ± 5 75 ± 5 28.5 ± 0.5
Cali environmental conditions: Environmental conditions of Cali: Average annual temperature: 25 ◦C, Relative
humidity: 63%, and Atmospheric pressure: 1007 hPa, taken from http://www.ideam.gov.co/web/tiempo-y-clima
(accessed on 6 May 2018).

http://www.ideam.gov.co/web/tiempo-y-clima
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Appendix A.2. Experiment Design

In this research work, a central composite design was used to understand the interac-
tions between critical parameters in terms of operating costs, such as ozone and FeOOH
in the catalytic ozonation process. In addition, the central composite design optimizes
the response in the degradation and mineralization of caffeine in a modified flotation
cell (MFC).

The above is meant to provide greater control over the sensitivity of the variation
and repeatability of the ozone concentration entered in the MFC. It was decided to use
the percentage values indicated on the knob of the ozonator as a factor of change in the
ozone concentration.
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On the other hand, in order to guarantee the standardization of the ozone concen-
trations entered, the ozone production was monitored before and after each experiment
was performed.

Table A2. Design data for the modified flotation cell and ozonator.

Modified Flotation Cell Ozonator

Internal Volume Hidrodynamic External Dimensions

Material: Duran Glass. Stirring speed (rpm):
300–3300 rpm

Material

Height (m): 1.016 Height (m) 0.35

Reaction volume (L): 0.44 Length (m) 0.381

Length (m): 0.61 Width (m) 0.15

Operational volume (L): 10 Capacity (g/h) 5
Width (m): 0.991 Ozone concentration (g/m3) Adjustable from 47

Appendix A.3. Proposal Model Based on Elementary Reactions (PBRE)

∂[DCF]
∂t

= −kO3 [O3][DCF]− k•OH[•OH][DCF]− k18[FeOOH(O3)][DCF] (A1)
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∂t = +k9[FeOOH][O3]− k−9[FeOOH(O3)]− k10[FeOOH(O3)] + k−10[Fe(O)OH][O2]− k18[FeOOH(O3)][DCF] (A14)

∂[Fe(O)OH]
∂t = +k10[FeOOH(O3)]− k−10[Fe(O)OH][O2]− k11[Fe(O)OH][O3][H2O] + k−11[FeOH][•OH]

[
O−2 •

]
[O2]

[
H+
]

(A15)

∂[FeOH]
∂t = +k11[Fe(O)OH][O3][H2O]− k−11[FeOH][•OH]

[
O−2 •

]
[O2]

[
H+
]
− k12[O3][FeOH] + k−12[FeOH(O3)]− k13[FeOH]

+k−13[FeO•][HO3•] + k14[FeO•][H2O]
(A16)

∂[FeOH(O3)]

∂t
= +k12[O3][FeOH]− k−12[FeOH(O3)] (A17)
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∂[FeO•]
∂t

= +k13[FeOH]− k−13[FeO•][HO3•]− k14[FeO•][H2O] (A18)

d[HO3•]
dt

= +k13[FeOH]− k−13[FeO•][HO3•]− k15[HO3•] + k−15
[
H+
][

O−3 •
]
− k16[HO3•] + k−16[OH•][O2] (A19)

d[P]
dt

= +kO3 [O3][DCF] + k•OH[•OH][DCF] + k18[FeOOH(O3)][DCF] (A20)
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