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Abstract: This paper discusses the joint impact of catchment complexity in topography, tectonics,
climate, landuse patterns, and lithology on the suspended sediment yield (SSY, t km−2 year−1) in
the Caucasus region using measurements from 244 gauging stations (GS). A Partial Least Square
Regression (PLSR) was used to reveal the relationships between SSY and explanatory variables.
Despite possible significant uncertainties on the SSY values, analysis of this database indicates clear
spatial patterns of SSY in the Caucasus. Most catchments in the Lesser Caucasia and Ciscaucasia
are characterized by relatively low SSY values (<100–150 t km−2 year−1), the Greater Caucasus
region generally have higher SSY values (more than 150–300 t km−2 year−1). Partial correlation
analyses demonstrated that such proxies of topography as height above nearest drainage (HAND)
and normalized steepness index (Ksn) tend to be among the most important ones. However, a PLSR
analysis suggested that these variables’ influence is likely associated with peak ground acceleration
(PGA). We also found a strong relationship between land cover types (e.g., barren areas and cropland)
and SSY in different elevation zones. Nonetheless, adding more gauging stations into analyses and
more refined characterizations of the catchments may reveal additional trends.

Keywords: sediment yield; suspended sediment; Caucasus; soil erosion; denudation rates

1. Introduction

Water erosion is the primary mechanism of sediment transport from the catchment
area and, at the global level, determines the flow of pollutants into permanent streams
and reservoirs [1,2]. A particularly significant effect of water erosion on surface water
pollution was noted in the Anthropocene period [3]. Together with sediments, many
organic fertilizers, in particular phosphorus [4] and other nutrients, enter the streams,
which cause eutrophication of water bodies [5,6]. The suspended sediment yield is an
integral characteristic of the erosion processes in river basins, considering the stream and
watershed connectivity, which varies significantly depending on the combination of natural
and anthropogenic factors [7,8]. These variations are especially noticeable in the mountains
and foothill zone, where the most pronounced relief and lithology differences. Moreover,
human activity and vegetation cover vary considerably. Finally, a climate that controls the
bedrock weathering rates and the surface runoff significantly contribute to the sediment
yield and the pollutant flux [9].

The Caucasian region, which includes the mountain ranges of the Greater and Lesser
Caucasus and the foothill zones, is a unique territory due to the high proportion of the
arable land in the foothill/low mountain zone, high population density in the foothills,
and a wide variety of lithological composition of the bedrock that composes the area. The
Caucasus is also essential for developing medical and health resorts, hydropower energy,
industrial production, mining, and transport infrastructure. Erosion intensity in various
altitudinal zones of the Caucasus and their changes over time can reflect the climate change
and anthropogenic impact fluctuations, including recent decades [10,11]. The increasing
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recurrence of events associated with the formation of extreme floods and powerful de-
structive debris flows requires detailed quantitative assessments of the characteristics of
the sediment yields (SSY, t km−2 year−1) in various altitudinal belts. However, there are
currently no robust quantitative estimates of the denudation rates or sediment yields for
various altitudinal belts of the Caucasus [12].

Due to practical constraints, most studies aiming to quantify denudation rates and
sediment yields mostly remain limited to case studies in this region [13,14]. Several
studies have addressed this issue regionally and, if so, only focus on a limited set of larger
river systems [15–17]. These studies fail to fully identify and constrain the role of the
various factors that may control SSY in diverse regions such as the Caucasus Mountains.
Developing a model that can simulate the catchment sediment yield may shed some light on
how natural factors influence sediment fluxes and, by extent, denudation rates. Moreover,
such a model may allow analyzing to what extent various factors better explain variations
in observed SSY [18]. Previous studies indicate that the interaction between tectonics,
lithology, soils, climate, and landscape responses should be considered [15,16,18–22].

Several studies show that indices like river steepness, chi maps, and knickpoint
locations better explain long-term denudation rates than proxies like average slope [23,24].
Such indices could be extracted using available tools [23,25,26]. Nevertheless, in highly
erodible landscapes, catchment responses to tectonics may remain difficult to detect with
topographic indices [27].

In the previous sediment yield models [22], lithology was only considered in a rudi-
mentary way. This factor can be better constrained using global lithology and soil maps
and building on earlier approaches [28,29]. Furthermore, earlier work indicated that the
interaction between lithology and seismicity could strongly influence the erosion and
denudation rates through the effect of rock fracturation [30–33].

Although earlier works have not demonstrated a relevant climatic impact on SSY [22,34],
this factor is bound to be more significant on a global scale [35,36]. We aim to thoroughly
explore this by analyzing the link between SSY and a wide range of potentially relevant
climatic parameters and investigating relationships between SSY and other controlling
factors separately for different climatic/ecological zones. This may help better identify
interactions between climate, vegetation cover, and other factors and processes driving
SSY. Likewise, the role of glaciers on natural SSY can be explored using available global
datasets and based on earlier proposed empirical approaches [21,37].

Numerous studies have shown that humans can significantly impact SSY [3,18,38].
First, the construction of dams and reservoirs can lead to a drastic decrease in SSY. Secondly,
humans can have had a significant impact on land cover, e.g., through deforestation and
agriculture, leading to increased soil erosion rates and corresponding sediment yield
values [39,40]. Recent studies point to the influence of population density [20] on sediment
yield. It uses in some models as a human impact parameter [16,21].

The authors have already published an overview database for the Caucasus region
with SSY-observations for more than 200 catchments [12]. These SSY values are subject to
uncertainties resulting from temporal variations in SSY, measuring errors, and observation
period length. Nevertheless, entries in that database cover an extensive range of land
uses (i.e., from nearly natural to completely cultivated), catchment sizes, and climatic,
soil, geomorphic, and tectonic conditions. The unprecedented number of catchments
considered provide the first (to the author’s knowledge) statistically robust answers on
regional questions about SSY variability in the Caucasus region. More specifically, the
research objectives were:

- to find which climates and environments cause the highest SSY values in the Caucasus
region;

- to evaluate what factors most control SSY in the Caucasus region.
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2. Materials and Methods
2.1. Study Area

The Caucasus region is located between the Black Sea and the Caspian Sea. It includes
the Greater and Lesser Caucasus, separating them from the Rion and Kura River lowlands
and the Ciscaucasia (the North Caucasus), adjacent to the Greater Caucasus from the north
(cf. Figure 1b). The Caucasus Mountains belong to the European-Asian (Alpine-Himalayan)
mountain belt, which crosses the whole of Eurasia from west to east. The upper elevation
ranges of the Caucasus are occupied by young terrain of the Alpine type, which was formed
with the help of glacial-nival processes in the Late Quaternary period [41].

The Greater Caucasus is an important barrier for air masses moving in the longitu-
dinal direction, determining the difference in climate between the Ciscaucasia and the
Transcaucasia (the South Caucasus). Hence, the Caucasus Mountains are subject to strong
longitudinal variations in climate [42]. For example, Western Caucasus receives three to
four times more precipitation than Eastern Caucasus [43]. At the same time, the Transcau-
casia region is also characterized by higher precipitation, which can be up to 4000 mm
year−1 in the southwest [44].

2.2. The Sediment Yield Data

The suspended sediment yield (SSY, t km−2 year−1) is the mean annual sum of
suspended sediment load normalized by catchment area [45]. Many works carried out in
different world regions are devoted to SSY’s study, and some contain data on Caucasus
Region [15,19,46–49]. This study used a database recently created by Tsyplenkov et al. [12]
updated with gauging stations (GS) for the Terek basin from Tsyplenkov et al. [11]. The
overview of the database is reported in Figures 1 and 2.

The database consists of mean annual suspended sediment yield values for 257 gaug-
ing stations located in Russia (147), Azerbaijan (44), Georgia (41), Armenia (25). To avoid
the potential impact of reservoirs on SSY, we excluded 13 gauging stations located down-
stream from the reservoirs (see Figure 1a). The location of dams and reservoirs was taken
from the GRanD database [50]. Therefore, we end up with 244 gauging stations with
catchment areas that vary from 4 to 22,000 km2 and a median measuring period of 18 years
(see Figure 2b). The SSY values were calculated as follows:

SSY =
∑ Q·SSC·31.5×103

A
n

, (1)

in which SSY is the mean annual suspended sediment yield, t km−2 year−1; Q is the mean
annual water discharge, m3 s−1; SSC is the mean annual suspended sediment concentration,
g m−3; A is the catchment area, km2; n is the measuring period length in years.

According to the Köppen-Geiger classification [51], all stations were classified into
nine climatic zones (Figure 2c). We also used a map of landscape provinces (see Figure 1b)
created by Isachenko A.G. [52] to assign the most common landscape province in the
basin. The majority of class/zone within every basin determined both climate classes and
landscape zones, i.e., the raster value occupying the greatest number of cells, considering
cell coverage fractions [53].

Like the climatic and landscape classifications, each basin was also classified into alti-
tude zones depending on the GS elevation (i.e., catchment outlet): Lowlands (0–500 m a.s.l.),
Low Mountain Ranges (500–1000 m a.s.l.), Middle Mountain Ranges (1000–1500 m a.s.l.)
and High Mountain Ranges (>1500 m a.s.l.).
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Figure 1. (a)Spatial distribution of gauging stations (GS) used in this study; (b)the main landscape zones and landscape 
areas of the Caucasus region (modified from [52]). Landscape zones: a–broad-leaved rain barrier, b–steppe, c—semi-de-
sert, d–desert, e–sub-Mediterranean (arid-forest), f–humid subtropical rain-barrier, g–Mediterranean. Landscape areas: 1–
Ciscaucasia, 2–Greater Caucasus, 3–Western Transcaucasia (Rioni region), 4–Eastern Transcaucasia (Kura-Araks region), 
5–Lesser Caucasus and Armenian Highlands, 6–Lankaran (Elbursk) region; (c) Köppen-Geiger climate classification [51]. 
Description of Köppen-Geiger climate symbols and defining criteria presented in Supplementary Material. Map tiles by 
Stamen Design [54]. 

Figure 1. (a) Spatial distribution of gauging stations (GS) used in this study; (b) the main landscape zones and landscape
areas of the Caucasus region (modified from [52]). Landscape zones: a–broad-leaved rain barrier, b–steppe, c–semi-desert,
d–desert, e–sub-Mediterranean (arid-forest), f–humid subtropical rain-barrier, g–Mediterranean. Landscape areas: 1–
Ciscaucasia, 2–Greater Caucasus, 3–Western Transcaucasia (Rioni region), 4–Eastern Transcaucasia (Kura-Araks region),
5–Lesser Caucasus and Armenian Highlands, 6–Lankaran (Elbursk) region; (c) Köppen-Geiger climate classification [51].
Description of Köppen-Geiger climate symbols and defining criteria presented in Supplementary Material. Map tiles by
Stamen Design [54].

2.3. Potential Controlling Factors

For every basin, several variables describing the topography, lithology, climate, and
other factors that can potentially affect SSY were derived. Table 1 gives an overview of these
parameters. Variable values were extracted for each catchment, using catchment boundaries
derived from the digital elevation model (DEM). These boundaries and morphometric
indices were calculated from the void-filled 30 m ALOS World 3D (AW3D30) DEM by
the Japanese Aerospace Exploration Agency (JAXA). Nevertheless, this dataset has had
horizontal and vertical errors in the range of tens of meters. It currently offers tremendous
potential for regional mountain geomorphological analyses [55]. DEM preprocessing was
done in ArcMap ver. 10.8 (http://www.esri.com (accessed on 9 November 2021)) using the
Spatial Analyst toolbox.

From preprocessed DEM, we calculated an elevation’s coefficient of variation (DEM
[–] in Table 1) by dividing the standard deviation by mean catchment elevation. In line
with several other studies focusing on the relation between denudation rates and topogra-
phy [23,24,49], a normalized steepness index (Ksn [m0.9]) was also calculated. It represents
the upstream area-weighted channel gradient [56]:

Ksn = SAθ , (2)

http://www.esri.com
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in which S is the channel slope (m m−1); A is the upstream drainage area (m2); θ is the con-
cavity index set to 0.45 to ease comparisons between streams with differing catchment areas
and concavities. We calculated Ksn in MATLAB using the Topo Toolbox Software [57,58].
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As a proxy of slope lengths, we used the precalculated height Above the Nearest
Drainage (HAND, m) in the MERIT dataset [59]. HAND normalizes DEMs according to
distributed vertical distances relative to the drainage channels [60].

In order to assess the potential importance of tectonic activity in explaining the
observed SSY variation, we computed the area-weighted average peak ground acceleration
with a 10% exceedance probability in 50 years (PGA, m s−2) derived from the GSHAP
Global Seismic Hazard dataset [61,62] following the recommendations from Vanmaercke
et al. [22].

The global lithological map database (GLiM) [28] and average chemical weathering
rates (CWR, t km−2 year−1) calculated for every individual GLiM class by Hartmann
et al. [63] were used. The spatial distribution of CWR rates is presented in Supplementary
Material. Then for every catchment in our database, the area-weighted average CWR was
estimated.

We derived the sand-fraction map based on topsoil (0–30 cm depth) structure from
the SoilGrids database [64] at 250 m resolution (Supplementary Material). Therefore, the
SAND parameter (see Table 1) represents the average fraction of sand in the first 30 cm
of soil.

The authors used several regional studies to assess the fraction of landuse/landcover
classes (see Supplementary Material). Thus, cropland, forest, and barren areas for 2015
were calculated based on research by Buchner et al. [65]. The glacier areas for 2014 were
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derived from the GLIMS database [66]. We also estimated a mean tree canopy height
(CANOPY, m) within a catchment as a proxy of forest structure and aboveground biomass.
For this purpose, a 30 m global forest canopy height map [67] was used.

Additionally, the fragmentation of landuse/landcover classes within basins was
determined using Shannon’s Diversity Index (SHDI) [68]. The SHDI shows the relative
profusion of each land cover class and is frequently used as a diversity metric in biodiversity
and ecology studies [69–71]. The SHDI calculates as follows:

SHDI = −∑m
i=1(Pi × lnPi), (3)

where Pi is the proportion of class i.
This study used mean annual basin-averaged climate parameters calculated from a

TerraClimate [72] dataset for 1958–2018. We estimated mean annual precipitation (P, mm),
a mean annual air temperature (AET, ◦C), a mean annual downward solar radiation flux
at the surface (SRAD, W m−2), a mean annual cumulative streamflow (Q, mm). We also
estimated basin-averaged mean annual rainfall erosivity based on Global Rainfall Erosivity
Dataset (GLORED, MJ mm ha−1 h−1 year−1) created by Panagos et al. [73] based on high
temporal resolution rainfall records from 3530 stations worldwide.

Table 1. Overview of all variables considered as controlling factors and their sources of uncertainty.

Variable Description Units Source Uncertainty

A Catchment area (reported) km2 Source of SSY data -

DEM Catchment elevation Cv (Coefficient of
variance) - AW3D30 1% 1

Ksn Normalized steepness index m0.9 [56] 1% 1

HAND Height above the nearest drainage m [59] 5% 1

PGA Peak ground acceleration with an exceedance
probability of 10% in 50 years. m s−2 [61,62] 20% 1

CWR Chemical weathering rate t km−2 year−1 [28,63] 5%, as defined by [63]

SAND A mean sand fraction in intrinsic topsoil
(0–30 cm) % [64] 9%, as defined by [64]

CANOPY Forest canopy height m [67] 12%, as defined by [67]
BARREN Fraction of barren lands

% [65]
29%, as defined by [65]

CROPLAND Fraction of cropland 8%, as defined by [65]
FOREST Fraction of forest area 15%, as defined by [65]
GLACIER Fraction of glacierized area in 1960 % [66] 5%, as defined by [74]

SHDI Shannon’s Diversity Index - [68] 19% as overall accuracy of
landuse map [65]

P Mean annual precipitation 1958–2018 mm

[72]

9.1% as defined by [72]
AET Mean annual air temperature 1958–2018 ◦C 0.32 ◦C as defined by [72]

SRAD Mean annual downward solar radiation flux
at the surface 1958–2018 W m−2 8.3% as defined by [72]

Q Mean annual cumulative streamflow Mm 36% as defined by [72]
GLORED Rainfall erosivity MJ mm ha−1 h−1 year−1 [73] 10% 1

POP Mean catchment population density
averaged for 2000–2020 Persons km−2 [75] 15% 1

KG Köppen-Geiger climate class Dummy variable [51] -
LZ Isachenko landscape province Dummy variable [52] -

1 See text for details.

2.4. Uncertainty Assessment

The errors of the suspended sediment yield values were estimated by taking into
account the most important sources of uncertainties. In this research, other potential SSY
values were simulated using the following equation, modified from Vanmaercke et al. [18]:

SSYcor =
SSY × UME

UMP
, (4)
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in which SSYcor is a corrected value of SSY after considering the various sources of uncer-
tainty. UME reflects the uncertainties associated with measuring errors; UMP represents the
uncertainty associated with the length of the measuring period.

A first significant source of uncertainty (UME) is the effects of various methodological
errors during the SSY measurements. The degree of these measuring errors depends on
various (unknown) methodological details. In previous studies, it has been reported that
these errors are usually 20–30% [18,76,77]. Therefore, we have assumed that 30% gives
a realistic and relatively conservative estimate of the SSY-value uncertainty associated
with measurement errors. Hence, UME was simulated as a random number from a normal
distribution with a mean of 1 and a standard deviation of 0.30.

Uncertainties related to the duration of the measuring period describe interannual
sediment export variability. Recent studies by Vanmaercke et al. [78] indicate that Weibull
distribution describes such interannual variations in SSY (with a scale of 172.7 and shape
1.22). We selected n values from the median Weibull distribution to simulate UMP with
n equal to the measuring period duration. Then we calculated the sample’s mean and
divided it by the real average of the Weibull distribution [18]. The average value (24 years)
was used when the duration of the measuring period was not available.

Likewise, data derived from global datasets generally have critical errors and uncer-
tainties. We, therefore, try to consider them in this study by applying a simplified version
of Equation (4). For every parameter examined as a potential controlling factor (F), we
simulate alternative values (Fsim) using the following formula:

Fsim = F × Uer, (5)

in which Uer is the uncertainty associated with dataset errors and accuracies (see Table 1).
It was simulated as a random number from a normal distribution with a mean of 1 and a
standard deviation of uncertainties from Table 1.

Previously, Boulton and Stokes [55] found that river network derivatives from AW3D30
(2017th release) are highly accurate (even the Ksn). However, there is no data available
on relative errors of the AW3D30 river derivatives. The overall elevation accuracy of the
AW3D30 DEM was estimated as <3 m by Boulton and Stokes [55] and as <5 m by mission
specifications [79]. Previous studies found that the vertical root mean square error was
lower (<5 m) in flat areas [80,81] and higher (up to 12–14 m) in mountainous areas [81].
Considering the average elevation difference within the studied watersheds equal to 2700 m
and the elevation range for the whole studied region from 0 to 5639 m, we assumed a 1%
elevation accuracy is a realistic uncertainty measure. For this study, we hypothesized that
river network derivatives from AW3D30 would have the same relative error.

While accuracy assessment has not been previously reported for the HAND dataset,
it is known from previous studies that it is mainly controlled by the definition of the
accumulated area [60]. As in this study, we derived HAND from the MERIT dataset [59].
Thus, we assumed that uncertainty is attributable to errors in MERIT’s flow accumulation
estimates. In most cases, the reported relative error of the accumulation area is <0.05 [59].
There were only a dozen validation stations in the Caucasus region with accumulation
area relative error ±5%. Hence, we could estimate the overall uncertainty of the HAND
dataset as 5%. However, this value should be used with caution as it does not include
uncertainties associated with validation station location, possible hydrologic fluctuations,
and unreported HAND model accuracy.

Buchner et al. [65] reported the 2015th landuse map accuracy by classes: 29% for
barren areas, 8% for cropland areas, and 15% for forest areas (averaged among various
forest types). Therefore, uncertainties of the landcover change associated with measuring
errors were simulated as a random number from a normal distribution with a mean of 1
and a standard deviation of 0.29 for barren, 0.8 for cropland, and 0.15 for a forest. Potapov
et al. [67] indicated that the accuracy of the canopy tree dataset varies from 83% to 92.9%,
depending on the forest class threshold and reference source. We assumed a relative error
of 12% provides a realistic estimate of canopy height uncertainty.
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Tielidze and Wheate [74], in their study, reported that the accuracy of glacier’s outline
identification in 1960 varies between 4.8% and 5.9%. The error was associated with mapping
and georeferencing errors. We used a 5% value as an uncertainty measure.

Shedlock et al. [62] provided no further details on the accuracy of the PGA map. Seeing
that that map has a probabilistic nature of hazard analyses makes it hard to validate [82].
Nevertheless, the relative error of the estimated peak ground acceleration should likely be
about 20% since some studies [83] indicate that this is the percentage of large earthquakes
that are not predicted.

Equations (4) and (5) were used to simulate 1000 alternative SSY and controlling
factors for every basin. We calculated 95% confidence intervals on every SSY value (i.e., the
difference between the 97.5% and 2.5% quantile of the 1000 simulated values).

2.5. Statistical Analyses

The relative importance of control variables in explaining SSY was assessed through
partial correlation analyses (using the Spearman rank test). All statistical analysis was done
in R 4.1.0 [84] unless otherwise noted.

The partial least squares regression (PLSR) technique was also used to analyze the
relationship between SSY and controlling factors. This method combines Principal Com-
ponent Analysis (PCA) and Multiple Linear Regression [85,86]. The PLSR model is based
on a linear combination of the original scores that aim at the best representation of the
response variable [87], i.e., suspended sediment yield. One of the strengths of the PLSR
over the PCA is that both quantitative and qualitative variables can be used to explain
the dependent variables. The Q2 (i.e., the cross-validated R2) index was used to assess
the PLSR model quality [85]. The Q2 represents the global component contribution and
determines the most stable model when close to 1. Applying this goodness of prediction
estimator is very common in PLSR models studies [85,87–89].

There were two models run with various sets of explanatory variables. Model A was
based only on numeric variables (see Table 1, everything except KG and LZ). In contrast,
in Model B, we added qualitative (dummy) variables such as climatic region (KG) and
landscape zone (LZ).

We applied variable importance in the PLSR projection (VIP) filter measure to select
the most relevant variables. The authors used a VIP value threshold equal to 1, suggesting
that variables with VIP higher than 1 are essential in explaining SSY [90]. We performed
the PLSR analysis using the XLSTAT ver. 2021.3.1 software by Addinsoft.

3. Results
3.1. Database Overview

Table 2 gives descriptive statistics of collected data. The observed mean annual
suspended sediment yield in the Caucasus region is 426 ± 71.9 t km−2 year−1. It varies
from 5 to 4100 t km−2 year−1. The map presented in Figure 1a can reveal some general
patterns of SSY in the Caucasus region. The map shows that low SSY values generally
characterize large parts of the Lesser Caucasia and Ciscaucasia (<100–150 t km−2 year−1).
While in the Greater Caucasus, values higher than 150 t km−2 year−1 and even above
300 t km−2 year−1 are a lot more frequent. Furthermore, the western part and the high
mountain belt of the Greater Caucasus can be clearly distinguished by values above 600 t
km−2 year−1.

Figure 1b displays the distribution of SSY per climate class, while Table 2 reports
descriptive statistics of the SSY-values per climate class. This comparison indicates some
apparent differences: the Dfc climate type (snow climate, fully humid with cold summer)
has the highest SSY values, it is significantly (p < 0.00008) higher than the most common
Dfb class (snow climate, fully humid with warm summer) and the Cfa (warm temperate
climate, fully humid with hot summer). The ET regions have intermediate values. For
other classes, the number of observations is too low to draw any conclusions.
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Table 2. Summary statistics of observed suspended sediment yield (SSY, t km−2 year−1) values grouped by climate,
landscape, or elevation zones. The table contains descriptive statistics such as the count (n), minimum (min), maximum
(max), median, interquartile range (IQR), mean, standard deviation of the mean (SD), standard error of the mean (SE) and
95 percent confidence interval of the mean (CI).

Group n Min Max Median IQR Mean SD SE CI

All data 244 5 4100 214 378 426 570 36.5 71.9
Elevation zone (m a.s.l.)

<500 108 5 1691 214 273 310 296 28.4 56.4
500–1000 73 7.9 4100 214 588 534 755 88.3 176

1000–1500 42 9 3510 251 410 490 686 106 214
>1500 21 14.3 1846 195 732 516 577 126 263

Köppen-Geiger climate class
Cfa 48 9 1000 152 144 214 212 30.5 61.4
Cfb 13 72 572 290 134 296 136 37.6 81.9
Csa 4 25 150 128 57.5 108 57.8 28.9 92
Dfa 2 142 1540 841 699 841 989 699 8882
Dfb 100 5 4100 168 357 372 577 57.7 114
Dfc 51 9 3510 433 837 746 704 98.6 198
Dsa 1 100 100 100 0 100 - - -
Dsb 4 14.3 200 56.1 95.7 81.6 85.6 42.8 136
ET 21 98 2706 320 537 574 639 139 291

Isachenko landscape province
1b 22 5 416 90 111 113 101 21.5 44.7
2a 39 67 638 174 93 207 123 19.6 39.7
2b 50 38 1728 348 494 538 472 66.8 134
2c 10 103 2515 722 287 958 721 228 516
2e 25 50 4100 1131 775 1340 1014 203 419
2f 32 88 1100 405 210 437 223 39.5 80.6
2g 6 24 215 178 106 147 79.2 32.3 83.1
3f 5 150 364 290 20 281 79.1 35.4 98.3
5d 26 14.3 490 67.4 59 84.7 97.9 19.2 39.6
5e 12 7.9 340 55.5 49.5 79.9 90.8 26.2 57.7
5f 11 59 1500 160 153 297 415 125 279
6d 3 23.2 200 150 88.4 124 91.1 52.6 226
6f 3 25 145 110 60 93.3 61.7 35.6 153

Grouping SSY entries by landscape provinces reveals much more SSY distribution
diversity (see Figure 2d). Thus, SSY in 2c and 2e provinces (eastern part of the Greater
Caucasus) is the highest in the region. Conducted pairwise Wilcoxon rank-sum test
revealed that mean SSY values in the eastern part (landscape zone 2e and 2c) of the Great
Caucasus are significantly (p < 0.002) higher than in the western (2f and 2a). We observe
the lowest SSY values in the Lesser Caucasus (5d–f), while the central part of the Greater
Caucasus (2b) generally has the intermediate values.

Once the SSY data are aggregated by altitude zone (Figure 2a, Table 2), the findings
suggest that SSY distribution for lowland basins (GS altitude < 500 m a.s.l.) is overall
lower than the SSY distribution for mountain catchments. Low mountain catchments
(500–1000 m a.s.l.) also have lower SSY values than middle and high mountain ranges.
However, all these differences are not significant according to the Wilcoxon rank-sum test.

3.2. Correlation Analyses

Table 3 shows the partial correlations between all considered variables and SSY. The
partial correlation analyses indicate that catchment sediment yields are mainly controlled by
HAND, Ksn, and the contemporary fraction of barren land (Barren). We observe a negative
correlation between the SSY and the CWR (Spearman r = −0.37, CI = [−0.4; −0.33]). How-
ever, the further study points to differences depending on the altitude zone (Figures 3–5).
Therefore, if we consider only the high mountain ranges (>1500 m) catchments, there is a
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highly significant negative correlation between SSY and CWR (Spearman r = −0.65). The
CWR explains 64% of the variation in SSY of high mountain catchments (Figure 6d).

Table 3. The mean, lower and upper bounds of the 95% confidence interval of 1000 Spearman
r-values between the corrected SSY (Equation (4)) and simulated controlling factors (Equation (5)).
Every value was retrieved by calculating the correlation between randomly generated sets of SSY
and controlling variables values (see Section 2.4). An explanation and source of each variable are
given in Table 1.

Variable Mean Lower Upper

HAND 0.52 0.5 0.54
BARREN 0.48 0.45 0.51

Ksn 0.46 0.44 0.48
GLACIER 0.36 0.34 0.38

PGA 0.35 0.26 0.43
Q 0.28 0.23 0.33

SAND 0.27 0.18 0.35
P 0.25 0.21 0.29

CANOPY 0.2 0.17 0.23
GLORED 0.17 0.13 0.21

AREA 0.16 0.14 0.18
FOREST 0.09 0.07 0.12

AET −0.02 −0.06 0.02
SRAD −0.05 −0.16 0.06
POP −0.08 −0.11 −0.04

CROP −0.29 −0.32 −0.26
CWR −0.37 −0.4 −0.33
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altitude zone. Every value was retrieved by calculating the correlation between randomly generated
sets of SSY and controlling variables (Section 2.4). The red values represent the median Spearman
r score.
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Figure 5. The distribution of 1000 Spearman’s rank correlation coefficients between the corrected
SSY (Equation (4)) and simulated controlling climate factors (Equation (5)) grouped by altitude zone.
Every value was retrieved by calculating the correlation between randomly generated sets of SSY
and controlling variables (Section 2.4). The red values represent the median Spearman r score.
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Circles indicate the observed SSY values, while error bars indicate the 95% confidence interval (see Section 2.4).

Contrary, HAND seems to have a positive effect on the SSY values. Again, we may
observe elevation tendency: Spearman’s r-value tends to increase with the GS altitude (see
Figure 3). In middle and high mountain catchments, HAND explains 63 and 42% of the
SSY variation (Figure 6e).

3.3. Partial Least Squares Analyses

To visualize the multidimensional data structure between controlling variables (see
Table 1), a biplot of scores and correlation loadings was constructed based on a PLSR
model B (Figure 7a). The plot graphically summarizes which of the factors controls SSY. In
component 1, 15% of the explanatory variables (X) variance was used to explain 43.8% of
the response variables (Y) variance. In component 2, 23.1% of the variance of the controlling
factors was used to explain 57.7% of the SSY variance. A measure of goodness of prediction
Q2 showed that component 1 and component 2 almost equally contribute to the model B
quality (40.7% and 49.3%, respectively). Among factors controlling the SSY, the HAND and
Ksn values were highly positively correlated (r = −0.95, p < 0.001) (Figure 7a). Suspended
sediment yield was generally less associated with catchment area (r = 0.13 p = 0.04) and
rainfall erosivity (r = 0.16 p = 0.01). Whereas forest fraction (FOREST) and mean annual
temperature (AET) appeared not to be statistically significant factors (p > 0.05). Important
explanatory variables (VIP > 1) in the projection for SSY (Figure 7b) created the following
decreasing order: HAND > LZ > PGA > BARREN > Ksn > Cropland > Q > CWR > KG >
SAND > SHDI.



Water 2021, 13, 3173 13 of 21Water 2021, 13, x FOR PEER REVIEW 14 of 22 
 

 

 
Figure 7. (a) PLSR (model B) correlation circle, illustrating the correlations of SSY (Y) and controlling factors (X) with the 
first two axes associated with the first two components. The percentages of the variances in X and Y explained by each 
variable are indicated on the respective axes. The inner dashed circle denotes the r = 0.7; (b) Controlling variables im-
portance (i.e., VIP) distribution. 

Adding extra dummy variables (climate region and landscape province) made it pos-
sible to describe 10% more variation of the SSY (Table 4) with the same number of com-
ponents. However, the overall quality of the model (Q2) does not change significantly. 

Table 4. PLSR models quality and quality indexes. Model A is the partial least square regression 
without qualitative variables (KG and LZ), while B is the PLSR model trained with qualitative var-
iables. 

Statistic Component 1 Component 2 Component 3 Component 4 
PLSR model A 

Q2 cum 0.328 0.461 0.486 0.496 
R2Y cum 0.343 0.501 0.536 0.552 
R2X cum 0.248 0.331 0.514 0.738 

PLSR model B 
Q2 cum 0.407 0.493 0.514 0.506 

R2Y cum 0.438 0.577 0.624 0.640 
R2X cum 0.150 0.231 0.336 0.439 

4. Discussion 
4.1. SSY Overview 

To the authors’ knowledge, a database used in this research is currently the most 
extensive and detailed database of suspended sediment yield measurements in the Cau-
casus. However, we are aware that much more SSY data probably exists that is not in-
cluded in this analysis. For example, the gauging station density in Transcaucasia (i.e., 
Georgia, Azerbaijan, and Armenia) is low, while earlier studies [41,91] indicate that there 
are some more GS exist. 

Overall, the average SSY (426 t km−2 yr−1) agrees well with the average SSY of the 
European Alps (451 t km−2 yr−1 [15]). Earlier estimates of the denudation rates in the Cau-
casus region suggest a mean annual denudation rate of 0.2 mm yr−1 [91]. More recent 

Figure 7. (a) PLSR (model B) correlation circle, illustrating the correlations of SSY (Y) and controlling factors (X) with
the first two axes associated with the first two components. The percentages of the variances in X and Y explained by
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Adding extra dummy variables (climate region and landscape province) made it
possible to describe 10% more variation of the SSY (Table 4) with the same number of
components. However, the overall quality of the model (Q2) does not change significantly.

Table 4. PLSR models quality and quality indexes. Model A is the partial least square regression
without qualitative variables (KG and LZ), while B is the PLSR model trained with qualitative
variables.

Statistic Component 1 Component 2 Component 3 Component 4

PLSR model A
Q2 cum 0.328 0.461 0.486 0.496

R2Y cum 0.343 0.501 0.536 0.552
R2X cum 0.248 0.331 0.514 0.738

PLSR model B
Q2 cum 0.407 0.493 0.514 0.506

R2Y cum 0.438 0.577 0.624 0.640
R2X cum 0.150 0.231 0.336 0.439

4. Discussion
4.1. SSY Overview

To the authors’ knowledge, a database used in this research is currently the most ex-
tensive and detailed database of suspended sediment yield measurements in the Caucasus.
However, we are aware that much more SSY data probably exists that is not included
in this analysis. For example, the gauging station density in Transcaucasia (i.e., Georgia,
Azerbaijan, and Armenia) is low, while earlier studies [41,91] indicate that there are some
more GS exist.

Overall, the average SSY (426 t km−2 year−1) agrees well with the average SSY of
the European Alps (451 t km−2 year−1 [15]). Earlier estimates of the denudation rates in
the Caucasus region suggest a mean annual denudation rate of 0.2 mm year−1 [91]. More
recent estimates imply that the mean annual denudation rate should range from 0.005 to
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2.32 mm year−1 [41]. Mozzherin and Sharifullin [41] calculated denudation rates (hc, mm
year−1) using the following equation:

hc =
SSY
2.65

× 10−3, (6)

in which SSY is a suspended sediment yield [t km−2 year−1]. Equation (6) was further
used to compare this study’s results with previous findings. As such, the mean denudation
rate for the Caucasus region based on this study database is 0.16 ± 0.027 mm year−1 with
a maximum of 1.55 mm year−1. These values are in line with previous studies [41,91]. As
indicated by Figure 1, the spatial patterns of our study correspond relatively well with
those estimated by Mozzherin and Sharifullin [41]. However, these values should not be
treated as actual denudation rates as the equation used (Equation (6)) to obtain them does
not incorporate the bedload sediment transport. While the bedload fraction in mountain
rivers can be 20–40% from total sediment load on average [92–94], it may increase up to
90–99% in some years [95].

4.2. Controlling Factors

We found that SSY distribution differs less between altitude zones than climatic
regions and landscape provinces (Figure 1). These findings are in line with Vanmaercke
et al. [15]. They found that hilly catchments (<500 m a.s.l.) generally have lower SSY
values, while other differences between mountain ranges are insignificant. While the SSY
distribution within landscape provinces (Figure 2d) may somehow repeat general spatial
climate patterns for the Caucasus [43,44], a closer look at the relationships between climate
factors and SSY does not reveal any strong explaining power (Table 3, Figures 5 and 7). On
the one hand, this is reasonably expected considering previous findings [22,34]. On the
other, the sediment yield in mountain areas is mainly formed during the snow melting or
rainfall [13,14], which can also lead to the formation of landslides, rainfall-driven floods,
and glacier lake outburst floods [96,97]. Meanwhile, moraine deposits, traces of the Last
Glacial Maximum [98], are actively eroded by streams at any water level rise, similar to
that observed in the Rocky Mountains of eastern Canada [99]. Additional friable material
is regularly exported by the first-second order tributaries (Horton system) to the bottoms of
higher-order valleys with debris- and mudflows. For example, the modern sedimentation
rate in the bottom of the Baksan river (North Caucasus) valley reaches tens of centimeters
per year [100].

The most robust relationship was found between the SSY and topographic factors
(Figures 3 and 6), which is easily explained by the latter’s close relationship with river
water discharge. Hillslope erosion is also controlled mainly by topographic variables
such as height above the nearest drainage (HAND) and normalized steepness index (Ksn).
However, it is well known that water discharges primarily determine the mountain river’s
sediment loads since streambank erosion is important in total load [101]. Nevertheless, a
normalized steepness index corresponds to a more pronounced topography of the catch-
ment area and, hence, higher erosion from slopes [102]. Notably, the non-linear increase
of suspended sediment yield with basin average Ksn (Figure 6d) appears to be consistent
with the expectation from fluvial incision models [24,103].

The peak ground acceleration (PGA) significantly impacts the SSY in the Caucasus
region since this territory belongs to the area of alpine folding. Noticeable movements
of the Earth’s crust constantly occur, which provokes mass movements and other slope
processes. In general, the tectonics influence on the relief formation of the Caucasus region
and denudation is currently much more significant than the climate impact [104].

A close relationship has been established between SSY and chemical weathering rate
(CWR) only for basins in the high-mountain belt of the Caucasus region (see Figure 3). It
generally agrees with the known concepts like when the threshold value in the denudation
rate is reached, the contribution of chemical weathering begins to decrease with a denuda-
tion increase [105]. Namely, this is observed in the high mountain belt of the Caucasus,
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where the maximum SSYs are observed in proglacial rivers, sometimes exceeding the
sediment load of similar rivers in other mountainous regions [13].

The most significant anthropogenic impact on SSY values could be expected in the
hilly and lowland zones of the Caucasus region. This area is characterized by the maximum
agricultural development of the territory and, consequently, the highest soil erosion rates
on cropland for the European part of Russia [106,107]. However, the performed analysis
does not reveal the presence of a close relationship between SSY and cropland area for
given zones (Figure 6f). There are several reasons for this. Firstly, most rivers flowing in the
hilly and lowland zones originate in the middle and high mountains, and most of the water
is formed there. As a result, the share contribution of sediments from plains and foothills
differs between basins, depending on the catchment areas’ ratio in various elevation zones.
Secondly, in the foothill and lowland zones, rainstorm soil erosion dominates. The sediment
delivery ratio varies greatly depending on the length of the dry valley network [108] and
the presence of other sediment traps in the catchment.

Thirdly, during extreme floods with low recurrence, which account for the bulk of
the suspended sediment yield in mountain river basins [109], a significant part of the
transported sediment is redeposited in the bottoms of river valleys within the foothill
sections of their channels [100,110]. This is due to a sharp drop in slope steepness and the
transport capacity of streams. It also has the most significant impact on the high variability
of relationships between sediment yield in the foothills and plain zones of the Caucasus
region and the other controlling factors. On the other hand, a reasonably close negative
relationship between the cropland area and SSY was established for river basins in the high
mountain zone (see Figure 6f). This is because croplands occupy the expansions of the
valley bottoms in this zone and serve as sinks for sediments eroded from valley slopes.

Among other factors for all basins of the Caucasus region, a reasonably strong rela-
tionship was revealed between SSY and the proportion of barren lands (Figure 6e). This is
also expected since barren lands, including badlands, are the primary sediment sources
for areas slightly disturbed by humans [111]. Moreover, a good relationship between SSY
and the fraction of barren lands is observed for all high-altitude zones. Barren lands are
usually located close to streams, or their fraction is quite significant, as is observed in the
mountains of Dagestan (Eastern Caucasus), where badlands distribution is associated with
the destruction of the soil cover due to overgrazing [112].

The PLSR analyses revealed interdependencies between various explanatory parame-
ters (Figure 7). Thus, the PGA was likely a controlling parameter of the Ksn and HAND,
affecting the fraction of barren lands. While a fraction of cropland is somehow positively
correlated with the population density, suggesting that arable lands are usually located near
settlements. Surprisingly, we did not find any close relationship between rainfall erosivity
(GLORED) and SSY values (see Figure 5) for hilly and low mountains catchments where a
significant part of sediments should be formed by soil erosion [106]. Contrariwise, a high
correlation between GLORED and SSY was observed for high-altitude basins (r = 0.51). This
and the interdependency of GLORED with elevation covariates (DEM, GS elevation, see
Figure 7) indicate that a possible impact of rainfall erosivity is associated with an elevation
used to interpolate WorldClim data [113] used to create GLORED dataset [73]. Another
possible explanation is the scarcity of meteorological stations in the mid-mountain and
high-mountain belts of the Caucasus Mountains. In this regard, the reliability of the spatial
variability of rainfall erosivity and its changes with altitude is generally relatively low.

4.3. Uncertainties and Further Implications

As a result of the uncertainties associated with the reported SSY data (see Section 2.4),
our results should be interpreted carefully. Vanmaercke et al. [15] suggested that total
uncertainties may be over 100% for some SSY measurements based on their overview of
European sediment yield. Inaccurate SSY data measurements could partly explain some
poor correlations (see Table 3, Figures 3–5). Nevertheless, considering various sources of
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uncertainties for both SSY and explanatory variables, high correlations with topographic
and landuse factors reported here should be realistic.

It is worth noting that the relatively low correlation coefficients and quality indexes
are expected in SSY studies [15,18,114,115]. Such low performance can be likely explained
by uncertainties in SSY values (see Section 2.4), as our research was based on a similar
empirical approach.

The SSY modeling was not the goal of this study; here, on the contrary, we only
suggested variables that can be further used in the models. Nevertheless, a preliminary run
of the PLSR showed that qualitative variables significantly increase the model’s predictive
power (Table 4). Therefore, adding dummy variables such as ecological zones or landscape
provinces should be recommended for further studies.

5. Conclusions

Suspended sediment yield (SSY) in various environments has been studied for a long
time, but SSY in the Caucasus region has received only limited attention. This study aimed
to address this research gap by first exploring an extensive database of measured SSY data.
Despite potentially significant uncertainties on SSY measurements and controlling factors, it
is possible to point out major regional differences in SSY. Therefore, most catchments in the
Lesser Caucasia and Ciscaucasia are characterized by relatively low SSY values (<100–150 t
km−2 year−1), the Greater Caucasus region generally have higher SSY values (more than
150–300 t km−2 year−1). As these differences are based on extensive observations, they
cannot be attributed to uncertainties in the available data. However, they must result
from regional variation of the controlling factors of SSY and different dominant erosion
processes.

Based on the exploratory analyses presented here, the particular importance of the
various potential controlling factors of SSY could not be determined. We found that such
proxies of topography as height above nearest drainage (HAND), normalized steepness
index (Ksn) tend to be among the most important ones. However, a PLSR analysis suggested
that these variables’ influence is likely associated with peak ground acceleration (PGA)
but much easier to measure. We also reveal a strong relationship between various land
cover types (e.g., barren areas and cropland) in different elevation zones. We did not aim to
create a tool to predict SSY in the Caucasus region. However, our research suggested that
including such factors as HAND, Ksn, a fraction of barren and cropland areas in models
may be essential to shed some light on the SSY spatial and temporal patterns.

This line of investigation is continuing, looking at a broader range of data and such
questions as possible relationships between SSY and natural or anthropogenic control
factors and motifs involving their combinations. Using landscape provinces and other
qualitative variables as controlling factors in line with PLSR modeling is also an intriguing
possibility. In addition, the use of such models to predict suspended sediment yield is of
great practical interest, especially in tectonically active regions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/w13223173/s1, Figure S1: Spatial distribution of SSY factors: (a) estimated peak ground
acceleration (PGA, m s−2) with an exceedance probability of 10% in 50 years, as derived from the
GSHAP data set [61]; (b) average chemical weathering rates (CWR, t km−2 year−1) calculated for
every individual GLiM [28] class by Hartmann et al. [63]; (c) Caucasus land-cover classification for
2015 derived from Buchner et al. [65]; (d) mean sand content (SAND, %) in the intrinsic topsoil
(0–30 cm depth) from the International Soil Reference and Information Centre (ISRIC) SoilGrids
database [64], Table S1: Description of Köppen-Geiger climate symbols and defining criteria.
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