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Abstract: High safety standards of operators and regulators for dams in Switzerland require periodic
assessments of risk mitigation measures at dams. Therefore, risk assessments need to include the
estimation of life loss (LL) due to a potential dam break. This study demonstrated the benefits of
applying the HEC-LIFESim software for modelling LL due to the instantaneous break of a hypotheti-
cal dam in Switzerland. HEC-LIFESim overcomes limitations of empirical methods by modelling
evacuation and warning processes. Furthermore, for credible LL estimates, metamodelling was used
to quantify uncertainty in model parameters. Polynomial chaos expansion (PCE) was applied to
approximate the LL model of HEC-LIFESim using only 550 runs. Uncertainty in the model inputs
was propagated through the metamodel to quantify uncertainty in the LL estimates. Finally, a
global sensitivity analysis was performed by calculating Sobol’ and Borgonovo indices. The results
demonstrate that the three-parameter population in a locality within all considered localities, fatality
rate in the chance zone, and warning issuance delay contributed most to the variability of the LL
estimates. The application of the proposed methodology can support risk management by providing
detailed and accurate risk measures and helping in prioritizing safety measures to be considered and
implemented.

Keywords: dam break; global sensitivity analysis; life loss; polynomial chaos expansion; risk assess-
ment; uncertainty quantification

1. Introduction

The estimation of life loss (LL) from a potential dam failure is an important part of
dam risk analysis [1]. LL estimates can be applied as a risk measure to assess if the potential
risk posed by the dam exceeds the acceptable limits set by authorities [2]. Furthermore, LL
estimates can be used to identify dam failure scenarios and factors that may cause severe
consequences and, with this knowledge, support risk-based decision-making procedures
for dam safety purposes [3]. Finally, LL estimates can help to evaluate a group of dams
within a portfolio and identify those dams that need the most attention, e.g., structural
modifications [4].

Dam risk analysis methods must provide credible LL estimates; however, most of the
available methods for LL estimation are regression-based equations [5,6]. Derived from
empirical data of historical observations, these equations possess a number of limitations:
they do not differentiate between characteristics of the dam failure and flood severity,
information on many parameters represents averages, etc. [7]. In recent years, fuzzy set
theory has been applied to introduce information such as characteristics of the dam failure,
flood severity, cause of the failure, population distribution, etc. [8–10]. However, as with
regression-based equations, these studies come with a series of limitations, for example, the
lack of physical interactions between receptors (e.g., people and flood wave). To overcome
the limitations of the abovementioned methods, models simulating physical processes
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and interactions between physical receptors taking place during a flood event need to be
applied [11]. In this context, the most established and used models are the Life Safety Model
(LSM) [12,13] and the HEC-LIFESim model [14,15]. While both models are agent-based
models, they differ in their focus. LSM is more suited for modelling the behaviour of an
individual receptor (i.e., a person or a car during evacuation) since it simulates each person,
building, and vehicle in a floodplain and their interaction with the flood wave based on
fundamental physical equations. In contrast, HEC-LIFESim scales up the simulation to a
mesoscale by simulating the re-distribution of people in response to an emergency warning
through the implementation of a traffic simulation model which interacts directly with
the flood wave propagation. Therefore, HEC-LIFESim is more reasonable in the context
of dam risk assessment since it gives a more general overview of the LL estimates in
the area downstream of a dam. Based on these premises, HEC-LIFESim was applied in
this study. The software uses information about evacuation, warning, structures, and
routes to reflect site-specific conditions. Hence, a limited availability of data for these
parameters can constrain the application of this software to specific dam locations. In the
case of Switzerland, detailed digital maps and databases available for the entire country
area [16,17] enable the application of HEC-LIFESim for dam risk analysis reflecting Swiss
conditions.

In recent years, there has been growing acceptance that LL estimates in the models
of dam failures are uncertain [18]. An important contribution to the uncertainty is due to
factors (e.g., hydrological parameters [19]) affecting the LL estimates, which are intrinsically
uncertain [20]. Thus, point LL estimates cannot fully reflect the potential range of the
consequences due to a dam failure. Therefore, the consideration of uncertainty is important
in dam failure LL estimation.

Dynamic spatial models estimating LL commonly use a Monte Carlo analysis to
account for uncertainties in the physical characteristics [13,21,22]. In particular, the Uncer-
tainty Mode of HEC-LIFESim propagates uncertainties associated with model parameters
through the model to provide probability distributions of LL estimates [14,23]. A Latin
hypercube sampling technique is used for the generation of values for model input param-
eters; however, this approach has certain limitations. First, the scarcity of available data
can make a rigorous description of the uncertainty in input parameters challenging [24].
Another limitation is a rather simplified representation of the parameter probabilities due
to a specific research focus, for example, on the extreme values of the parameters and not
on the entire domain. Due to data scarcity and such vague representation of the parameter
probabilities, a large number of model runs can be required to achieve convergence of
the mean or to achieve the desired confidence (e.g., a user wants to be 95% certain that
the model prediction is within 1% of the mean) [25]. A large number of model runs is
often in strong contrast with the advanced and complex simulation models encountered in
engineering applications [26], which is a similar problem to the one proposed in this study.

To overcome the aforementioned limitations, a framework for quantitative assessment
of uncertainties based on metamodelling introduced by Sudret [27] and De Rocquigny
et al. [28] was applied. To construct a metamodel, the HEC-LIFESim model was adjusted to
Swiss conditions and approximated with a polynomial chaos expansion (PCE) using only
a limited number of runs of the original model [29]. The uncertainty of the model inputs,
described with the probability distributions reflecting the entire range of their uncertainty,
was propagated through the metamodel, allowing quantification of the uncertainty of the
LL estimates with much lower computational costs with respect to Monte Carlo based
approaches.

In addition to uncertainty analysis, sensitivity analysis (SA) has been suggested by the
developers of HEC-LIFESim as a tool that enables understanding the contribution of un-
certain model inputs to the variability of the model output [30,31]. Furthermore, SA helps
achieve more robust results and confidence about key model inputs [32] but also prioritize
safety measures based on the most relevant parameters affecting the results [33,34]. In gen-
eral, there are two types of sensitivity analysis: local (LSA) and global (GSA) [35]. Analyses
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conducted in the dam safety risk assessment studies are examples of the former, where only
one parameter is changed at a time and only for relatively small increments [15,36]. The
limitation of LSA is that it does not allow variation of multiple parameters at a time and
the input parameters are not sampled over the entire possible space of their uncertainty.
Therefore, GSA methods such as Sobol’ indices and Borgonovo indices are applied in this
study to overcome these limitations [37–40]. These methods also allow identification of the
non-influential inputs to fix them to deterministic values, calibration of model inputs, and
mapping the output behaviour as a function of the inputs [41].

Based on these premises, the goal of the current study was threefold. First, the
application of the HEC-LIFESim software for LL estimation in the failure of a hypothetical
hydropower dam in Switzerland was demonstrated. This application can encourage the
use of dynamic spatial models for emergency management within the Swiss dam safety
field. Second, uncertainties in the constructed LL model were quantitatively assessed using
the PCE-based method. In addition to lower computational cost, the constructed PCE
metamodel allows the representation of conditions relevant for Switzerland by considering
a population of inhabited localities downstream of large hydropower dams as it was
described by Kalinina, Spada, Vetsch, Marelli, Whealton, Burgherr, and Sudret [34]. Third,
a GSA was performed to evaluate model inputs that are influential for a potential decrease
of LL consequences in the event of a dam failure. Application of several GSA methods
allowed for quality assurance of the conclusions drawn.

The rest of the paper is structured as follows. In Section 2, the computational model
used for the LL estimation is introduced, including all information sources and assumptions.
Then, methods used for quantification of uncertainties and sensitivities of the model inputs
and outputs are explained in Section 3. The analysed scenarios are also defined there.
Results for the probability distributions of the model inputs and outputs as well as all
calculated sensitivity indices are given in Section 4. Finally, Section 5 provides a discussion
of the results, and conclusions are provided.

2. Computational Model

A dam-break model commonly consists of (i) the simulation of the outflow hydrograph
resulting from the dam break, (ii) the propagation of this hydrograph in the downstream
topography, and (iii) the LL estimation. The first two steps were addressed previously by
Kalinina, Spada, Vetsch, Marelli, Whealton, Burgherr, and Sudret [34], while this study
addressed the LL estimation.

For the first two steps of the dam-break model, a concrete arch dam over 100 m in
height was chosen, which reflects typical Swiss conditions [34]. Furthermore, a complete
and instantaneous failure was assumed for this dam [42]. That model predicted flow
quantities at the end of the downstream valley and estimated their uncertainty.

With the same assumptions and using the computed flow quantities as input, the LL
model was generated in this study using HEC-LIFESim [14]. Developed by the Hydrologic
Engineering Center (HEC) of the U.S. Army Corps of Engineers, HEC-LIFESim uses
by default input data provided by different American agencies; however, to be able to
realistically simulate a scenario for Switzerland, input data need to be specific for local
conditions.

The remainder of this section contains information about the HEC-LIFESim software
and its modules. Furthermore, it describes sources for the input data used in the LL model
for a Swiss case.

2.1. The HEC-LIFESim Software

HEC-LIFESim is a spatial dynamic simulation software for estimating the conse-
quences of a flood event (e.g., LL). It considers processes that affect LL through its three
modules: (1) loss of shelter, (2) warning and evacuation, and (3) life loss (Figure 1). These
modules exchange data through GIS layers such as ESRI maps [43] and other datasets
described in the following subsections.
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Figure 1. Representation of the HEC-LIFESim approach for LL estimation (modified from [44]).

The warning and evacuation module simulates the spatial redistribution of the pop-
ulation at risk (PAR) from its initial distribution when the warning is issued to a new
distribution at the flood-arrival time. Modelling warning requires information about the
hazard communication delay (i.e., time to communicate the message to the responsible
authority), the warning issuance delay (i.e., time to initiate alert), the warning diffusion (i.e.,
time to receive the warning message), and mobilization time (i.e., time to decide on moving
away from the flood area). The simulation of the evacuation process requires information
about the road network, evacuation destinations, and emergency planning zones.

The loss of shelter module simulates the exposure of people in buildings during the
flood event. To achieve this, first, the degree of building destruction is defined based on
the local flow quantities. Based on that knowledge and local characteristics of the flood,
different flood zones are assigned to buildings or levels of buildings in the locality. The
three flood zones used in HEC-LIFESim were defined by McClelland and Bowles [45] as
chance zone, compromised zone, and safe zone.

The loss of life module combines information about the assigned flood zone cate-
gories, the value of PAR in the corresponding zone, and the LL rate distributions to estimate
life loss. The LL rate distributions were derived from historical data and reflect a physical
flood environment different in each flood zone [7].

2.2. Information Sources for the Swiss Case Study
2.2.1. Dam-Downstream Inhabited Locality Representative for Switzerland

In this study, the LL model was generated for a locality downstream of a large concrete
arch dam over 100 m in height located in Switzerland. Most Swiss dams with such
characteristics are in the Cantons of Valais and Ticino. In particular, the largest valley in
Canton of Valais, the Rhone Valley, could be potentially affected by a break from one of
the four large arch hydropower dams (Gebidem, Mauvoisin, Moiry, and Zeuzier dams)
(Figure 2). Moreover, in the upper part of the valley, there are also large gravity (the Grand
Dixence dam) and embankment (the Mattmark dam) dams. Considering this potential
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for the inundation of some parts of the Rhone Valley due to a dam failure, a hypothetical
locality with characteristics like those of the localities in the Rhone Valley can be considered
representative for Switzerland in the LL model.

Figure 2. The Rhone Valley with all major inhabited localities, as well as large dams and dam reservoirs located around the
valley (topography image is provided by swisstopo [16]).

To simulate a hypothetical locality representative for the Rhone Valley, it is impor-
tant to understand which characteristics can essentially describe such a locality and, in
particular, its urban part where buildings and inhabitants are concentrated. Based on a
literature survey about urban analytics conducted in this study [46,47], it can be concluded
that a number of characteristics related to demographics, buildings, land use, and transport
are generally very important. In this study, only the characteristics significant for the
dam-break LL model were considered (Table S1 in the Electronic Supplementary Material
(ESI)).

The data for two demographic characteristics, namely the total population, Ptot, and
people over 65 years, Po65, were collected from the SFSO [48]. Based on the summary
statistics of these data (from 1.58 × 103 to 2.16 × 104 (people) for Ptot and from 12.3 to 21.8
(%) for Po65; see Table S2 in ESI), it was decided to focus only on 25 localities with a number
of inhabitants ≥1000 in the Rhone Valley (Table S1 in ESI).

For the chosen localities, the information related to four characteristics of the buildings
and land use (Table S1 in ESI) were collected from the SFSO [49] and swisstopo [16].
Using the summary statistics of these data (Table S2 in ESI), a better understanding of
the representative ranges within the selected localities in the Rhone Valley was achieved.
This knowledge helped to conclude that the hypothetical locality in the current LL model
should be defined using the following ranges (5–95% quantiles):

• Ratio of building height to building area—0.017 to 0.019 (# floors/m2);
• Total area of its urban part between 1.0 and 3.6 (km2);
• Building density—283.3 to 478.7 (#/m2);
• Fraction of residential among all buildings—92.4 to 96.3 (%).
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2.2.2. Swiss Representative Data for the Modules of HEC-LIFESim
Loss of Shelter Module

Information needed to simulate the structural inventory for the hypothetical locality
was collected from the GWR building database [49] (Figure 3). Using the description
of the building category characteristics (occupancy type, structural stability criteria, and
number of stories), the format of the data extracted from the GWR database was adopted
to the format of the HEC-LIFESim software as shown in Table S3 in ESI. Furthermore,
assumptions on the construction type of the structures were based on expert judgment
(Table S3 in ESI).

Figure 3. The building structures, road network, evacuation destinations, and emergency planning zone defined for the
hypothetical locality in the LL model (topography image was provided by swisstopo [16]).

Data for the structural stability criteria of buildings in Switzerland could not be
obtained for the needs of this study. Therefore, it was decided to use the data from the
European Project Development of Rescue Actions [50]. In the latter, the stability criteria
are given for European buildings, which can be considered as a reasonable approximation
for Switzerland because of the advanced quality control and safety measures used for
construction needs in the European countries [51].

Finally, time series of flow quantities at different locations of the inundated area
were imported in HEC-LIFESim from the HEC-RAS [52] for three selected scenarios (see
Section 3.3). In HEC-RAS and for each of the selected scenarios, the flood wave through
the locality was simulated using the digital elevation data, Manning roughness coefficients,
and inflow hydrograph derived from the PCE metamodel of the dam-break flood built
by Kalinina, Spada, Vetsch, Marelli, Whealton, Burgherr, and Sudret [34]. For the digital
elevation data of the hypothetical locality used in this study, the digital elevation model
of the Brig-Glis locality was extracted from swisstopo [17] because this real locality is
situated in the Rhone Valley and its buildings and land use characteristics are within the
intervals given in Section 2.2.1. This choice was made to apply the proposed framework
to real-world data, which better represents the Swiss conditions, rather than a simplified
generic map. Furthermore, it helps to eliminate additional uncertainty due to simplification
and, on the other hand, to model a more comprehensive flood dynamic.
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Warning and Evacuation Module

As introduced in Section 2.1, information about the demographics and warning-time
parameters is required to simulate the warning process. For this study, the demographics
data were taken from the census data provided by the SFSO [53] (Table S1 in ESI). Although
the Swiss Federal Act [54] and Directive on the Safety of Water Retaining Facilities [55]
provide an exhaustive description of the warning process to be used in case of the un-
controlled water release from a dam, there are no standard values for these warning-time
parameters. Therefore, to understand the possible range of warning-time parameters, a
literature review about dam-break LL models was conducted (see Section 4.1.2).

To simulate the evacuation, knowledge about evacuation destinations and zones is
necessary. Because these data are spatial and closely linked to the elevation data, the
actual evacuation destinations (D1–D7) and emergency planning zones defined for the
aforementioned Brig-Glis locality by the Public Safety Department of the Municipality of
Brig-Glis [56] were used for the hypothetical locality in this study (Figure 3).

Information about the road network, such as the free flow speed and number of lanes,
is essential for modelling evacuation-transportation processes. In this study, road-network
data were extracted from OpenStreetMap [57]. This information source was chosen since it
is a free editable map of the world emphasizing local knowledge; thus, it can accurately
represent the real-world local conditions.

Loss of Life Module

Finally, the intermediate results acquired from the other two modules (Figure 1) were
combined with the historical LL rates to estimate life loss. The LL rates were given as
curves of the frequency of exceedance with respect to the PAR. For each of the three flood
zones (i.e., chance zone, compromised zone, and safe zone), an individual LL rate curve
was defined.

HEC-LIFESim uses LL rates empirically derived from historical data on floods that
are mostly attributable to embankment dam failures in the U.S. However, McClelland and
Bowles [7] stated the importance of adjusting the historical observations underlying the LL
rates to reflect study-specific characteristics of the dam type and failure mode. Therefore,
alternative LL rate distributions that are representative for the topographical conditions
and characteristics of dams in Switzerland developed by Kalinina et al. [58] were used in
this study.

3. Method

In this study, metamodelling was applied for uncertainty quantification (UQ) and sen-
sitivity analysis (SA) in the LL model for the dam-break event (Figure 4). The methodology
was based on the general UQ framework introduced by Sudret [27] and De Rocquigny,
Devictor, and Tarantola [28]. First, the uncertain input was defined and used as for the
computational model in Section 2 (Box A in Figure 4). The computational model was then
used to build the PCE-based metamodel (Box B in Figure 4). Afterwards, the uncertainty
of the model output, i.e., LL estimates, was quantified by propagating uncertainty of the
model input parameters through the metamodel (Box B in Figure 4). These results were
compared (Box C in Figure 4) with the results obtained from the existing uncertainty model
of HEC-LIFESim, given by a Monte Carlo sampling (Box A in Figure 4). Finally, using
the metamodel, a global SA (GSA) could be directly performed to better understand the
contributions of the uncertain model parameters to the variability of LL estimates (Box
D in Figure 4). Different GSA techniques were applied in this study allowing for quality
assurance of the conclusions that were drawn based on the calculated indices.
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Figure 4. Methodology for uncertainty quantification and sensitivity analysis applied in this study.

3.1. Metamodel
3.1.1. Uncertainty in the Model Input

The first step to assess the uncertainty in the model output was to define the un-
certainty in the model inputs (see Box A in Figure 4). In fact, input parameters for the
dam-break LL model are intrinsically uncertain; therefore, for credible LL estimates, it
is important to quantify and consider uncertainty in the model inputs [20]. For this pur-
pose, the input parameters (Section 4.1) were introduced in the LL model as probability
distributions. Furthermore, these distributions were defined for all possible values among
the inhabited localities considered in this study (Section 2.2), thus making the metamodel
generic for the selected localities rather than a model just for one locality.

Based on the availability of the collected data for the model parameters, different
methods can be applied to build a probability distribution. In this study, when operating
with a tiny dataset (e.g., a few data points), the maximum entropy principle was used
to select the distribution family [59]. This method was chosen since it has been shown
in the literature to be useful in case of scarce data to infer distributions [34,60,61]. In
contrast, when a set of data points is available (e.g., values of the total population for the
25 considered localities), the information criteria (IC) [62,63] are calculated to test the fit
of three selected probability distributions to the data. The distribution with the smallest
value of IC is commonly chosen because it is a good compromise between maximizing
the likelihood and minimizing model complexity. The three distributions considered in
this study were uniform, beta, and lognormal. The uniform and beta distributions were
considered since they are commonly used when little knowledge about the parameter is
available. Furthermore, they are bounded distributions, i.e., bounds can be set based on the
values among considered localities. The lognormal distribution was considered because it
is commonly used for engineering applications, and comprehensive guidelines exist on
how to define distribution parameters [64]. Finally, once the best fit distribution to the data
among the selected three has been identified, the parameters describing the distribution,
i.e., the moments, are estimated using a maximum likelihood estimator (MLE) [65].

3.1.2. Uncertainty Propagation

Once the uncertainty of the model inputs is defined, the uncertainty propagation
step can be performed (see Box B in Figure 4). The computational LL model is defined as
= M(X), where Y is the response of the quality of interest to the random input, X(X εRM),
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with a probability distribution function (PDF) fX . In this study, this model was substituted
with a computationally inexpensive analytical approximation known as metamodel. In
particular, a polynomial chaos expansion (PCE) was used to build the metamodel [29,66]:

MPCE def
= ∑

αεNM

yαΨα

(
Xj
)

(1)

where MPCE is the PCE metamodel response, yα,i are real coefficients, N is the sample
size, M is the model dimension, and the index α determines the degree of the multi-
variate polynomials Ψα, which are the product of the underlying standard orthonormal
polynomials, φ

(i)
αi . A sample set for each model input parameter, Xj, was created by sam-

pling the corresponding marginal distribution with the Latin hypercube sampling (LHS)
technique [67].

The coefficients yα of the PCE for a given basis can be calculated by post-processing of a
training sample of the input random vector, X =

{
x(1), . . . , x(N)

}
, x(i) = RM , the experi-

mental design (ED), and the corresponding set of model responses, Y =
{

y(1), . . . , y(N)
}

:

yα = argmin
1
N

N

∑
i=1

[
y(i) − ∑

αεNM

yαΨα

(
x(i)
)]2

(2)

When calculating the coefficients for high-degree expansions and a limited ED, such
as in the applied model, overfitting can occur. To avoid potential overfitting, least angle
regression methods (LARS, [68]) for the calculation of the coefficients can be used. When
the PCE coefficients are calculated, the PCE model can be used as a predictor of new points
outside of the ED.

In this study, the construction of the metamodel was performed using PCE based on
LARS in UQLab, an uncertainty quantification toolbox for MATLAB [69,70].

More detailed information on the theoretical background of PCE-based metamodels
was provided by Blatman and Sudret [71]. Furthermore, a similar application of the
metamodelling approach for uncertainty quantification in the dam-break-related model
was presented by Kalinina, Spada, Vetsch, Marelli, Whealton, Burgherr, and Sudret [34]
and used as input for the definition of the flood scenarios (see Section 3.3) in this study.

3.1.3. Validation of the Metamodel

The agreement between the original model and the constructed PCE model was
assessed using the normalized leave-one-out cross-validation error (εLOO) [72]:

εLOO
def
=

∑K
i=1

(
M
(

x(i)
)
−MPCE\i

(
x(i)
))2

∑K
i=1
(

M
(
x(i)
)
− µ̂Y

)
)2

(3)

where M
(

x(i)
)

is the evaluation of the computational model, µ̂Y is the mean value of the

computational model, and MPCE\i
(

x(i)
)

is the PCE.
In total, K different metamodels were built with each metamodel being constructed on

a reduced ED
{

x(i) =
{

x(j), j = 1, . . . , K, j 6= i
}

, except the ith observation. Afterwards,
this observation was used as a single validation point for this metamodel.

Finally, the mean square error (MSE) was estimated and normalized by the estimated
variance of the computational model to evaluate the convergence of the mean values of
the model outputs. For that, ED was divided into two samples: one sample was the same
sample set used as validation sample, XVAL, and the other was used for the construction of
the PCE, XNED. Then, the validation error was estimated using the metamodel prediction,
YNED, and the computational model output, YVAL:
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MSE =
∑n

i=1
(

YNED
i −YVAL

i
)2

∑n
i=1

(
YVAL

i −YVAL
)2 (4)

3.2. Global Sensitivity Analysis

To meet the objectives of this study, the sensitivity of the model output, Y, to each
model input parameter was quantified (see Box D in Figure 4). This was done with the
use of the sensitivity indices indicating the contribution of each model input to the overall
uncertainty of the output. To perform the sensitivity analysis, the preference was given to a
GSA rather than to LSA because global methods consider the entire input domain. Two GSA
methods, namely, 1st order and total Sobol’ indices and Borgonovo indices, were considered
in this study allowing for quality assurance of the conclusions made from the sensitivity
analysis. Although other GSA methods could be applied, the choice of these two methods
was driven by the fact that they benefit from the constructed metamodel (Section 3.1) and
calculate the sensitivity coefficients using previously estimated PCE coefficient without
additional sampling of the original computational model [73]. The remainder of this section
provides a concise theoretical background for the two GSA methods.

3.2.1. PCE-Based Sobol’ Indices

The Sobol’ method is a variance-based sensitivity analysis that aims at understanding
how the output variance can be attributed to individual model inputs and the interaction
between inputs [74,75]. Thus, it decomposes the total variance D of the model response, Y,
(also defined as a function of X, Y = M(X)) into contributions from each input parameter
(Xj, j = 1 . . . n) and from interactions between parameters. The Sobol’ decomposition can
be expressed as:

M(x) = M0 +
s

∑
i=1

Mi(Xi) +
s

∑
i=1

s

∑
i 6=j

Mij
(
Xi, Xj

)
+ M1..s(X1, X2, . . . Xs ) (5)

where M0 and D are the mean and variance of a random variable, M(X), and the D can be
decomposed further as:

D =
M

∑
i=1

Di + ∑
1≤i<j≤M

Dij + . . . + D12...M (6)

The Sobol’ sensitivity indices are then defined as the ratio of the partial variance, Di,
to the total variance, D [76]:

Si1 ... is =
Di1 ... is

D
(7)

In particular, the first-order Sobol’ index, Si, represents the fraction of the total variance,
D, attributable to an effect of a single input variable, Di, i.e., Si = Di/D. The total Sobol’
index, STi , is the sum of all sensitivity indices (i.e., STi = Si + Sij + . . . + S1..i..s), accounting
for both the first- and higher-order effects.

Commonly, Sobol’ indices are calculated using a Monte Carlo approach, which, in
case of high dimensional models, is computationally expensive. In contrast, PCE-based
Sobol’ indices take advantage of a surrogate-model technique to extract the most accurate
information based on a relatively small sample size [77]. The calculation principle is based
on the similarity between the Sobol’ decomposition (Equation (5)) and the PC expansion
(Equation (8)):

M(x) = ∑
αεNM

yαΨα(x) = M0 + ∑
{i1,...,is}⊂{1, ..., M}

∑
α∈A{i1...is}

yαΨα(x) (8)
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By unicity of the Sobol’ decomposition, the definition Mi1...is
(
xi1 , . . . , xis

) def
= ∑

αεAi

yαΨα(x)

applies. Furthermore, the partial variances Di1 ...is = Var
[
Mi1 ...is(X))

]
can be calculated by

summing up the squared PC coefficients, i.e., the first-order term as Di = ∑
α∈Ai

y2
α, where

Ai =
{

α ∈ NM : αi > 0, αj 6=i = 0
}

with N being the number of samples in the ED and M
being the dimension of the model, and high-order terms as Di1 ...is = ∑

α∈A{i1...is}

y2
α, where

Ai1 ...is =
{

α ∈ NM : k ∈ {i1 . . . is} ⇔ αi > 0
}

.
Therefore, the first-order Sobol’ indices can be computed as:

Si = ∑
α∈Ai

y2
α/D, Ai =

{
α ∈ NM : αi > 0, αj 6=i = 0

}
(9)

and the total Sobol’ indices are:

STi = ∑
α∈ATi

y2
α/D, ATi =

{
α ∈ NM : αi > 0

}
(10)

3.2.2. Borgonovo Indices

Borgonovo indices, δi [40], consider the distance between the output distribution, fY,
and the output distribution conditional to one or several inputs, fY|Xi

. If the value of δi is
close to zero, then the variable is unimportant; on the other hand, the larger the value of δi
is, the more important the variable is.

In other words, δi index of a random input variable Xi is a measure of the expected
shift in the probability distribution of the model output, when Xi is set to a fixed value:

δi =
1
2

∫
fXi (xi)

∫ ∣∣∣ fY(y)− fY|Xi
(y|xi)

∣∣∣dydxi (11)

In Equation (11), fY|Xi
is the conditional probability distribution function (PDF) that

can be approximated by drawing a sample of the input vector X of size K and after-
wards binning the variable Xi in classes. For this, the P disjoint ranges

{
ap, bp

)
, ap > bp

on the Xi variable are defined. The input sample is then divided in subsets Cp ={
x(j), such that ap ≤ x(j)

i ≤ bp) and the fY investigated in each class such as fY|Xi=xi
(y) ≈

f̂Y|Cp⊃xi
(y).

In this study, the Borgonovo indices, δi, are assessed by using the histogram-based esti-
mation principle [73]. First, a sample of the input vector X of size K, X =

{
x(1), . . . , x(K)

}
is generated, and afterwards, the corresponding set of model responses, Y = M

(
x(1)

)
, ...,

M
(

x(K)
)

, is evaluated. The unconditional PDF is approximated directly from the his-
togram of Y , while to define the conditional PDF, a histogram is set in each class. It is
recommended to have enough samples in each class (e.g., K ≥ 103) to be able to accurately
estimate the conditional PDFs with histograms [73].

By computing the sum of absolute differences between the unconditional and condi-
tional PDFs, the inner integral in Equation (11) is calculated. Afterwards, the sum of the
absolute difference between the conditional and unconditional PDF values is calculated for
each class and subsequently averaged by taking the mean of the estimates. This yields an
estimation of the outer integral in Equation (11).

3.3. Definition of the Scenarios

The uncertainty in the model input parameters, which are likely affecting the LL
estimates, was quantified in this study. In addition, different scenarios were modelled
to understand the influence of different time and flood conditions on the LL estimates.
In particular, six scenarios were defined as combinations of two different times of the
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day (daytime (2 p.m.), night-time (2 a.m.)) and three different flood severities (F05, F50,
F95). The time of the day reflects different distributions of people among buildings and
the ability of people to react to changing conditions (Table S3 in ESI). Furthermore, as
described in Section 2.2, flow characteristics (e.g., water depth, velocity) for different flood-
severity scenarios were modelled in HEC-RAS using the dam-break outflow hydrographs
computed with the PCE metamodel built by Kalinina, Spada, Vetsch, Marelli, Whealton,
Burgherr, and Sudret [35]. Three different outflow hydrographs were built using the
median (scenario F50), 5% (scenario F05), and 95% quantile (scenario F95) values of the
generic PCE metamodel of the dam-break outflow hydrograph reflecting Swiss conditions
(Table 1). Maps of the resulting maximal flow depth and velocity are provided in Table S4
in ESI.

Table 1. Three different dam-break outflow hydrographs (m3/s) representing three different scenarios of the flood severity.

F05 F50 F95

Peak discharge, Qmax (m3/s) 6.57 × 103 6.25 × 104 3.17 × 105

Time-to-peak discharge, tmax (s) 129.72 522.05 3.93 × 103

Time-to-flood arrival, tar (s) 31.55 340.10 2.84 × 103

Recession (m3/s2) 4.60 × 10−4 0.0011 0.0024

4. Results and Discussion
4.1. Uncertainty in Model Inputs
4.1.1. Definition of the Sources of Uncertainties

Sources of uncertainty identified in the LL model can be allocated to two categories,
namely aleatory (due to natural variability, e.g., failure mode, time of the day, warning
parameters) and epistemic uncertainty (due to lack of knowledge, e.g., flow quantities
in the inundation area, share of people who decided to evacuate) [78]. Based on expert
opinion and studies conducted in the past (Table S5 in ESI), several model input parameters
were selected in this study. This selection aimed to include those parameters that can be a
significant source of variability for the LL model output and that are generally part of dam
risk management and, thus, can be adjusted by dam-safety specialists.

As a result, three characteristics of the receptor (i.e., the inhabited locality) and four
characteristics of its reaction on the flood load (defined in Section 3.3) were chosen and
their uncertainties were explicitly modelled (Table 2).

Table 2. Input parameters for the LL model.

Parameter Name Unit Definition

Receptor
Ptot Total population # people Total population of the modelled inhabited locality
Po65 Population over 65 fraction Part of the total population older than 65 years

H Building foundation height m Height between the level of the ground and the level of the ground
floor in the building

Reaction

Fchance Fatality rate in the chance zone fraction Fatality rate in the chance zone given as a part of PAR that will lose
their life

Fcompr Fatality rate in the compromised zone fraction Fatality rate in the compromised zone given as a part of PAR that
will lose their life

Thcd Hazard communication delay h Time that it takes the dam operator to communicate the message to
the local authorities

Twid Warning issuance delay h Time that it takes the local authorities to initiate warning
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4.1.2. Quantification of the Uncertainties in the Input Parameters

To build marginal distributions for the parameters of the hypothetical locality (recep-
tor), namely Ptot and Po65 (Table 2), the data of 25 major localities in the Rhone Valley (Table
S1 in ESI) were extracted from the SFSO [48]. The AIC coefficients were calculated for three
types of probability distributions to assess the best fit to the extracted data (Section 3.1).
For Ptot, the smallest AIC was estimated for a lognormal distribution and for Po65 for a
beta distribution (Figure 5). For the lognormal distribution defined for Ptot, truncation
was considered to prevent obtaining unrealistically large values when sampling the tail
of the modelled distribution. For the building foundation height, H, no information was
available about more or less likely values to quantitatively describe the uncertainty of this
parameter. Therefore, it was assumed that H follows a uniform distribution defined in the
range between 0.2 (m) (0.65 ft) and 1.5 (m) (5 ft).

Figure 5. Marginal distributions for the (a) total population, Ptot; (b) population over 65 years, Po65.

As described in Section 2.1, HEC-LIFESim uses three flood zones, namely, chance,
compromised, and safe zone. In the current LL model, the safe zone was considered with
a zero probability for fatality (i.e., zero fatality rate). The values for the fatality rates for
both the chance, Fchance, and compromised, Fcompr, zones were extracted from the data for
concrete dams in the OECD countries collected by Kalinina, Spada, and Burgherr [58].
Based on the available values and using the maximum entropy principle (Section 3.1), the
distributions for Fchance and Fcompr were defined as uniform ones as shown in Figure 6.

Figure 6. Marginal distributions for (a) fatality rate in the chance zone, Fchance; (b) fatality rate in the
compromised zone, Fcompr.

An overview of previous studies on dam-break LL models was conducted to determine
possible values for the parameters Thcd and Twid. The reviewed studies addressed warning
time (defined as a time between alarm initiation and imminent hazard) but not Twid. The
warning time is generally defined between 2 h before and 2 h after the dam break (Table 3).
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Table 3. Values for warning time used in various studies conducted on the topic of the dam-break
modelling.

Author (Year) Paper Title Warning Time (h)

DeKay and McClelland [5] Predicting loss of life in cases of dam
failure and flash flood from −4 * to 0

Graham [79] A Procedure for Estimating Loss of Life
Caused by Dam Failure from −1 to 0

Darbre [2] Dam Risk Analysis from 0.25 to 0.5

Bowles and Aboelata [12] Evacuation and life-loss estimation
model for natural and dam break floods from −3 to 2

Wang et al. [80]

Life Loss Estimation Based on
Dam-Break Flood Uncertainties and
Lack of Information in Mountainous

Regions of Western China

from −2 to 0

* Negative values mean that the warning was issued before the time of the imminent hazard; in contrast, positive
values mean that the warning was initiated after the imminent hazard.

To reflect this in our LL model, it was assumed that the dam operator would know
about the hazard 2 h before the dam break (constant across all considered scenarios), but
the authorities would react with different Twid. In this study, Twid was described by a
uniform distribution in the range of 0–4 h starting from the hazard identification (blue
solid line in Figure 7), thus making the alarm initiation be in the range between 2 h before
and 2 h after the dam break (Figure 7).

Figure 7. Time diagram for warning and evacuation in the dam-break event and with distributions for Twid (default in
HEC-LIFESim or specific for this study); all time parameters are given in (min) to help visualization.

In addition to Twid, the time of the alarm was defined by the communication delay
between the dam operator and authorities, Thcd. In the reviewed studies, no information
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was provided for Thcd. Therefore, Thcd was assumed to be uniformly distributed between 0
(h) and 0.25 (h) based on expert judgment. For both Thcd and Twid, a uniform distribution
was assumed based on a conservative assumption because there was little confidence in the
mean and median of data in the defined range. Finally, due to the different nature of the
uncertain model inputs and the fact that some of them were defined based on assumptions,
no correlation was modelled between the input parameters.

For all seven marginal distributions assessed in this study, the calculated parameters,
moments, and truncation ranges are given in Table 4.

Table 4. Information about the marginal distributions specified for the input of the metamodel.

Parameter Unit Distribution Hyper-Parameters Truncation Mean and Variance

Receptor
Ptot # people Ptot ∼ Lognorm(µ,σ) µ = 8.50,σ = 0.90 [1400 34,000] 7.35 × 103, 8.21 × 103

Po65 fraction Po65 ∼ Beta(α,β) α = 33.08, β = 156.90 - 0.17, 0.027
H m H ∼ U(a, b) a = 0.2, b = 1.5 - 0.85, 0.38

Reaction
Fchance fraction Fchance ∼ U(a, b) a = 0.35, b = 1 - 0.67, 0.19
Fcompr fraction Fcompr ∼ U(a, b) a = 0.033, b = 0.13 - 0.083, 0.029
Twid h Twid ∼ U(a, b) a = 0, b = 4 - 2, 1.15
Thcd h Thcd ∼ U(a, b) a = 0, b = 0.25 - 0.13, 0.072

4.2. Uncertainty in Model Output

For each of the six scenarios (Section 3.3), a generic PCE metamodel was calculated
using the ED obtained from 550 runs of the original computational model. This value was
selected based on the calculation of both εLOO and MSE (see Section 3.1) for different sizes of
the ED as shown in Figure 8 and Table S6 in ESI. To calculate MSE, the experimental design
(ED) was divided into a validation sample, XVAL, i.e., the same sample set of 100 points,
and the sample used for construction of the PCE, XNED, i.e., from 50 to 550 sample points.

Figure 8. The value of εLOO (%) and MSE error (%) calculated for the LL estimates obtained in each of the six defined
scenarios using different sizes of the experimental design.

The PCE degree shown in Table S6 in ESI is the degree of the PCE with the lowest
εLOO in the array of the given degrees (i.e., 1–15) [71]. The results for both εLOO and MSE
showed that, with the increasing sample size of ED, the value of the errors decreases.

In general, for the increase of the ED from 50 to 250 samples, the decrease of the MSE
and εLOO value is well-pronounced. With the further growth of the XNED sample size,
the values of both errors remain rather stable; however, there is still a tendency of εLOO
and MSE to decrease. Therefore, to keep the balance between the metamodel accuracy and
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computational costs in this study, the maximal size of the ED was limited to 550 samples.
This choice was based on the fact that, at this size of the ED, errors had become smaller
than an error of five fatalities, which corresponds to a severe accident according to the
definition given by Hirschberg et al. [81]. In contrast, in the night-time and daytime F95
scenarios, a smaller ED (300 samples) is required to reach the threshold of an error of five
fatalities. With the largest water depths reached in these two scenarios, it may be that
even by changing values of the other input parameters (e.g., Po65 or H), the model output
remains at the maximal LL value. Hence, no large variation is shown in the LL estimates,
and the metamodel converges faster.

The constructed PCE from the ED was then evaluated on the new sample set of size
1,000,000 using the coefficients calculated in the previous step. In Figure 9, the histogram
of the computational model response, YED, and the histogram of the PCE metamodel
response, MPCE, are shown for each scenario.

1 
 

 Figure 9. Model response to the experimental design, YED, and PCE response, MPCE, of the LL
estimates obtained in each of the six defined scenarios.

The histograms together with the calculated moments of the metamodel response
reflect the variability of the LL estimates between different scenarios. When comparing
MPCE among scenarios, the mean value for LL estimates of F05 and F50 inflow hydrographs
is higher for the daytime than for the night-time scenario (1470 (F05) and 2603 (F50) fatalities
versus 1264 (SF05) and 2570 (F50) fatalities). Although, in general, historical dam breaks
at night-time resulted in higher LL, in the current LL model, a substantial part of the
inundated area in F50 and F05 is covered with commercial buildings, which are at daytime
heavily populated with inhabitants. At night-time, all these buildings are empty, and all
people are in their residential buildings placed in the elevated locations. In contrast, in F95,
estimates for the night-time are higher than the daytime (2699 versus 2545 fatalities). This
can be explained by the fact that, in more severe inundation scenarios (F95), the slower
night-time response of the PAR to warnings becomes relevant.

When comparing the scenarios with the various flood severities (F05, F50, F95), differ-
ences in the model results can be observed. Therefore, flow quantities of the dam-break
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flood (i.e., water depth, flow velocity) are influential for the LL estimates. This is also
supported by the fact that the Swiss guidelines, which are employed currently for assessing
the consequences of a dam break [82], use the water depth and velocity (along with the
flood arrival time) as the input for their calculations.

Among the six scenarios, the lowest LL estimates are estimated for F05 during both
times of the day because a smaller area of the locality is inundated compared to the other
two inflow hydrographs. Additionally, water depth and flow velocities are the smallest
for these two scenarios (Table S4 in ESI). The difference between results for F50 and F95 is
almost negligible. Although the maximal water depths calculated in F95 are the largest
among scenarios, two factors likely counteract a substantially larger LL in F95 than in
F50. First, the maximal flow velocity calculated in F95 (15 m/s) is in the same order of
magnitude as the one in F50 (21 m/s). Second, the inflow hydrograph for F95 calculated
from the PCE metamodel has a much larger value for tar (Table 1), which means that the
flood wave in F95 arrives at the locality much later than in F50, giving people more time
for evacuation.

4.3. PCE and Monte Carlo LL Estimates Comparison

The LL estimates, including their uncertainty, resulting from the proposed method
and the Monte Carlo (MC) sampling from HEC-LIFESim are compared in Table S7 in ESI.

In all considered scenarios (F05, F50, and F95) and for both considered times (2 a.m.
and 2 p.m.), a good agreement is found for the LL estimates between the PCE metamodel
and the MC sampling. However, this statement is only valid for large sample sizes of the
MC model, i.e., when the model started to converge (between 10,000 and 100,000 sampling).
This comparison validated the results of the metamodel since they are in line with the MC
results from HEC-LIFESim.

Finally, the main difference between the PCE and the MC models is related to the
computational costs of the two methods. In fact, on the same machine, the MC model
required ~ 2 (for 10,000 samples) to ~ 20 h to run, i.e., to obtain stable results, while for the
metamodel, the experimental design (ED) required ~ 20 min and the run of the PCE for
1,000,000 times only a few seconds. Therefore, this clearly shows the improvement in terms
of computational costs of the PCE method proposed in this study with respect to the MC
model implemented in HEC-LIFESim.

4.4. Global Sensitivity Analysis: Impact of Model Inputs on LL Estimates

The sensitivity-analysis methods chosen in this study can benefit from the PCE ap-
proach and reduce the cost of GSA by calculating sensitivity indices from the PCE coeffi-
cients without the need for additional sampling.

The Sobol’ indices were calculated for all model input parameters in the night-time
and daytime F50 scenarios (Figure 10). For the night-time case, the first-order Sobol’ indices,
Si, indicate that, among the inputs, the population in the locality, Ptot, fatality rate in the
chance zone, Fchance, and warning issuance delay, Twid, contributed most to the variability
of the LL estimates. This result is in line with the conclusions given in the overview report
“Dam Risk Analysis” [2] produced by the Swiss Federal Office for Water and Geology
(currently Swiss Federal Office for the Environment) where the population at risk (which is
directly related to Ptot) and the timeliness of dam failure warning (and Twid being part of
this timeliness) are among the factors influencing LL.

On the other hand, fatality rate in the compromised zone, Fcompr, communication
delay, Thcd, proportion of people over 65 years, Po65, and building foundation height, H,
did not influence the LL estimates much. Since, in this study, the inputs for the LL model
were chosen based on the conclusions of previous studies about their importance for the LL
estimates (Table S5 in ESI), it is easier to explain why the latter four parameters are rather
unimportant for this LL model. In particular, Fcompr has a small influence on the output
because the inundated area is mostly in the chance zone (defined by the flood severity);
Thcd—because values chosen for this parameter are much smaller than values of other
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time characteristics in the warning and evacuation timeline (Figure 6–1 in USACE [14]);
Po65—because elderly people are located in the area that is not or only slightly inundated
(i.e., residential buildings in elevated parts of the locality); and H—because the inundated
area has water depths that are much higher (mainly due to the topography) than the safety
buffer given by H.

Figure 10. Sensitivity indices of the seven model input parameters to the LL estimates obtained in the (a) night-time and
(b) daytime F50 scenarios.

Furthermore, for the majority of the model inputs, there is a negligible difference
between the first-order, Si, and total Sobol’ indices, STi , which indicates that almost all of the
model variance is explained by the individual effects and there is only a small contribution
to the model variance from the interaction between the assessed input parameters.

Besides computing the Sobol’ indices, Borgonovo indices, δi, were estimated to high-
light the differences between these two sensitivity measures (Figure 10). In contrast to
Sobol’ indices that are variance based, Borgonovo indices are moment-independent and
look at the entire input/output conditional distributions. The results reveal that both Sobol’
and δi indices agree in identifying the most relevant parameters and, in general, in ranking
the model inputs. Discrepancies in the indices only relate to the fact that the δi indices
have higher values for the less-relevant parameters. This is because values of the δi indices
indicate the sensitivity relative to the sensitivity of the most important parameter (in this
study, Ptot). Therefore, this ranking is a relative ranking between the model inputs.

When comparing results between night-time (Figure 10a) and daytime (Figure 10b)
F50 scenarios, the ranking of the parameters remains the same; however, values of indices
for Fcompr, Twid, and H are slightly higher in the daytime scenario (except SFcompr ). The
already influential Twid become more important during the day because people react much
faster than at night. Therefore, an even slightly longer time interval gives more people
the opportunity to react. Although Fcompr remains an unimportant input, its influence on
the LL estimates slightly increases because more people may be in the compromised zone
during the day. The same reason may cause an increase in values for H indices since, in
this zone, even slightly higher elevation of the ground floor above the ground can bring
more people to safe areas.

When comparing results among all considered scenarios (F05, F50, and F95), as shown
in Table S8 in ESI, a good agreement is found for the ranking of the LL model inputs for
all sensitivity measures, i.e., Ptot, Fchance, and Twid. In fact, they all have a strong influence
on the LL estimates in all considered scenarios. This similarity in the sensitivity ranking
indicates that the effect of the change in the values of the model inputs on the LL estimates
is rather proportional. However, there are still some minor changes in the values of the
sensitivity coefficients among the scenarios. For example, the total Sobol’ index for H is
different among scenarios, being the highest for F05 with the lowest water depth and flow
velocities in the inundated area. Although, the ranking is similar, the computed values for
the Sobol’ and δi indices are different between scenarios (Table S8 in ESI).
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5. Conclusions

This study developed a generic framework for uncertainty quantification in the dam-
break LL estimates based on the use of HEC-LIFESim and a metamodelling approach. It
was subsequently applied to a case study in Switzerland. In the first part of the study, the
successful application of HEC-LIFESim to model LL due to the instantaneous break of a
hypothetical dam in Switzerland was demonstrated by reflecting the variation in the LL
estimates depending on the time of day and flood severity. Furthermore, the benefits of
applying metamodelling for uncertainty quantification in the dam-break LL estimates were
shown. A polynomial chaos expansion (PCE) was applied to approximate the computa-
tional LL model created in HEC-LIFESim with a metamodel using only 550 runs, therefore,
reducing the computational cost with respect to Monte Carlo (MC) based approaches. The
distributions for the model inputs were defined for the full range of values representative
for the population of large Swiss arch hydropower dams and their downstream localities
and propagated through the metamodel to quantify uncertainty in the LL estimates. There-
fore, the calculated metamodel is generic for the considered population of dams, and it can
be used to support the risk assessment and management of these dams. Finally, a GSA
was performed using the PCE coefficient. The GSA results indicate that the population
in the locality, fatality rate in the chance zone, and warning issuance delay contributed
most to the variability of the LL estimates. Furthermore, based on the differences in the
model results among the six modelled scenarios, flow quantities of the dam-break flood
were also found to be influential for the LL estimates; especially, they are relevant for the
flow velocity.

The application of the constructed generic metamodel can be a potential step forward
from the current guidelines for assessing the consequences of a dam break implemented
by the Dams Supervision Division of the Swiss Federal Office of Energy [83]. The current
guidelines focus on the population at risk (PAR) due to a dam break using information
about flood arrival time, water depth, and flow velocity, whereas evacuation and warning
processes are not considered.

Future research should focus on further data collection to improve local data (e.g.,
structural stability criteria for buildings in Switzerland). This is also related to the fact that
the parameters, such as warning issuance delay or hazard communication delay, are set for
the current model based on a review of previous research on this topic. Furthermore, it is
currently unclear if consideration of additional LL scenarios, including progressive breach
formation and/or modelling of muddy water propagation [82], and/or additional model
input parameters would affect the conclusions made about the most influential parameters
for the LL estimates. Therefore, it is important to further investigate these aspects in future
studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/w13233414/s1, Table S1. Data about land use, buildings, and demographic characteristics
collected for all major (≥1000 inhabitants) localities in the Rhone Valley; Table S2. Summary statistic
for the characteristics of the inhabited localities in the Rhone Valley; Table S3. Assumptions made for
the structural inventory in the loss of shelter module and for the warning and evacuation module in
HEC-LIFESim to build the LL-model representation for a Swiss case scenario; Table S4. Different flood
characteristics reflecting scenarios F05, F50, and F95; Table S5. Overview of the research conducted
on LL modelling: discussions and results on methods for uncertainty and sensitivity analyses; also
input parameters contributing most to uncertainty of the model output. Parameters considered for
the uncertainty quantification in this study are given in bold; Table S6. The PCE degree and values of
εLOO and MSE errors (fraction) for different model outputs using different sizes of the experimental
design; Table S7. Comparison of the LL estimates, including their uncertainty, for the three scenarios
F05, F50, and F95 and the two times 2 a.m. and 2 p.m. considered in this study calculated with the
PCE and different MC samples (100, 1000, 10,000, 100,000) implemented in HEC-LIFESim; Table S8.
The values of the 1st and total Sobol’ indices and Borgonovo indices calculated for different model
outputs in all six defined scenarios.

https://www.mdpi.com/article/10.3390/w13233414/s1
https://www.mdpi.com/article/10.3390/w13233414/s1
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