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Abstract: Agricultural systems are constantly stressed due to higher demands for products. Con-
sequently, water resources consumed on irrigation are increased. In combination with the climatic
change, those are major obstacles to maintaining sustainable development, especially in a semi-arid
land. This paper presents an end-to-end Machine Learning framework for predicting the potential
profit from olive farms. The objective is to estimate the optimal economic gain while preserving
water resources on irrigation by considering various related factors such as climatic conditions, crop
management practices, soil characteristics, and crop yield. The case study focuses on olive tree farms
located on the Hellenic Island of Crete. Real data from the farms and the weather in the area will
be used. The target is to build a framework that will preprocess input data, compare the results
among a group of Machine Learning algorithms and propose the best-predicted value of economic
profit. Various aspects during this process will be thoroughly examined such as the bias-variance
tradeoff and the problem of overfitting, data transforms, feature engineering and selection, ensemble
methods as well as pursuing optimal resampling towards better model accuracy. Results indicated
that through data preprocessing and resampling, Machine Learning algorithms performance is en-
hanced. Ultimately, prediction accuracy and reliability are greatly improved compared to algorithms’
performances without the framework’s operation.

Keywords: Machine Learning; predictive modeling; data preprocessing; resampling; ensemble
methods; irrigation management; olive tree farms

1. Introduction

The agricultural sector faces great challenges today because of climatic changes. Global
temperature is rising combined with inconsistent rainfall patterns and higher demands
in yield outcome [1]. Agriculture consumes most (70%) of the water withdrawn [2], but
the resulting productivity varies widely, even in similar climates, locations, and crops [3].
This wide variability in crop productivity under otherwise similar conditions demonstrates
that agricultural management strategies [4,5] can contribute significantly to optimal yields.
The key is good planning and, where possible, tailoring to the specific problem. Intensive
agriculture, empirical production methods, and urban overpopulation are threatening the
availability of global water resources. Better water resource management is essential along
with optimization of cropping practices. In the face of increasing demand [6] and climate
change [7], pressure [8,9] on agricultural systems is expected to increase and water scarcity
will become an important constraint to sustainable development, especially in semi-arid
regions [10,11].

Since their inception [12], irrigation decision support systems (IDSS) have aimed to
enable “smart” water use, allowing water users to decouple water use from yields and thus
pursue economic growth with a lower environmental footprint [13]. Traditionally, these sys-
tems create irrigation schedules based on deterministic models such as AquaCrop [14–16],
IrrigaSys [17], or IRRINET [18], which are based on the FAO-56 method [19] to estimate
crop yield response to temperature and water availability. Although many IDSS have been
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developed in the past [20], there is little evidence of widespread application [10]. This is
because IDSS advice is of limited value, or perhaps completely irrelevant, as the weight in
the decision rules is placed on water balances and is therefore far removed from the actual
criteria relied upon by agronomists or farmers [21].

The novelty of the present study lies in the exploitation of the interdependence
among several important factors in the development of olive culture. Soil and climatic
characteristics are important, and the protection of water resources must always be kept
in mind, but the financial aspect comes into play and makes the difference. A reliable
prediction of a farm’s profit is sought to help stakeholders make the best decision regarding
their needs and priorities. The yield price is a fluid amount per year that depends on
regional and global production as well as consumer demand [22–26]. A good or bad season
in terms of weather can drive production or do the opposite. This means that even a
high yield may prove unprofitable if olive oil prices are low that year and a low yield
salutary if it ensures preparation for next season production. At the same time, costs must
be considered. Trips to the farm are usually costly to apply management practices such
as pruning [27]. Irrigation costs are significant as the price of water is trending upward
and is expected to become more critical soon as demand increases and resources diminish
and become polluted or insufficient [11]. The financial trends and the olive oil market
tendency are out of the scope of this article, but the participating factors are combined into
forming a powerful decision tool. Stochastic and more sophisticated decision approaches
like fuzzy logic can enhance simplistic rule-based systems [28]. Although multiple criteria
can participate, those methods reach a certain point and cannot further extract valuable
interconnections among them, due to the probabilistic nature of the methodologies [28]
Knowledge extraction and reliable prediction for future unseen scenarios are feasible when
combining different (in scope) but relevant in interdependency variables. Training on
historical data and prediction performance can be explored via Machine Learning methods
to take advantage of relations among input historical data [29]. Machine Learning (ML)
deals with algorithms that can extract valuable information from data [30]. It is a sub-field
of Artificial Intelligence where those algorithms supported by proper information can
drive better decisions in practical problems. Machine Learning is applied in everyday
life problems and tasks such as text and image recognition, spam email filtering, and
recommendation systems. They are very powerful when it comes to predictive analytics
where they produce knowledge from statistical data to forecast unknown variables such as
stock exchange prices, election results, and weather phenomena [31].

This paper is based upon previous work [28] where an irrigation decision set of
strategies was examined. Our case study deals with olive farms on the island of Crete
facing challenges like low water availability combined with high agricultural demand
and extreme climatic droughts [32]. In the present study, non-similar data features will be
combined such as climatic data, soil characteristics, and econometric information aiming
to forecast the profit out of the produced crop yield. The challenge is to achieve accurate
predictions on the profit while applying management practices and reserving irrigation
water resources throughout the crop season.

It is important to underline that for Machine Learning algorithms to perform at their
best, thorough data analysis and preparation must take place initially [30]. Input variables
preprocessing and the examination of their correlation and characteristics will be analyzed
in the following sections. After the data are shaped accordingly, they will be supplied
as the training set to a group of different Machine Learning algorithms. On top of the
Machine Learning algorithms, ensemble methods will be applied to aggregate and enhance
our estimation on prediction accuracy. The ultimate output prediction variable will be the
profit outcome of the farm. This is calculated by subtracting irrigation and managements
costs from the selling value of the olive yield produced.

This research aims into forming a Machine Learning framework that will receive
datasets related to various features specific to crop farms and then be able to analyze
those data, perform preparation and analysis on them, choose the most useful features
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after examining their correlation and ultimately work on a set of given Machine Learning
methods to produce the best prediction possible. It will combine cross-validation on the
training sets along with sensitivity analysis on the parameters of the algorithms to adjust
to the nature of the data as best as possible.

2. Methodology
2.1. Classification vs. Regression

Our case study belongs to the category of supervised learning problems. This means
that we had all values of the input predictors for each given output observation. The
models we built tried to associate inputs with an output variable [33]. They trained with
a dataset containing this information and then evaluated on how well they fit unknown
input data. In supervised Machine Learning, training algorithms are classified into two
major categories: Classification and Regression. Classification deals with categorical data
and Regression refer to pure numerical data. This separation of nature in data can refer to
input and output variables, but most of the time it characterizes the problem concerning the
output variable [34]. In a supervised learning problem, the utility of the predictive measure
will point towards the choice of whether the output variable can be treated as categorical
or numeric. That is, if the decision-maker can handle or translate easier a qualitative result,
then classification will be the choice. There are of course cases when the specifics of the
problem or the data we possess will not permit this kind of flexibility and the only way is
either classification or regression. Classification is not so powerful in capturing fluctuations
in numerical data. Therefore, regression is preferred for predictions in financial problems,
as we will see in our Section 3 [35–39].

2.2. Causal Analysis and One-Hot Encoding Variables
2.2.1. One-Hot Encoding

Some of the predictors we examine in a Machine Learning problem will be categorical.
The categories can have a hierarchical or sequential meaning but having no interaction
of that kind can also be the case. A best practice in favor of the algorithms’ performance
is to alter those categorical values in a way that the magnitude or direction is shown in a
numerical representation [40]. When this kind of connection does not apply, the values
are nominal and cannot be ordered (e.g., male-female, apple–orange–banana) [41]. The
variables can then be decomposed into multiple binary-value columns [33,42]. Depending
on the number of categorical values appearing in a predictor, new columns are added to
the existing dataset. Each column will reflect the presence or absence of an attribute by the
values 1 or 0. The process of generating those kinds of new dummy variables is referred
to as one-hot encoding [42]. This technique is often used in smart agriculture because
the data to be studied include climatic, soil, and crop characteristics. [43,44]. While this
process can be beneficial and make regression models more interpretable [31], we need to be
cautious and avoid multicollinearity in regression models [39,42]. If the predictors contain
extreme outliers or abnormal values, then the regression models tend to be negatively
influenced [45].

2.2.2. The Dummy Variable Trap

The Dummy variable trap is described as the case where some input variables are
highly correlated and variable values can be implicitly predicted by the values of a corre-
lated variable. Applying one-hot encoding to separate all possible values of an attribute can
lead to a state known as the dummy variable trap [46,47]. The reason is that one variable is
highly correlated with all other dummy variables since its value can be inferred with the
help of the rest. Thus, as a good practice, models were implemented omitting one dummy
variable from the map [46].
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2.3. The Problem of Overfitting. Bias and Variance

The success of a predictive model lies in its ability to properly predict the output
variable. Its source of knowledge is the datasets with past observations and measurements.
The objective is that the model will be able to adapt to new unknown data. The term
‘properly’ includes both the model’s accuracy and precision. Accuracy and precision reflect
the bias and variance which are generally two major conflicting concepts in any prediction
process [34]. When algorithms attempt to predict output values, two unwanted situations
are possible [33]:

• The model makes wrong assumptions. We are not referring to the obvious, i.e., we
diagnose a patient to be ill when in fact he is healthy. Let us assume instead the
case in which we ultimately predict that a loan candidate is not trustworthy just
because her name is Jane. Those examples may derive from classification problems,
but the key concept, which is also valid for regression, is that this case reveals the
shortcoming of the algorithm in observing the relations between the predictors and
the dependent variable, or maybe more importantly, in exposing a bad choice when
choosing the group of predictors [47,48]. This is commonly referred to as underfit-
ting [49]. Underfitting usually characterizes overly simple models. Simplicity refers
not only to non-complex models but also to the omission of all the steps of manip-
ulating and preparing data as discussed in our proposed framework. Additionally,
mishandling data refers to non-treatment of outlier values and removal of useless or
highly correlated features which do not add value to the output variable.

• The model is very sensitive to fluctuations in the observations we use during training.
Inconsistency among the data may be due to noise or outliers, but it can also mean
rare but anticipated behavior. The algorithm can become overly complex trying to
capture the noise and all inconsistencies. The fact that it will succeed during training
does not indicate that it will be effective when dealing with new unknown data. It will
be apparent, especially after multiple training executions, that it will fail to generalize
a successful predictive behavior against new data [50]. It will produce a spread on the
estimated values compared to the actual observations. This is referred to as overfitting.

The art in engineering a supervised learning model like in our case study is that
while bias and variance coexist, we maintain focus on locating the ‘sweet’ spot where they
both minimize to the best possible degree [51]. The bias-variance trade-off points to a
major objective, that is try to minimize both [41]. The above highlights and underlines
the necessity of intermediate steps in the modeling process which will help to choose
the optimal alternative. These steps include splitting the available datasets and careful
resampling which will be analyzed in the following sections. Many challenges occur in the
process because when we try to lower bias, variance is increased and vice versa.

2.4. Dataset Splitting. Training and Test Sets
2.4.1. Training and Test Sets

Modern predictive algorithms allow for configuring the process on how they will
attempt to fit the data and proceed to predictions. This is accomplished by tweaking key
variables on their mathematical formulations. This is called hyperparameter tuning and
will be discussed in Section 2.8. To leverage a model’s performance and choose the optimal
parameters we must experiment on known and unknown data and observe how well the
algorithm adapts to existing knowledge, but also check if it behaves well on new data [52].
In almost every case, we do not have the luxury of testing our methods on new unseen
data. The moment of truth will come when the model must be ready and complete to deal
with new data challenges. The best way to prepare for that is by splitting the initial dataset
into two subsets, the training, and the test dataset during building a model. Both sets
come from our collected observations. The training set is fueling the algorithms process on
learning the problem and the test set also referred to as holdout set is used to examine the
performance on allegedly unknown information [47].
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2.4.2. Splitting Strategy

The process of choosing the samples to participate in the datasets plays a major role in
the quality of the model. A commonsense approach is to apply a random assignment of
measurements into the two datasets. It is crucial though to maintain uniform sampling and
include all observation cases in those two groups. Techniques that exploit dissimilarities in
the data can lead to a more uniform data splitting [52]. Another popular method is stratified
sampling. A percentage of attributes containing every possible output value is chosen, en-
suring a smooth proportion of resulting measurements in training and test datasets [52,53].
A balanced distribution of observations is important in studies of crop yields. In addition,
a large proportion of these data (usually three quarters) is retained for training purposes
when the data set consists of a relatively small number of observations [54–56].

2.4.3. Splitting Timing

As we will discuss in the following section, a useful step in the framework was to
perform transforms on the data while preparing them for the learning process. Splitting
must have occurred before any of the data transformations were applied. This was to
ensure that the performance of the algorithm be measured impartially and evaluated on
data that were supposed to be unknown [52]. At the same time, no characteristics of the
test dataset influenced the way we transformed the training dataset. Ultimately, the test set
was used to assess our model’s performance without bias [57].

2.5. Exploratory Data Analysis

A very important stage during the predictive modeling process was the examination
and preparation of our dataset before feeding it to the ML algorithms. It was the process of
analyzing the information. The goal was to better understand the data or locate patterns,
apply filtering or imputation, and ultimately make rightful adjustments to accommodate
better adoption during their usage by the Machine Learning algorithms [46]. Some key
stages that fell into data exploration and preprocessing were [58–60]:

• Descriptive Analysis. During this step, characteristics of the dataset were examined,
such as dimensions, types of variables, and statistical summaries to get a view of
the data.

• Visualizations. Plotting single and multiple variables values led to a better under-
standing of each feature and the relations among them.

• Cleaning. This involved duplicates removal, locating missing values, and techniques
to fill in for missing data.

• Transforms. Data could be further processed or massaged without altering the quality
or the patterns they convey. Altering the scales, examining their distributions, and
readjusting were methods to better accommodate the algorithms with the structure of
our information [61].

# Standardizing values was extremely useful because it provided a convenient
way to compare values that were part of different distributions. A dataset is
standardized when the input features are transformed to have a close to zero
mean (or standard deviation close to 1). The effect was that the shape of the
data was shifted to resemble a normal distribution. Standardization assists
Machine Learning algorithms like k-nearest neighbors, linear regression, and
support vector machines to build more robust models [46]. Standardization was
performed by subtracting the mean (µ) from each observation (χ) and dividing
the result by the standard deviation (σ) of the feature [62].

Z =
χ− µ

σ
(1)

# Scaling changes the values of a feature down to a specific range, usually [0, 1] [62].
Hence, the presence of outliers affects the scaling process [47]. It is most useful
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when the input variables exhibit numeric distances among each other. Trans-
forming them to a common range can enhance Machine Learning algorithms
execution [63].

# Power Transforms also attempted to remove skew in the data distributions
towards a Gaussian shape. They used an exponential or logarithmic function to
achieve that [63]. Popular power transformations are Box-Cox (which operates
on positive data groups only) and Yeo-Johnson [57,63].

# Regularization is an approach to treat poor performance caused by high collinear-
ity among input variables [46]. The concept applied by regularization methods
was to penalize increasing complexity during the modeling process, thus pre-
venting overfitting. It was apparent that preprocessing like scaling and standard-
ization was highly important for the regularization treatment because the values
of the variables would be at comparable scales and ranges. Approaches include
L1 regularization, L2 regularization, and dropout. Regularization is embedded
in algorithms like Lasso, Ridge regression, and Elastic Net. Lasso and Elastic Net
due to the nature of their penalizing mechanisms can be considered as methods
that also perform auto feature selection, as described right below.

# Feature Engineering and Selection. Having many feature variables which par-
ticipate in the training process of a model is not always a road to success [57].
It may seem logical that the more inputs we possess (no matter the number of
observations), the best prediction we can achieve. This is a misconception that
requires attention in Machine Learning projects. Not every feature at our dis-
posal can contribute to the predictive value of a model. Just the fact that we had
historical information on it does not equate to usefulness. On the contrary, it may
have a negative impact by causing, for example, unnecessary bias. Moreover,
the collinearity among features was very important [57]. Collinear predictors
have a negative impact on the modeling process most of the time [52]. Therefore,
it was required that we (a) checked for predictors which did not contribute to
the predictive power, (b) eliminated predictors which were highly correlated,
and (c) constructed new appropriate ones if needed. A high association among
variables was indicated by increased dependency. Importance existed both on
the strength and direction of the association. There are methods for calculating
dependency between discrete and continuous variables. Pearson’s χ2 Statistic,
Cramer’s V Statistic, and Contingency Coefficient C [41] are very popular for
examining discrete variables. Pearson’s coefficient determination is based on
the mean and the standard deviation [41]. Therefore, the samples needed to
have a Gaussian-or close distribution [64]. This is where transforms played a
major role in preparing the data for analysis. Transforms were expected to help
in the proposed framework because input variables describe different physical
measures, which are quite dissimilar in ranges and values.

2.6. Resampling
2.6.1. Measuring Error

The models we built were evaluated based on their prediction performance; but how
could we properly assess a model’s performance? The prediction error was always a good
point to observe. We have described in detail the danger of overfitting when constructing
models. The challenge was to have low prediction error on training data, but also retain
low error on new data [65].

True Prediction Error = Training Error + Testing (Generalization) Error (2)

If we increased complexity and attempt to eliminate error on the training set, then
it was almost certain that we would have a significant error rate on new data [48]. A
prediction model is successful when it prevents overfitting. It is futile to wait and see how
the model behaves on new information because at that point we need to have a robust
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model in our hands ready to perform well, rather than a model that anticipates unknown
data to use them and improve afterward.

2.6.2. Resampling for Model Assessment

Resampling during the training process was essential when trying to achieve good
predictions because it helped in identifying which algorithms generalized well based on
the observations we had. In Section 2.8, we will see that additionally, it greatly assisted
hyperparameter tuning, the process when adjusting special parameters of the algorithms
aiming for better results estimations. The core of all resampling methods is based on using
a portion of the data for fitting (training) and reserving the rest for testing. Resampling
is closely related to bias and variance. The more data are reserved for training the more
biased the model will be. On the other side, holding out more data for testing increases vari-
ance [52,66]. Resampling is a critical process in all Machine Learning problems, especially
those of an economic nature. The challenge is to support model selection without extreme
time consumption and noise [67–69]. Using a training and test set is highly important
while building a well-performing Machine Learning model as discussed in Section 2.4.
Those sets are discrete, they are produced early in the modeling process, and they must
not be confused with the sets produced during the resampling process. Resampling deals
with further experimentation performed on the observations of the training set to achieve a
more accurate estimate of the model’s performance. Resampling methods operate like data
splitting, but the purpose is to improve accuracy in estimating model performance [52].
Data are divided into several subsets which are used to fit the model, while the remaining
are used to test the performance. The performance was evaluated by examining the error
rate in predictions. This process was repeated multiple times and sequentially, but different
divisions were performed. Eventually, every portion of the data was used to test each
model. Data were divided in a way that throughout those iterations, the test sets were
not overlapping. The results were aggregated and this summary (mean accuracy) led to a
better overall estimation of the error rate in predictions [65].

2.6.3. K-Fold Cross-Validation (CV)

In this resampling technique, data are split into a set of k folds of equal amounts of
samples. The first k-1 samples are used for fitting and the last for testing. The procedure is
repeated k times, each time selecting and holding out the next fold. In the end, k different
error estimates are combined to provide an average (mean accuracy), thus, a more objective
estimate of the algorithm’s efficiency [33].

2.6.4. Repeated K-Fold Cross-Validation (RCV)

In k-fold cross-validation, different folds are produced. Each time a fold is produced
(and the procedure is executed), different average scores will be noted due to the dis-
tribution of the individual scores. This is an unavoidable phenomenon causing noisy
estimates [70]. Adjusting the value of k is one solution to remedy the noise, but as we
will discuss more in Section 3.6, it can strongly expose the bias-variance trade-off [71].
Alternatively, k-fold cross-validation can be repeated n times and then examine the mean
of the total of folds and repetitions. Each repeat is executed on the same split of a specific
k-fold group [31]. Although it is computationally more expensive, it improves the estimate
we get and leads to a less biased result [52,72].

2.6.5. Nested Cross-Validation (NCV)

This case involves two iteration sequences. Both are cross-validations, but the purpose
is to apply cross-validation on each fold of the inner iteration. This kind of cross-validation
is very useful when performing hyperparameter tuning on the learning algorithms [50].
As we will discuss further in Section 2.8, learning algorithms can be optimized by heuristic
attempts on special parameters called hyperparameters [46]. By tweaking their values, we
can adjust modeling and achieve better predictions because the algorithm is tailored to our
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specific dataset [73]. The evaluation of performance while tuning is done in conjunction
with cross-validation and therefore nested cross-validation is preferred for this purpose.

2.6.6. Leave-One-Out Cross-Validation (LOOCV)

It performs n splits where n is the number of samples. It resembles k-fold cross-
validation, but the key difference is that it performs n multiple data splits. It is the case
of k-fold cross-validation where k is the same as the sample size n. n is significantly
greater than k for large datasets. The model in each iterative process uses n-1 samples
for training in contrast to (k − 1) × n/k in k fold cross-validation [74]. Therefore, it is far
more computationally intensive because the number of repetitions is higher. All samples’
combinations will participate in the training process, meaning that the error estimate
is unbiased. Moreover, there is no randomness in the results because of the multiple
exhaustive times the procedure is executed on the dataset [52].

2.7. Machine Learning Algorithms
2.7.1. Algorithms in General

Machine Learning algorithms’ purpose is to make predictions via models. They
improve without explicit programming rules. Instead, they exploit historical information
as knowledge experience [75]. Focus on the computational statistics field aims toward
predictions using those methods. Machine Learning goes beyond the traditional statistical
analysis because it examines all the aspects in the data, even anomalies, and outliers. Those
are embraced in Machine Learning in contrast to statistical analysis, where the effort is put
into eliminating them to shape a pure image of the data [29]. Taking into consideration
all the characteristics in observations, a Machine Learning algorithm can become more
efficient when dealing with new unseen data.

2.7.2. Parametric vs. Non-Parametric Modelling

When the learning process makes use of a fixed set of parameters without considering
the number of observations in hand, then it is referred to as a parametric model [29]. The
algorithms consist of a specific form and the training process learns the best function
coefficients to fit the data. Usually, they fail to generalize well and are appropriate for
simple problems. Nevertheless, they are cheap to execute and require small numbers
of observations.

Non-parametric algorithms are not very strict in terms of their function mapping. They
are more flexible and shape their functional form depending on the set of observations [29].
The models derived perform better on unseen data. This is when the ML model is said
to generalize well [75]. Looking at the downfalls, they consume more computational
resources, and the more the observations, the better they train. Something worth noting is
that they are prone to overfitting when the model gets more complex [33]. In supervised
learning, when predicting numeric output variables, we fall into the category of regression
problems like the case we present. There is no one-fit-for-all solution for each regression
problem. It is impossible to know what algorithms work well on each case until we test
them. Some of the most popular regression algorithms are:

Parametric or linear:

• Linear Regression
• Bayes Ridge Regression
• Ridge Regression
• LASSO regression

Nonparametric or nonlinear:

• K-nearest Neighbors
• Regression Trees
• Support Vector Machines Regression
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We will test both simple and complex algorithms. It was interesting to explore which
algorithms will behave best in a context with different inputs such as the olive yield profit
we examine. Maybe results will prove that simple algorithms perform satisfactorily and
are very close to more complex ones. In that case, they will be preferred because as a bonus,
we get easier model interpretability and lower computational requirements [52].

2.8. Hyperparameter Tuning

In Section 2.6, cross-validation advantages and importance during the modeling pro-
cess were analyzed. In a scenario where we would only stick to data splitting into training
and test sets (Section 2.4), when adjusting the hyperparameters of the learning algorithms,
there is a possibility to overfit the test set while pursuing optimal prediction [74]. This is
referred to as knowledge “leakage” into the evaluation metrics and is due to the multiple
times the validation is performed by the same algorithm [52]. Therefore, the model fails to
generalize well. Those special parameters place control over the complexity of the model
to avoid overfitting [57]. Some practices used to produce a third validation set separate
from the test set to remedy that situation [31]. Unfortunately, the existence of a third set
greatly diminishes the training sample size. It is even more apparent in cases where the
initial dataset is not large like our scenario. Cross-validation overcame this deficiency
and the validation set was not necessary anymore [31]. Cross-validation was preferred
when performing tuning not only to select the best hyperparameters but also for shaping
preference over models [50,70]. Nevertheless, there was the risk of building an over-
optimistic model because during the folds interchange, the same sub-dataset can be used
both for the model selection and the hyperparameters tuning. To overcome this risk, nested
cross-validation was a method of evaluating training models independently of the hyper-
parameter optimization [50]. The procedure was conducted within two cross-validation
processes. Fitting was performed using one outer cross-validation and hyperparameter
optimization was executed inside inner cross-validation [70]. Therefore, overfitting was
prevented since the parameter exploration was limited to a specific subset of the data. The
disadvantage was that the computational cost increased highly [76]. Grid search parameter
tuning and random search parameter tuning are popular ways of experimenting on the
values [52,57,58].

2.9. Ensembling

Ensemble methods were used to further improve the prediction accuracy of our model.
The different results were aggregated to enhance performance. Prediction performance
in a Machine Learning problem can be enhanced by combining multiple methods. This
process is called ensembling [46]. Usually, a subset of the base model methods is exploited
and combined with additional features from other methods to form an optimal solution.
Ensemble methods take a longer time to execute than base methods. Frequently, faster base
methods participate in ensembling like decision trees [77].

The hypothesis related to the ensemble is not a product of the base model hypothesizes.
As a result, more flexibility during training is possible. Nonetheless, this hides the risk of
overfitting which is undesired [77,78]. Ensemble algorithms tend to work better when there
is diversity among the models combined, but the preference over efficient base algorithms
is encouraged [79].

Popular ensemble algorithms include:

• Extreme Gradient Boosting
• Gradient Boosting
• Random Forests
• Extra Trees

For a description of ensemble types, refer to Appendix A.
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2.10. Performance Metrics

Being able to accurately measure the performance of our algorithms was crucial for
the model we delivered. For regression problems, certain performance metrics exist:

1. Mean Absolute Error and Mean Squared Error. The mean absolute error (MAE) is a
computationally simple regression error metric. The absolute value of the difference
for every predicted and observed value is used to calculate the residual (difference be-
tween the predicted value and observed value) [42,80]. The equation is shown below:

MAE =
1
n
×

n

∑
i =1
|yi − ŷI| (3)

2. The Mean Squared Error (MSE) squares those differences instead of calculating the
absolute values [42,81]. Both MAE and MSE range from 0 to positive infinity [81].
The mathematical formula is [46]:

MSE =
1
n
×

n

∑
i =1

(yi − ŷI)
2 (4)

In Equations (3) and (4), n refers to the number of observations, y to the observed
values and ŷ to the predicted values.

3. Root Mean Squared Error (RMSE). It is the square root of the MSE [42,80]. It represents
the sample standard deviation of the residuals. Practically, it reveals the degree of
spread out among the residuals. It is often preferred over MSE because its units are
the same as those of the output variable [80].

4. R2 or coefficient of determination. R Squared and Adjusted R Squared are indication
measures on how well the model fits the data [82,83]. It provides great insight when
evaluating the training process but is also useful during the testing phase. Adjusted
R2 improves R2 in that it can describe better the avoidance of overfitting. R2 value
tends to increase as the number of input features increases [84]. Adjusted R2 remains
unaffected by this phenomenon, but this poses a challenge when the features number
is high in a modeling process [85]. R Squared values range from 0 to 1. Approaching
towards 1 indicates a better fit [46]. The formula for R2 is [46]:

R2 =
Sum of Squared Errors
Total Sum of Squares

= 1− MSE
Var(y)

(5)

R2 and RMSE are popular performance metrics for evaluating model performance in
regression problems. Their combined evaluation proves useful in applications involving
plantings and sensor networks [86–88].

3. Case Study
3.1. Area of Study

The island of Crete in Greece has a typical Mediterranean climate. Summers are usually
dry with low precipitation. Olive tree farms are the major agricultural activity. Irrigation
strategies are usually absent, and the number of water resources spent are based on the
empirical knowledge of the farmers [28]. For our research, real data coming from olive
farms in Crete were used. Specifically, data were gathered from municipalities of Heraklion,
Crete, during the period 2000–2007. Soil characteristics were used in combination with
temperature and precipitation records. Total yield records were examined along with
irrigation amounts as well as water and olive prices to calculate the profit for a season.
Modeling was conducted to enrich those historical records with information regarding
the effect of applying irrigation patterns [28]. Based on soil and tree characteristics and
the climate conditions, necessary humidity to keep the farm in productive development
was defined. The water amount for irrigation was then distributed among various trips
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combinations throughout the season. Three irrigation events per season were examined
as the maximum for a farm. Scenarios on reducing the irrigation events and applying
management practices like pruning, diminish the cost of a crop season. The goal was to
achieve the best yield possible by applying management practices and irrigation patterns,
thus increasing profit (because expenses were reduced), while reserving water resources at
the same time [28].

The dataset used in our framework contained the following input features and will be
analyzed in more detail in Sections 3.2 and 3.3:

• Management Practices
• Soil types
• Precipitation
• Relative irrigation (percentage concerning optimum irrigation amount estimated by

the hydrological models [28])
• Number of irrigation trips reduction

The output variable was the profit (yield value–expenses) of the farm. Yield value
depends on the oil price each year and the expenses depend on the trips to the farm, the
amount and price of water for irrigation and the management practices applied [28]. The
dataset contained 486 observations in total.

3.2. Classification, Regression and Binning Predictors

In the preceding research work, the dependent variable was chosen to be the profit
out of the yield produced [28]. It was treated as a qualitative variable. Possible cases were
low, medium, and high profit. The three possible groups were designated by separating
the observed outputs based on the numerical interval between the minimum and the
maximum profit recorded. A more objective way for classifying each outcome to one of the
three groups was to consider the ratio of the yield price to the production cost. Then we
could assign a class referencing the position between the minimum and maximum ratio.

The above approach was a classification, but we manually categorized a set of numeri-
cal values in favor of simplification. This could lead to the following pitfalls [52]:

1. It could produce a model with lower performance.
2. There would be a loss in prediction precision due to the fixed combinations of the

possible outcome.
3. The number of false positives could increase.

It was very important to tailor the modeling choices according to the nature of the
problem under study. The possibility of an increase in false positives was something we
wanted to avoid. If a cultivation or irrigation practice was forecasted to produce high
profit and eventually did not, then it could cause a catastrophic impact to the farmer
because it may leave him with no resources for the next year’s preparation. Thus, a more
complex model which performs better was preferable. Another thing was the utility of
the prediction. A class, i.e., ‘medium’ or ‘high’ profit would not assist a decision-maker
that much. On the other hand, a numerical estimation of the profit seemed more beneficial
especially when compared against the effort and the cost put on the farm.

For those reasons, our case was treated as a regression problem and the dependent
variable was the numeric profit out of the crop yield.

3.3. One-Hot and Label Encoding

When examining our input data, the predictors which were qualitative were:

• Management practice with values of PH and PL (heavy pruning & light pruning)
• The soil type with values of Cl, SL, and LS (Clay, Sandy Loam, Loamy Sand)
• Precipitation with values of Dry, Normal, and Wet

The soil type data were split into two separate columns, one for each possible type.
Two columns out of the three soil types were kept avoiding the dummy variable trap.
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The management practice column needed no splitting since it contained two values.
Precipitation values were divided into three ordinal numerical values: (0, 1, 2) representing
dry, normal, and wet precipitation.

Ultimately the experiment dataset consisted of the following columns:

• management.M1
• soil_type.CL
• soil_type.SL
• precipitation
• relative_irrigation
• number_of_trips_reduction
• relative_profit_percentage

3.4. Splitting

The goal was to use enough data for training and capture the characteristics of the
features. The percentage of the data which is left aside for testing is usually substantially
smaller. The risk of losing more than we gain when maintaining holdout data increases
when our total number of observations is low. Then, the chance of occurring bias increases
because of the missing information which was not used during training [33,52]. When
our total observations number is big then the training-test split does not have such an
impact due to a more equal distribution among the characteristics. Caution needed to be
addressed when deciding how to perform the split. The primary reason for an unsuccessful
splitting is separating data in a non-homogeneous manner [57]. For instance, if a group of
characteristics in the data was accumulated in the first observed rows and we formed the
training set by retaining the first 70%, then the remaining would have no representative ob-
servations to test the model. Splitting in a completely random manner could be dangerous
when characteristics were not evenly distributed among the observations. In our case, a
stratified splitting was performed, thus carefully picking random portions of each category
in the data [52,57]. This was because combinations of features values form our complete
dataset; hence, specific sequences contained relations among the features’ possible values.
For instance, the last portions of the record set had no information contained in the first
portions of the dataset. An ordered split into training and test set would be unsuccessful
because we would test our models based on information that was completely different from
what we used to train them. When dealing with numeric predictions, the categorization
of the information can be done artificially. A common way is to use the quartiles of the
records. The purpose is to have roughly the same distribution frequency in both sets [57].
In Experiment 1 (Section 4), we used a 75–25% proportioning split into training and test
sets for our ML algorithms testing. Initially, it was a random split and afterward a stratified
split to check whether we get better behavior. R2 (optimal value is 1) and RMSE (optimal
value is 0) were used as performance metrics to evaluate the results.

3.5. Data Analysis

Pearson correlation was used to examine strong relations among input variables in
Experiment 3 (Section 4). The threshold value to indicate high correlation was chosen to be
0.7. After removing high correlated features, transforms will be applied to the data and
observe how algorithms behave. Scaling, Standardization, and Box-Cox power transforms
were tested and it was checked if we noticed improvements. Standardization was applied
on one-hot encoded features (management.PH, soil_type.CL, and soil_type_SL) to avoid
performance degradation [46,89].

3.6. Resampling
3.6.1. Choosing the Appropriate Resampling Method

Basic cross-validation using the popular k values (5 and 10) is usually adopted to
avoid complexity [70,72]. Is repeated cross-validation worth the extra complexity and com-
putational burden? Combination tests on simulated data for a specific prediction algorithm
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(random forests) indicated that 10-fold CV offers less variance and bias than 5-fold CV; but
repeated cross-validation outperforms basic cross-validation in all cases [90,91]. Resam-
pling should receive special attention given that in our case, we are trying to aggregate
knowledge from climatic and agricultural data together with financial information such as
water and olive oil prices. This is done unconventionally, since the forecasts do not focus
on time series data [92–94].

3.6.2. Cross-Validation Parameters

When mentioning cross-validation from now on, it will be referred to the training
set produced after data splitting. The test (holdout) set was kept intact to be used on
the models’ validation. Most of the examples in the literature favor cross-validation over
data splitting, due to the fact of the different iterations and the participation of the same
group samples in both training and testing [70,79,90,91]. In our approach, the holdout
set produced with the methodology discussed in Section 3.4 was kept intact and used in
the end for an as-realistic-as-possible test on unknown data. Resampling was applied to
the training set produced after data splitting. The major question was what value of k is
optimal. For high values of k, bias decreases because the size of the resampling fold sets
gets closer to the training set size [52]. On the other hand, k-fold cross-validation can reveal
high variance. For our purposes, we used repeated k-fold cross-validation. By repeating
cross-validation [95,96], variance can decrease while maintaining bias at low levels.

3.6.3. Sensitivity Analysis on K

Resampling methods can provide a clear image of how well the model can fit the
data. On the other hand, sensitivity analysis examines the degree of change in the results
when new information appears. Research may have shown that values of 5 or 10 are
generally good for fold generation in cross-validation [33,52]. Those values balance the
bias-variance trade-off while not requiring computationally intensive operations [72,91].
Further investigation should be conducted, though, to verify that a chosen value truly
worked well for our specific problem and dataset [50]. We performed repeated tests on the
same dataset to assess what the best values of k and n (number of repeats) were, for k-fold
cross-validation and repeated cross-validation respectively. The training dataset generated
in the first step was used initially with the same ML algorithm (linear regression), chosen
at random as a reference point. We needed, though, a baseline to compare the results and
realize which the best values were. This is also referred to as baseline performance [63]. We
did not have access to data that was not yet to be seen and perform the tests, so the baseline
derived from LOOCV which can provide the best possible estimates on the available data
of the training set. It is computationally expensive especially as the dataset grows, but
it was useful in the experiments to provide the baseline and compare the results from k
cross-validations. The resulting mean accuracies from cross-validations which were close to
the baseline pointed to the optimal value of k regarding our dataset. Fold values from 2 to
40 competed for k cross-validation. A combination of fold values from 10 to 15 and repeats
from 10 to 20 were used for repeated k cross-validation. Therefore, the goal was not to
choose the values which produced the absolute minimum mean accuracy, but those which
exhibited the closest mean accuracy to the corresponding value of the baseline method. We
used the root mean squared error as the measure of accuracy. The test harness approach
took into consideration two more metrics:

1. The median value of the cross-validation results. If the mean accuracy and the median
are close values, it is a significant indication that the specific execution reflects the
central tendency very well and without skewness [97].

2. The standard error. It is the measure that exhibits the deviation of the sample mean
from the population mean. It was useful because it reflected the accuracy of the mean
value in representing the data [80,98]. We observed the min and max values in the
experiments’ executions and if the preferred scenario had also a low standard error, it
was chosen as the recommended one.
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After choosing the best values, a verification attempt followed to note how well the
designated resampling behaved on other algorithms. Specifically, cross-validation was
performed using other algorithms and again the results were compared with the baseline
(LOOCV). Pearson correlation coefficient helped at that point to see if there was a strong
correlation between each algorithm’s performance and the baseline performance.

3.7. Machine Learning Algorithms

There is no one-fit-for-all solution for each regression problem. It is impossible to
know which algorithms work well on our problem until we test them. Recent studies on
Machine Learning for econometric prediction systems benefited from popular algorithms
which we also exploited [99–104]. The algorithms which were used for this case study
experiments were:

• Linear Regression
• Bayes Ridge Regression
• Ridge Regression
• LASSO Regression
• K-Nearest Neighbors
• CART Decision Trees
• Support Vector Machines Regression (SVMR)

Ensembling experimentation will exploit:

• Extreme Gradient Boosting
• Gradient Boosting
• Random Forests
• Extra Trees

3.8. Hyperparameter Tuning

Exploration of the optimal hyperparameter values was executed within nested cross-
validation to evaluate the tuning optimization. We used an exhaustive grid search for this
process. It consisted of an inner 10-fold cross-validation and an outer cross-validation
that was configured according to the optimal results indicated previously by the sensitiv-
ity analysis.

3.9. Performance Metrics Comparison and Choice

The MAE is easy to interpret because it examines the absolute difference between
the observations and the predictions. MSE and RMSE penalize bigger prediction errors.
While we did not have outlier data in our case study, we chose RMSE to examine model
accuracy due to the financial nature of our prediction goal. It is difficult to rely solely
on RMSE (or MSE) as a metric for model evaluation because its values are shaped and
depend on the specific regression task. That is why we also relied on R2 which reflected
the generalization quality of the model by displaying the variance in the results [105]. It is
worth pointing out that solely relying on R2 may not be a good practice because a high R2

value does not necessarily point to well-fit data [106]. Anscombe’s residual is an excellent
reminder of this [107]. For that reason, we observed both RMSE and R2 when assessing
model performance.

4. Results

The computational process will be built on successive experiments. Each one will
apply some of the practices (discussed in the previous sections), forming a chain towards
enhancing the prediction results at the next experiment. The results of each experiment
will determine which practices were applied to the interest of the modeling and mostly
provide a fixed configuration for the experimentation of the next step. At all times, the
purpose is to have an improvement in prediction as we progress and finally produce a
framework that is tailored to our case study, proven to perform as well as possible. The list
of experiments and their execution processes is:
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1. Fit the models based on the group of ML algorithms we chose. No data transform
or algorithm tuning is performed without any further tweaking. The performance
results after evaluating the algorithms on the test set are given in Table 1:

Table 1. ML algorithms default training and testing.

ML Algorithm R2 Train Score R2 Test Score
RMSE Test

Score

Linear Regression 0.5470 0.4754 0.00432

Bayes Ridge Regression 0.54686 0.47553 0.00432

Ridge Regression 0.54698 0.47548 0.00432

LASSO Regression 0 −0.0016 0.00825

K-Nearest Neighbors 0.66823 0.39674 0.00497

CART 0.8056 0.51325 0.00401

Support Vector Machines Regression 0.64731 0.56272 0.0036

R2 train score refers to the coefficient of determination during training. The last
two columns display metrics for the validation phase on the holdout set. The best test
performance is given by SVMR algorithm.

2. The same process is repeated by performing stratified continuous splitting and the
results are shown in Table 2.

Table 2. ML algorithms training and testing after stratified splitting.

ML Algorithm R2 Train Score R2 Test Score
RMSE Test

Score

Linear Regression 0.49999 0.60878 0.00362

Bayes Ridge Regression 0.49978 0.60663 0.00364

Ridge Regression 0.49997 0.60816 0.00363

LASSO Regression 0.64847 −0.0014 0.00927

K-Nearest Neighbors 0.6485 0.42249 0.00535

CART 0.79909 0.58683 0.00382

Support Vector Machines Regression 0.60912 0.62566 0.00347

Results are slightly improved across all algorithms. The best performance is given
again by the SVMR algorithm.

3. Exploration of the nature of data will reveal feature correlations and distributions.
Those will point to feature extractions and data transforms. Table 3 displays the
Pearson correlation values between feature pairs.

Only the upper right triangle of the table is displayed as it is symmetrical with the
lower left triangle. The soil_type.CL column is highly correlated with management.M1.
Therefore, the first one will be dropped from the feature set to see if it helps with model
fitting. The models are refitted after the correlation processing and the results are shown
in Table 4.
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Table 3. Correlation of features.

Management.M1 Soil_Type.CL Soil_Type.SL Precipitation Relative_Irrigation Number_of_Trips_Reduction

management.M1 — 7.071077 ×10−1 2.272757 × 10−16 1.029597 × 10−16 1.007215 × 10−16 9.568540 × 10−17

soil_type.CL — — 5 × 10−1 1.724138 × 10−16 5.771856 × 10−16 2.890379 × 10−16

soil_type.SL — — — 4.659030 × 10−17 4.062555 × 10−16 4.985459 × 10−17

precipitation — — — — 3.69276 × 10−17 2.604227 × 10−17

relative_irrigation — — — — — 8.9092 × 10−18

number_of_trips_reduction — — — — — —

Table 4. ML algorithms training and testing after correlated features exclusion.

ML Algorithm R2 Train Score R2 Test Score RMSE Test Score

Linear Regression 0.47358 0.58799 0.00381

Bayes Ridge Regression 0.47341 0.58531 0.00384

Ridge Regression 0.47357 0.58718 0.00382

LASSO Regression 0 −0.0014 0.00927

K-Nearest Neighbors 0.64755 0.41146 0.00545

CART 0.79909 0.58683 0.00382

Support Vector Machines Regression 0.60679 0.62352 0.00349

Results do not show improvement by leaving out the correlated column. The next
steps will use the dataset as it was before the correlation filtering.

4. Scaling, standardization, and a power transform (Box-Cox) are also applied to the
dataset features to help the algorithms’ execution. The results are presented in Table 5.

Table 5. ML algorithms training and testing with transforms application.

ML Algorithm R2 Train Score/R2 Test Score RMSE Score

Scaling Standardi Zation Power Transform Scaling Standardi
Zation

Power
Transform

Linear Regression 0.49999/0.60878 0.49999/0.60878 0.49615/0.61141 0.00362 0.00362 0.0036

Bayes Ridge Regression 0.49971/0.60841 0.498789/0.60872 0.49579/0.61105 0.00363 0.00362 0.0036

Ridge Regression 0.49998/0.60878 0.49999/0.60885 0.49613/0.61141 0.00362 0.00362 0.0036

LASSO Regression 0/−0.0014 0/−0.0014 0/−0.0014 0.00927 0.00927 0.00927

K-Nearest Neighbors 0.74781/0.62416 0.72762/0.66027 0.71500/0.55056 0.00348 0.00315 0.00416

CART 0.79909/0.58683 0.79909/0.58683 0.79909/0.58683 0.00382 0.00382 0.00382

Support Vector Machines
Regression 0.63347/0.65531 0.63978/0.66826 0.63010/0.64965 0.00319 0.00307 0.00324

SVMR is the best performing algorithm again. Among the transformations, standard-
ization gives the best results, so this is the transform of choice for the next steps.

5. In this and the following step, cross-validation experiments will be performed. Stan-
dardization is applied to the data before assessing cross-validation performance.
Initially, cross-validation is executed on the training dataset with a default value of
10 as the number of folds. The results are sets of root mean squared errors. The box-
plots in Figure 1 display cross-validation performance assessment for the algorithms
under testing.
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Lasso gives the poorest observation. While cross-validation and regularization (adopted
by LASSO) are techniques against overfitting, a parameter optimization on the regular-
ization parameters might be necessary for LASSO to perform better [108,109]. But since
the other algorithms exhibit better estimations, we will not dive into this. CART decision
tree and Support Vector Regression Machines have the highest scores. This means that the
resampling configuration provides confidence regarding those algorithms’ performance on
unseen data.

6. Sensitivity analysis on values for k cross-validation is executed. Tests were performed
on values of k in the integer range [2, 40]. As described in Section 3.6.3, the red lines
display the optimal (baseline) results given by the LOOCV. In each execution, we
observe (a) the blue lines which display the cross-validation root mean squared error
(mean accuracy) and must be close to the red line, as well as (b) the yellow lines
which show the median. Blue segments below the red line (ideal case) are considered
pessimistic estimates and above the line optimistic estimates. The second case means
overfitting [110]. The characteristics which point to the optimal k are (a) a small
distance from the LOOCV mean and (b) a low standard error. From the execution
table values and the line plot which are concentrated in Figure 2, the optimal value
for k is 38 with a mean accuracy score of 0.06605177. The difference from the LOOCV
median is 0.01193512. The standard error ranges from 0.00203894 to 0.00398050
throughout the experiments. For k = 38 the standard error mean is 0.00264908, a value
near the minimum of the executions set.

The repeated kcross-validation experiment follows using fold values from 10 to 15 and
repeats from 10 to 20. Results are displayed in Figure 3. The optimal values are 15 and 15
for k and repeats (n), respectively, with a mean accuracy score of 0.06692458. The difference
from the LOOCV median is 0.01193512. The standard error ranges from 0.00048893 to
0.00072511 throughout the experiments. For our candidate combination, the standard error
is 0.00059127, very close to the minimum observation. Mean accuracy best scores are very
close in cross-validation and repeated cross-validation, but standard error is significantly
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better in repeated cross-validation. These observations lead to a strong preference over the
repeated cross-validation and will be used in the following phases.
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Lastly, Pearson correlation for all the regression methods will be examined to check
whether the selected resampling method is expected to assess satisfactory all the models’
performances (Figure 4). The correlation is extremely high and positive indicating that our
resampling strategy leads to reliable assessments for the Machine Learning algorithms.

The scores assessment distributions for the algorithms after RCV are shown in the
boxplots of Figure 5.

All algorithms except Lasso show improved performance reliability both in mean
scores and standard error distributions. The performance estimation scores for all the
algorithms after sensitivity analysis are shown in Table 6.

Table 6. ML algorithms performance scores after optimized RCV.

ML Algorithm
Mean Accuracy—(Standard Error)

For Repeated Cross-Validation after
Sensitivity Analysis

Linear Regression 0.066925—(0.008849)

Bayes Ridge Regression 0.067004—(0.008873)

Ridge Regression 0.067029—(0.008846)

LASSO Regression 0.093284—(0.010321)

K-Nearest Neighbors 0.059908—(0.007890)

CART 0.058579—(0.006713)

Support Vector Machines Regression 0.057669—(0.006979)
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Sensitivity Analysis and the choice of repeated cross-validation made quite a difference
for all algorithms except Lasso. SVMR and CART are the models which are likely to behave
better on new unseen data according to the results. The fact that the values for CART and
SVMR are a little worse after sensitivity analysis should not be misleading. Sensitivity
analysis helped to shape a less biased estimation for these models on the specific dataset.

7. Support Vector Machines Regressor (SVMR) is the predominant algorithm as shown
from earlier steps. Repeated cross-validation will help to improve its performance
by tuning its hyperparameters. Exhaustive grid search will be used to achieve that,
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exploiting the optimal values of repeated cross-validation. The values exploration
will be executed inside nested cross-validation of 10 folds. Standardization is applied
on both the validation and the test sets. SVMR has three major hyperparameters for
tweaking [111,112]. (A) Kernel. The kernel types that we will test are linear, poly,
rbf, sigmoid. (B) The tolerance for the stopping criterion. The set that will be tested
is: [0.000001, 0.00001, 0.0001, 0.001, 0.01]. (C) The C regularization parameter. It
represents how strict the algorithm will be when there are errors on fitting. The range
to test is: [1, 1.5, 2, 2.5, 3].

The optimal hyperparameter values were Kernel = rbf, tolerance = 0.000001 and C
= 1. The mean accuracy for these parameters is 0.057655 with a standard error: 0.006980.
Table 7 displays the comparison of prediction scores of the SVMR algorithm on the training
and the holdout dataset, before and after hyperparameter tuning.

Table 7. SVMR performance before and after tuning.

R2 Training Score R2 Test Score RMSE Test Score

SVMR—Default
hyperparameters 0.63978 0.66826 0.00307

SVMR—Tuned
hyperparameters 0.63961 0.66833 0.00307

Hyperparameter tuning gave a very slight boost to the prediction score. It seems that
hyperparameter optimization has a minimal contribution without forgetting its computa-
tional cost. The prediction score on the test dataset is just an indication of the algorithm’s
performance. The major gain from this experiment step is that hyperparameter optimiza-
tion provides stronger confidence for good performance on new unseen data.

8. In this step, we will experiment with ensemble methods. Extreme Gradient Boosting,
Gradient Boosting, Random Forests, and Extra Trees are evaluated on the standardized
dataset with repeated cross-validation (folds = 15, repeats = 15). The results are
presented in Table 8.

Table 8. Ensemble methods mean accuracy scores with RCV.

Ensemble Method Mean Accuracy—(Standard Error)
For Repeated Cross-Validation

Extreme Gradient Boosting 0.057299—(0.0066)

Gradient Boosting 0.050332—(0.005987)

Random Forests 0.056302—(0.006642)

Extra Trees 0.058541—(0.006728)

Gradient Boosting gave the best accuracy, meaning it is expected to perform better on
unseen data (compared to the rest).

9. Finally, hyperparameter tuning will be executed on Gradient Boosting to investigate
if its performance can be further enhanced. N estimators are the hyperparameter to
adjust and the default value used is 100 [113]. Usually, if this number is increased, so
is performance (at a computational cost) [113]. We will test the range: [50, 200]. This
experiment using nested cross-validation showed that 50 was the best value with a
mean accuracy of 0.051271 and a standard error of 0.006015, improving the scores
with the default values.

10. Table 9 displays results for all the ensemble algorithms along with the tuned Gradient
Boosting on the training and the holdout datasets. Table 10 shows the initial best
performance from experiment 1 next to the best performance of the last experiment.
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Table 9. Ensemble methods and Tuned GB. Training and Testing scores.

Ensemble Method R2 Training
Score R2 Test Score RMSE Test Score

Extreme Gradient Boosting 0.79745 0.62404 0.00348

Gradient Boosting 0.77405 0.73282 0.00247

Gradient Boosting (Tuned) 0.74533 0.72741 0.00252

Random Forests 0.7971 0.62462 0.00348

Extra Trees 0.79909 0.58924 0.0038

Table 10. Observations of improvement for experiments sequence.

R2 Training Score R2 Test Score RMSE Test Score

Support Vector Machines Regression (Experiment 1) 0.64731 0.56272 0.0036

Gradient Boosting (Experiment 9) 0.74533 0.72741 0.00252

Performance improvement on the test set (%) 29.27% 42.88%

5. Discussion

Data preprocessing as shown in the initial experiment steps is quite useful. Stratified
splitting and standardization improved the algorithms’ performance. It proved useful to
split the data stratified, that is, to carefully select random parts of each category. This was
necessary because our dataset consisted of combinations of features and therefore, certain
sequences contained relationships between the possible values. A peculiarity of our dataset
is that its last parts did not contain information that was included in the first parts, which
required additional attention.

On the contrary, the attempt for feature selection by correlation examination did
not contribute towards improvement. Although calculations indicated that soil type and
management practice should not co-participate in the model, it was proven false after
training experiments. Outside the context of Machine Learning, an expert’s intuition
would likely assert no relevance or dependence between these different variables, and this
was confirmed by the framework.

Sensitivity analysis on cross-validation brought out the usefulness of this procedure
both for model selection and hyperparameter tuning. Both cross-validation and repeated
cross-validation showed optimal performance with repetitions’ values different from those
commonly used as quick defaults in other problems, thus highlighting the tailored approach
of our framework. The results of the repeated cross-validation showed higher credibility,
which is why it was selected for further steps.

In general, Support Vector Machines Regression performed very well in each step,
showing that it is a well-suited algorithm for this type of problem. Ultimately, ensembling
gave the best results. One of the most interesting points during our experiments was the
results shown in Table 9. Gradient Boosting had the lowest variation in the coefficients
of determination studied between the training and test sets. Resampling had previously
yielded the highest estimated accuracy, confirming the observation in Table 9. The other
methods (which had lower mean estimated accuracy when resampling) showed large
differences in the results between the two sets. This means that we cannot rely on them to
perform as well on the new data as they did on the training data.

The experiments sequence paid off. The prediction method of choice for our case
study is Gradient Boosting with the n_estimators hyperparameter set to 50. We observed a
29.27% improvement in R2 and a 42.88% improvement in RMSE when testing our proposed
model on the holdout dataset.

This research work experimented with the cost of production, which depends heavily
on the price of water. Under the current and foreseeable conditions of water stress, an
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increase in the price of water in agriculture is very realistic and will certainly affect profits,
making the decision-making process in agriculture even more useful. In addition, the
price of olive oil in the Mediterranean is adjusted every year and depends on production
volumes, among other factors. A decision-making system supported by machine learning
can reveal wise decisions under the circumstances that can help farmers survive a crisis. The
importance of making the right decision will then be even greater because the sustainability
of the agricultural economy and the preservation of water while protecting the environment
are at stake [28].

Recent studies have looked at machine learning to accommodate prediction mech-
anisms in smart agriculture and irrigation. They used climate and soil properties to
predict crop production or weather-related events such as rainfall [43,44,101,114–116].
Studies have also focused on financial objectives using only econometric historical observa-
tions [99,117–119]. Our work pioneers this approach by combining weather, biophysical,
and economic data into an aggregate forecasting framework which is an under-researched
area [99]. Its performance has been optimized by careful data preparation during the opera-
tion steps to get the best out of this contractual information. Another point worth noting is
that we do not use historical financial time series, as is traditionally the case [117,120,121].
Instead, we associate each season’s water and olive oil prices with the tactics to follow
depending on weather and operating conditions. Even though Deep Learning and neural
networks are more powerful tools and are used in similar studies [43,44,55], they still lend
themselves to more adaptive and real-time systems [122–124]. We chose to complement
simpler methods of ML and improve them with a robust framework for preprocessing,
resampling, and ensembling.

6. Conclusions

In this paper, a Machine Learning framework for predicting financial profit for olive
tree farms was presented. A group of algorithms was examined to test which performed
best. The focus was placed on data preprocessing and resampling.

The research successfully assisted the algorithms’ performance, provided correct
assumptions on what model will perform well on new data, and tuned the algorithms in
a way that suited best the case study dataset. Results showed significant improvement
due to the steps proposed in the text. Future work involves investigating if the framework
can adapt to different input by exploiting the combination of approaches in its toolset.
Variations in input involve different crop types in the same geographical region (for
example, citrus fruit trees in Greece or other Mediterranean areas), or olive crops in different
geographical locations and climates. Moreover, factors like pesticide and fertilizer misuse–
overuse can be considered because they also have a major impact on crop production quality
and the pollution of groundwater. Hopefully, the framework will aid in the sustainability of
agricultural production while contributing to the optimal conservation of water resources.
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Appendix A

The main ensemble types are [77,125]:

• Bagging: The term comes from Bootstrap Aggregating because those techniques
are combined. It works by sampling random bootstrapped sub samples from the
initial dataset. Afterwards, the algorithm picks the most robust sub model to form
the predictor.

• Random Forests: There is a resemblance to Bootstrap Aggregation. Bagging is some-
how predictable in behavior because although splitting is done, the algorithm has
all the predictors at hand. In a random forest, multiple trees are produced but they
are based on different predictors. This is a factor which contributes to crisper inde-
pendence among the base models and leads to powerful aggregation and accurate
predictions. The bottom line is that the base models must be as efficient and as diverse
as possible.

• Boosting: The principle in boosting algorithms is to convert multiple weak training
models into stronger ones. Weight values are attributed to the learners depending
on their comparative performance. Higher values are attributed to false predicted
cases. In the end, the weighted sum is used for the final prediction. Boosting differs
from bagging in that it trains the learners sequentially, referencing the weighted line
of data.

• Stacking: In stacking, weak base models are exploited but processed in parallel. A
weakness of this approach is that each base model equally contributes to the ensemble
regardless of how well it performs. They are often heterogeneous methods, meaning
that the group of base learners consist of different algorithms.
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