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Abstract: Droughts and floods are common in tropical regions, including Rwanda, and are likely to be
aggravated by climate change. Consequently, assessing the effects of climate change on hydrological
systems has become critical. The goal of this study is to analyze the impact of climate change on
the water balance in the Nyabugogo catchment by downscaling 10 global climate models (GCMs)
from CMIP6 using the inverse distance weighting (IDW) method. To apply climate change signals
under the Shared Socioeconomic Pathways (SSPs) (low and high emission) scenarios, the Soil and
Water Assessment Tool (SWAT) model was used. For the baseline scenario, the period 1950–2014 was
employed, whereas the periods 2020–2050 and 2050–2100 were used for future scenario analysis. The
streamflow was projected to decrease by 7.2 and 3.49% under SSP126 in the 2020–2050 and 2050–2100
periods, respectively; under SSP585, it showed a 3.26% increase in 2020–2050 and a 4.53% decrease
in 2050–2100. The average annual surface runoff was projected to decrease by 11.66 (4.40)% under
SSP126 in the 2020–2050 (2050–2100) period, while an increase of 3.25% in 2020–2050 and a decline
of 5.42% in 2050–2100 were expected under SSP585. Climate change is expected to have an impact
on the components of the hydrological cycle (such as streamflow and surface runoff). This situation
may, therefore, lead to an increase in water stress, calling for the integrated management of available
water resources in order to match the increasing water demand in the study area. This study’s
findings could be useful for the establishment of adaptation plans to climate change, managing water
resources, and water engineering.

Keywords: climate change; CMIP6; Nyabugogo catchment; Rwanda; SWAT model

1. Introduction

Globally, climate change is becoming one of the most significant barriers to achiev-
ing food, energy, and water security. The impact is particularly severe in developing
nations, due to their limited adaptive capacity and inadequate environmental resource
management [1]. Moreover, the hydrological cycle is predicted to become more intense
as a result of global warming, leading to more frequent floods and droughts, which will
have an impact on ecosystem services and water resources [2]. Changes in precipitation
patterns have a direct impact on water availability and runoff, whereas evapotranspiration
is affected by changes in temperature, radiation, and humidity [3,4]. Previous works have
confirmed that climate change is expected to cause alterations in precipitation patterns,
variation in the frequency and distribution of droughts and floods, and intensification of
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the evapotranspiration rates in different regions worldwide [5,6]. Under climate change
scenarios, streamflow variations have been depicted as being associated with variations in
precipitation [7]. However, for moisture-scarce regions, a small increase in temperature and
the related increase in evapotranspiration can instigate huge changes in streamflow [8].

To achieve the Sustainable Development Goals (SDGs), it is important to assess future
water resource conditions under projected climate change in order to develop better water
management systems and climate adaptation strategies [9]. However, several studies
around the world have estimated the impact of climate change on streamflow using
different hydrological models and climate scenarios [10,11]. Commonly, these studies
indicated that climate change would have a significant impact on the availability of water
resources around the world.

Africa is one of the most sensitive regions to climatic variability, due to its high
exposure and insufficient adaptability [12]. The Intergovernmental Panel on Climate
Change (IPCC) reported that developing nations are more vulnerable to climate change
and its consequences due to their economic, climatic, and geographic conditions. According
to the IPCC [13], the population of Africa under danger of rising water stress is predicted to
reach 75–250 million and 350–600 million by the 2020s and 2050s, respectively. Furthermore,
yields from rain-fed agriculture could be reduced by up to 50% in rain-fed-agriculture-
dependent nations such as Rwanda. Numerous studies concur that the climate patterns of
the continent are changing [14–16]. For instance, Adhikari, et al. [1] reviewed the impacts
of population growth and climate change on water resources across eight East African
countries, including Rwanda, and found that the majority of those countries are already
water-stressed, or are on the verge of becoming so. Furthermore, the studies conducted by
the authors of [17,18] argued that the projected increase in temperature is stable across the
East African region, while precipitation projections are still more uncertain and variable.
In Rwanda, previous studies assessed the impact of climate change on flooding using
the Coupled Model Intercomparison Project Phase Three (CMIP3) [19,20], while Austin,
et al. [21] focused on the impact of climate change on crops and their adaptation. Another
recent study evaluated the performance of 10 CORDEX historical climate models against
observed rainfall in Rwanda [22].

Nyabugogo is one of the most vulnerable catchments to climate variability in the
region [23]. An increasing number of extreme hydrological events have affected the catch-
ment, with significant consequences for the water supply system. Due to a lack of adaptive
capacity, droughts and floods have become more frequent and intense, worsening food
insecurity in the already susceptible zone [20,21]. However, no impact studies have synthet-
ically used the latest CMIP6 to assess the hydrological responses to future climate change
in the Nyabugogo catchment area, yet social and economic losses can be minimized by
applying a mitigation approach and adaptation strategies. Therefore, the understanding of
the problem caused by climate change in this catchment needs to be improved and updated.

In the current management of water resources, hydrological models play a vital
role [24]. By integrating the anticipated future scenarios based on downscaled global
climate model (GCM) data into hydrological models, the hydrological effects of climate
change at the basin scale can be assessed [25]. Various hydrological models—including the
Soil and Water Assessment Tool (SWAT), variable infiltration capacity (VIC), and MIKE
SHE—have been applied to support the assessment of the impact of climate change on
water resources under various environmental conditions and management techniques.
With the advantage of having a lower number of input parameters compared to other
modeling approaches, the SWAT is among the most popular models applied, and has
proven its satisfactory accuracy in simulating the impact of climate change on different
hydrological processes, in both long and short periods, under different climatic and soil
conditions [25–27].

By evaluating the results from global climate models (GCMs) and employing the
SWAT model for hydrological simulation, this study aims to examine the influence of
climate change on the water balance in the Nyabugogo catchment under the Shared
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Socioeconomic Pathways (SSPs). These SSP-based scenarios reflect future developments
in the absence of climate change or new climate policies beyond those currently in place,
as well as mitigation scenarios, which examine the effects of climate change mitigation
policies on the baseline scenarios [28]. The specific objectives are (1) to downscale GCM
outputs and predict the future climate in the Nyabugogo catchment under both low and
high emissions scenarios—we used these to investigate and comprehend the hydrological
impacts of the world’s fossil fuel emissions, as projected by these two scenarios; (2) to set
up the SWAT model to represent the local hydrological processes; and (3) to analyze the
influence of future climate change on water balance in the catchment. The results of the
study will help to plan for hydrological structures such as dams and river diversions, and
to develop sustainable site adaptation strategies that lessen the impact of climate change
on agriculture, energy, and other sectors.

2. Materials and Methods
2.1. Study Area Description

The Nyabugogo catchment (Figure 1) is located in the central, eastern, and northern
areas of Rwanda. The catchment area covers an area of 1661 km2, and accounts for 6.31% of
the total area of Rwanda. This catchment is rural, but is also mainly urbanized and densely
populated. There is greater shale content in the western half of the study region, whereas
the middle and east have mostly altered shale and quartzite by substantial granite, and
pegmatite with alluvial material found at the valley’s bottom throughout the catchment.
The most common soil types in the catchment are nitosol, acricol, alisol, and lixisol, with
ferralsols in the drier eastern part near Lake Muhazi, and acricol in the western part, while
camisole is also abundant in the western region. The catchment’s central part and valley
bottom are defined by clay soils with low infiltration and a flat topography [29].
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The Nyabugogo catchment, similar to the rest of the country, has a temperate tropical
climate, with mean annual precipitation ranging from 992 mm to 1128 mm, average annual
evapotranspiration of 503 to 1050 mm [30], and temperatures ranging from 19 to 21◦C [31].
Rwanda has two rainy and dry seasons. For rainy seasons, one is from the end of September
to December, while the peak rainy season is from March to early May. The Nyabugogo River
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flows through Kigali, and is fed by the Mwange, Muyanza, Rusine, Kajevuba, and Yanze
rivers; it is 45.97 km long, measured from the outflow of Lake Muhazi to its confluence with
the lower Nyabarongo River near Kigali at an elevation of ~1360 m above sea level. The
highest point of the catchment is 2281 m above sea level in the northern part. The central
feature of the catchment is Lake Muhazi, which is ~80 km long in the east–west [32,33].
Agriculture, fishing, and forestry are the most important employment sectors in the area,
followed by trade and other services.

2.2. Data

The digital elevation model (DEM), land cover land use (LCLU) (Figure 2b), soil map
(Figure 2a), and meteorological data are the main input data required for the ArcSWAT.
A 30 m spatial resolution DEM from the Shuttle Radar Topography Mission (SRTM) was
collected from the USGS Earth Explorer community (http://www.dwtkns.com/srtm30m/
(accessed on 17 May 2020)) in order to acquire the topographic information on the study
area, such as the overland slope and slope length for each delineated sub-basin. The land
cover land use (LCLU) map was produced from a Landsat-8 Operational Land Imager
(OLI) image (path/row: 172/61) obtained from the United States Geological Survey (USGS)
through a global visualization tool. The soil texture was derived from the Digital Soil
Map of the World (DSMW) (http://www.fao.org/geonetwork/srv/en/metadata.show%
3Fid=14116 (accessed on 14 January 2021) assembled by the United Nations Food and
Agricultural Organization (FAO). Weather data from meteorological stations in the study
area were provided by the Rwanda Meteorological Agency, while observed discharge data
from Nemba Station (the outlet of the Nyabugogo catchment) were obtained from the
Rwanda Water Resource Portal (https://waterportal.rwb.rw/ (accessed on 11 December
2020). Moreover, time series of rainfall and temperature data were collected from the
Climate Research Unit (CRU) (https://crudata.uea.ac.uk/cru/data/ (accessed on 30 April
2021) and presented at a high resolution (0.5◦ × 0.5◦ grids) for the period 1901–2014. This
study used GCM datasets from the CMIP6 models.
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2.3. Methods
2.3.1. Description of the Stages Involved in the Study

The impact of climate change on water balance in the present study was evaluated in
three stages: Firstly, the SWAT model was initially calibrated to simulate streamflow and
runoff in the Nyabugogo catchment. Secondly, the GCM data were downscaled using the
statistical downscaling model to reflect the future climate at the catchment level under the
SSP126 (low emissions) and SSP585 (high emissions) scenarios. The observed data for the
baseline period (1950–2014) were compared to the downscaled future climate. Finally, the
calibrated and validated SWAT model was used to analyze the effects of future climate
data on the water balance of the Nyabugogo catchment area, using the downscaled future
climate data from the two emission scenarios.

2.3.2. SWAT Model

The SWAT model is a spatially distributed hydrological model that was designed to
assist water resource managers in assessing the impacts of climate change, land use, and
management approaches on water resources [34,35]. This model has been widely employed
by researchers for watershed modeling and water resource management in watersheds
with different climatic and topographic characteristics, owing to its user-friendly interface
(ArcSWAT) and flexible data needs [27,36]; it has already been validated for various
watershed scales in different climatic situations around the world, and it has worked well
even in complex and data-poor watersheds [37]. The SWAT model also has the advantage
of allowing the simulation of a variety of physical processes (e.g., hydrological, sediment,
and contaminants) in a watershed. In the SWAT, the hydrological cycle of a sub-basin is
simulated based on the following water balance equation:

SWs = SWo +
n

∑
i=1

(
Rday −Qsur f − Ea −Wseep −Qgw

)
(1)

where SWs is the final soil water content, SWo is the initial soil water content (mm), n is
time, Rday is the amount of precipitation, Qsur f is the amount of surface runoff, Ea is the
amount of evapotranspiration, Wseep is the amount of percolation flow exiting in the soil,
and Qgw is the amount of return flow.

DEM, LCLU, soil, and meteorological data are the core SWAT model inputs. The
catchment is divided into physically connected sub-basins, which are further subdivided
into hydrologic response units (HRUs). The HRUs are homogeneous entities with distinct
land cover/use and soil characteristics. The catchment area was delineated into 35 sub-
basins with 429 HRUs, each representing a distinct combination of land cover and soil
type, in order to simplify the watershed and facilitate analysis. Weather data (daily
rainfall and minimum and maximum temperature) were used to simulate streamflow and
runoff. The soil conservation service (SCS) curve number approach was used to quantify
surface runoff in the SWAT [38]. The Penman–Monteith, Hargreaves, and Priestley–Taylor
techniques can all be used to calculate evapotranspiration (ET) in the hydrological SWAT
model; however, we adopted the Hargreaves method to estimate ET in the Nyabugogo
catchment [39,40]. This method uses the minimum and maximum daily temperatures as
input data to estimate potential evapotranspiration [41,42]. The Hargreaves equation used
in SWAT is expressed as:

ET = 0.0023× H0 × (Tmax − Tmin)
0.5 ×

(
Tmax + Tmin

2
+ 17.8

)
(2)

where ET is the evapotranspiration (mm d−1), H0 is the extraterrestrial radiation (MJ m−2d−1),
and Tmax and Tmin are the maximum and minimum air temperatures for a given day
(◦C), respectively.
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Sensitivity Analysis, Model Calibration, Validation, and Evaluation

The SWAT model calibration and uncertainty program (SWAT-CUP) [43] was em-
ployed in this study to assess parameter sensitivity, uncertainty analysis, auto-calibration,
and model validation. To determine the critical parameters (Table 1) that affect streamflow
for calibration, the sensitivity analysis was performed using the Sequential Uncertainty
Fitting (SUFI-2) algorithm [44]. Based on the global sensitivity analysis, the most sensitive
input hydrological parameters were identified by the t-stat and p-value—the greater the
absolute t-stat and the lower the p-value, the more sensitive the parameter. Manual cali-
bration was carried out on the most sensitive parameters. The Nash–Sutcliffe efficiency
(NSE), coefficient of determination (R2), and relative error (RE) were applied to evaluate
the model performance.

NSE = 1− ∑t
i=1(Oi − Si)

2

∑t
i=1(Oi −Mo)

2 (3)

R2 =
∑t

i=1(Oi −Mo)(Si −Ms)[
∑t

i=1(Oi −Mo)
2
]0.5[

∑t
i=1(Si −Ms)

2
]0.5 (4)

RE =
|Oi − Si|

Si
× 100 (5)

where Oi and Si are the observed and simulated values, respectively, t is the total number
of paired values, Mo is the mean observed value, and Ms is the mean simulated value.

Table 1. Parameters used for sensitivity analysis and calibration of the SWAT model.

Parameter Names Description Range Fitting Value p-Value t-Stat (Absolute)

r_CN2.mgt Curve number −0.2–0.2 −0.1 0.00 22.48
r_SOL_AWC.sol Available water capacity 0–1 0.25 0.01 1.61

r_ESCO.bsn Soil evaporation compensation factor 0–1 0.5 0.01 1.47
r_SURLAG.bsn Surface runoff lag time 1–24 3.5 0.04 0.99

v_REVAPMN.gw Threshold water depth in the shallow aquifer
for “revap” 0–1000 92.5 0.14 0.89

v_GW_REVAP.gw Groundwater “revap” co-efficient 0.02–0.2 0.09 0.45 0.76
v_ALPHA_BF.gw base flow alpha factor 0–1 0.23 0.47 0.72
v_GWQMN.gw Threshold water depth in the shallow aquifer 0–5000 0.38 0.63 0.49

v_GW_DELAY.gw Groundwater delay time 0–500 28 0.72 0.36
v_RCHRG_DP.gw Recharge to deep aquifer 0–1 0.15 0.95 0.06

The prefix v means to multiply by original value, while r means to replace the original value.

2.3.3. Downscaling of Future Climate Scenarios

The Nyabugogo catchment was modeled using GCM data from the latest CMIP6
(Table 2) under SSP scenarios. This study examined the average growth rate of climate
variables (precipitation and temperature) in the two periods of interest (2020–2050 and
2050–2100) relative to the baseline period (1950–2014). By 2100, the SSP1-2.6 (SSP5-8.5)
represents a low number of (high energy-intensive) Shared Socioeconomic Pathways
(SSPs), with a decline to 2.6 Wm−2 (rising to 8.5 Wm−2) in radiation forcing [28,45]. As the
spatial resolution of raw GCMs is generally too coarse for regional study, the statistical
downscaling was performed before the application of future GCM projections into the
calibrated SWAT. Using the inverse distance weighted (IDW) interpolation, these coarse-
resolution anomalous fields of climate variables were interpolated to a 0.5-degree resolution.
An ensemble modeling approach was then used to account for the uncertainties in the
projected precipitation and temperatures [46,47]. The absolute or relative differences
between the GCMs’ outputs for the baseline and future periods were computed for the
data used in this study. The estimated changes were interpolated to high-resolution grids
based on the assumption that climate change is relatively stable over space (high spatial
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autocorrelation) [48]. Before being input into the SWAT model, changes were clustered
into low, mean, and high ranks for each emission scenario, and for all considered runs that
passed the performance evaluation. The low and high ranks correspond to the minimum
and maximum values of the changes, respectively, and express the ranges of uncertainty
associated with climate change. The mean rank corresponds to the mean values of the
changes, and was considered to be reliable for hydrological impact simulation [49]. Daily
time series for the SWAT model were generated using modeling results for daily maximum
and minimum temperatures and mean precipitation from a multi-model ensemble of
10 GCM combinations under two scenarios. Overall, the CMIP6 with the SSP scenarios
SSP126, and SSP585 was a projected output that was added to the baseline model of the
catchment in order to assess climate change impacts.

Table 2. Detailed information of selected GCMs.

Model Institute Resolution References

ACCESS-CM2 Commonwealth Scientific and Industrial Research
Organization (CSIRO), Australia 1.25◦ × 1.87◦ Bi, et al. [50]

ACCESS-ESM1-5 Commonwealth Scientific and Industrial Research
Organization (CSIRO), Australia 1.25◦ × 1.87◦ Law, et al. [51]

CNRM-CM6-1

CNRM (Centre National de Recherches Meteorologiques,
Toulouse 31057, France), CERFACS (Centre Europeen de

Recherche et de Formation Avancee en Calcul Scientifique,
Toulouse 31057, France)

1.4◦ × 1.4◦ Voldoire, et al. [52]

CNRM-ESM2-1
Centre National de Recherches Meteorologiques, Toulouse

31057, FranceCentre Europeen de Recherche et de Formation
Avancee en Calcul Scientifique, France

1.4◦ × 1.4◦ Séférian, et al. [53]

CanESM5 Canadian Centre for Climate Modelling and Analysis,
Environment and Climate Change Canada, Canada 2.8◦ × 2.8◦ Swart, et al. [54]

INM-CM4-8 Marchuk Institute of Numerical Mathematics of The Russian
Academy of Science 2◦ × 1.5◦ Volodin, et al. [55]

INM-CM5-0 Marchuk Institute of Numerical Mathematics of The Russian
Academy of Science 2◦ × 1.5◦ Volodin, et al. [55]

IPSL-CM6A-LR Institute Pierre Simon Laplace (IPSL), France 1.26◦ × 2.5◦ Boucher, et al. [56]

MIROC6

Japan Agency for Marine-Earth Science and Technology
(JAMSTEC), University of Tokyo (UT), National Institute for

Environmental Studies (NIES), and RIKEN Center for
Computational Science (RCCS), Japan

1.4◦ ×1.4◦ Tatebe, et al. [57]

UKESM1-0-LL Met Office Hadley Centre, UK 1.25◦ × 1.87◦ [Sellar, et al. [58],
Archibald, et al. [59]]

3. Results and Discussion
3.1. Climate Change Analysis
3.1.1. Projected Precipitation Change

This study quantifies the catchment’s average future rainfall and temperature (1950–2014)
in two time horizons—near future (2020–2050) and far future (2050–2100)—under two sce-
narios: SSP126 and SSP585. Figure 3a shows the relative changes in monthly rainfall under
both scenarios and periods. We observed that the monthly rainfall would greatly increase
in August and December by 8.84 and 7.08% per decade, respectively, under the SSP585
scenario in the 2050–2100 period, while a high decrease is expected in June under SSP126
in the 2020–2050 period. During the rain season, rainfall is projected to increase compared
to dry season (Figure 3b). Similar to the findings of Almazroui, et al. [60] and Ongoma,
et al. [61], in October, November, and December (OND) (Figure 3c), rainfall is projected
to increase by 1.63–4.62% per decade under both scenarios and periods, while a decline is



Water 2021, 13, 3636 8 of 18

projected in March, April, and May (MAM) in all scenarios and periods—consistent with a
previous study [1]. The long rains (MAM) have been reported to be declining across most
East African countries [17,47,62], despite global climate models predicting a wetter season.
The rainfall is projected to increase in both scenarios and periods—mostly in the far-future
period—which is consistent with the findings of Ayugi, et al. [47], whose results showed
an increase in precipitation in the East African region. Using CMIP6, Almazroui, et al. [60]
and Tan, et al. [63], reported that SSP126 will experience a lower change in rainfall than
SSP585 in the Central East Africa region, while in both the near and long periods SSP126
is expected to have a lower change than SSP585. The findings of Ongoma, et al. [61] and
Gebrechorkos, et al. [64] indicated that the projected rainfall would increase more under
the high-emissions scenario than the low-emissions scenario using CMIP5.
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3.1.2. Projected Temperature Change

The projected temperature (minimum and maximum) is expected to rise in both
scenarios for 2020–2050 and 2050–2100. For all periods (Figure 4), SSP585 showed a
larger increase than SSP126. The rate of maximum temperature increase in May, June,
July, August, and September is more than in the other months under both scenarios. A
significant (p < 0.05) increase is observed under SSP585 during 2050–2100. In line with
previous studies [18,65], the average annual minimum temperature is projected to increase
by 0.27 and 0.20 ◦C decade−1 under SSP126 during 2020–2050 and 2050–2100, respectively,
with temperature projected to increase under SSP585 by 0.32 and 0.46 ◦C decade−1 in
2020–2050 and 2050–2100, respectively. The average annual maximum temperature is
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also expected to increase under both periods and scenarios (0.24 and 0.18 ◦C per decade,
respectively) under SSP126 while under SSP585 it will increase by 0.27 and 0.41 ◦C per
decade in 2020–2050 and 2050–2100, respectively. These findings are consistent with those
of Engelbrecht, et al. [66], who found that under the high-emissions scenario, temperatures
in the African tropics will rise by 3–5 ◦C from 2071 to 2100, compared to 1961–1990, using
CMIP5 models. The maximum and minimum temperatures are projected to increase more
in the dry season than in the wet season under both high and low emissions during the
near- and far-future periods. This rising temperature is likely to have an impact on the
increase in evapotranspiration.
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3.2. Calibration and Validation of the SWAT Model

Based on the results of the sensitivity analysis performed by the SUFI-2 program using
SWAT-CUP, the top four parameters were identified as the most sensitive for streamflow
simulation, while the last three were slightly sensitive. To estimate the amount of flow from
the catchment, the most sensitive flow prediction parameters (Table 1) were adjusted to suit
the model simulations with the observed flow data. The comparison of monthly observed
and simulated discharge throughout the calibration (January 2011 to December 2012) and
validation (January 2013 to December 2013) periods demonstrated that the model was
satisfactory for estimating the impacts of climate variability on the water balance across
the study area, as revealed by model performance statistical measures, including the
coefficient of determination (R2), the Nash–Sutcliffe efficiency (NSE), and the relative error
(RE). In line with a recent study [7], the association between the observed and simulated
flow (Figure 5) was computed using the above most common metrics for both calibration
and validation processes. For example, R2 and NSE presented good results (0.91% and
0.73%) and (0.86% and 0.70%) for both calibration and validation, respectively. Moreover,
lower acceptable RE percentages (8.3% and 10.9%) were also obtained for calibration and
validation, respectively. The obtained REs were found to be in conjunction with the national
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criteria for flow prediction in China, indicating that a hydrological model can be considered
effective when the relative error percentage of the simulated data is less than 20% [67].
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3.3. Impact of Climate Change on Evapotranspiration

The average annual evapotranspiration (ET) over the entire catchment is expected to
increase by 18.02 (17.41%) for SSP126 in the 2020–2050 (2050–2100) period, while under
SSP585 an increase of 18.90 (21.78%) is expected in 2020–2050 (2050–2100). The projected
monthly evapotranspiration (Figure 6a) was characterized by both increases and decreases
under both scenarios and periods. On a monthly scale, a large decrease is more pronounced
in March (34.97 to 0.43%), June (31.57 to 9.35%), and July (30.49 to 18.89%), while in February
and December, an increase from 51.34 to 92.48% and from 37.52 to 88.29% is projected under
both scenarios and periods, respectively. On a seasonal scale (Figure 6b), ET is projected
to increase more during the rain season compared to the dry season. In the OND season
(Figure 6c), a greater increase in ET is projected due to a projected increase in precipitation
and temperature while, the MAM season will experience a decrease and a less significant
increase under both scenarios. These findings are consistent with those of Mishra, et al. [68],
who reported that the increased rainfall and temperature would result in increased ET.
Throughout the projection periods, there will be a generally positive trend in ET owing
to the expected rise in temperature as a result of global warming [12,69]. Moreover,
Dai, et al. [70] evaluated the relationship between the Palmer Drought Index and soil
moisture, as well as the effects of surface heat, concluding that the probability of drought
will rise as anthropogenic global warming progresses due to higher temperatures and
increased drying. Several studies [48,61,71] have also reported an increase in temperature
across the African tropics. Furthermore, Nooni, et al. [72] reported that humid tropical and
equatorial zones are expected to experience a significant increase in ET, especially in central
and eastern Africa. Under SSP126 from June to August (the long dry season), a projected
monthly increase in temperature of 0.28 ◦C decade−1 and a decrease in precipitation
of 2.52% resulted in an ET decrease of 18.61% during 2020–2050. Furthermore, due to
the increase in temperature and decrease in precipitation, evaporation has decreased
significantly during the dry season. Situations such as increases in temperature and
declines in precipitation can have negative impacts on soil moisture [73]. Soil moisture
depletion will reduce catchment water availability, resulting in a decrease in expected
ET. In fact, the soil’s lack of water for evaporation due to the aridity (dryness) of the soil
decreases the soil moisture by decreasing the water content in the soil, thus reducing the
evaporation [73]. To explain the above, climate change and its related global warming may
lead to increased surface dryness and more droughts owing to decreased precipitation,
especially in the tropical regions. This is consistent with previous results [43] indicating
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that increasing temperature leads to reduced soil moisture content which, in turn, leads
to low crop productivity. A recent study showed the vulnerability of crop productivity in
Rwanda to climate variability [21]. Furthermore, the study by Li, et al. [74] noted that 83%
of the transferred forestland was converted to cultivated land after 2010, which will have a
significant influence on the hydrological process. As also reported by a previous study [40],
all of these may lead to a decline in surface runoff in the study area.
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3.4. Streamflow under Climate Change

The average annual discharge is projected to decrease by 7.2 and 3.49% under SSP126
in 2020–2050 and 2050–2100, respectively. Under SSP585, streamflow simulations indicate
a 3.26% increase in 2020–2050 and a 4.53% decline in 2050–2100. On a monthly scale
(Figure 7a), the largest decrease in average flows compared to the baseline period was
projected to occur in June (36.95%) for the period 2020–2050 under the SSP126 scenario.
The largest increase was projected in July, at 34.12% for the period 2020–2050 under the
SSP585 scenario. High evapotranspiration due to the increase in temperature may be
the source of the reverse trends of precipitation and streamflow in the rainy seasons
(Figure 7b) [75,76]. A decrease in discharge projected in June is linked to a decline in
projected rainfall in both scenarios and periods. The results show that in a future climate,
the relationship between streamflow and precipitation may change, with a unit decrease in
precipitation leading to a greater decrease in streamflow in the middle and late centuries,
and vice versa. In agreement with previous findings [77,78], streamflow projections based
on RCP climate scenarios show a decline in streamflow due to decreasing precipitation
and rising temperature in East Africa. As a result, any change in precipitation will have a
substantial impact on the flow of the watershed, which will be noticeable in both scenarios
and periods. The relative changes in the projected low flow (Figure 7c) are projected to
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decrease by 63.38 (24.8)% under SSP126 (SSP585) in the 2020–2050 period, while in the
period 2050–2100, an increase of 20.33 and 2.74% is expected under SSP126 and SSP585,
respectively. The relative changes in the projected peak flow indicate that the flow will
be increase by 5.89 (11.46)% under SSP585 in the 2020–2050 (2050–2100) period, while
under SSP126 it will decrease by 0.72% in the 2020–2050 period and increase by 1.73% in
the 2050–2100 period. The increase in peak flow rate is encountered more under SSP585
than SSP126. These results correspond to the findings of Peter, et al. [79], who reported
that the flow out of the Nyabugogo catchment is projected to decrease considerably in the
future, reaching average flows of 50% compared to the current situation. Particularly low
flows during dry months are expected to decrease by ~60%. This is in accordance with
the findings of [76,80], which reported that the percentage of the change in low flow is
greater than that in high flow, and that the increasing rates of high flow are more serious
under RCP8.5 than under RCP2.6 and RCP4.5. The predicted streamflow trend corresponds
to variations and trends in precipitation and evapotranspiration [48,81]. These findings
are consistent with the growing evidence that the world is warming. Based on current
precipitation patterns, studies [76,82] have shown that higher temperatures cause increased
evaporation rates, which reduce streamflow and increase the frequency of droughts. This
will almost certainly have a negative impact on the catchment’s agricultural productivity
and irrigation management.
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3.5. Surface Runoff under Climate Change

Surface runoff is strongly related to temperature and precipitation [67]. Climate
change is projected to impact water resources and the related sectors—such as agriculture,
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household consumption, and energy formation—in the Nyabugogo catchment as a result
of decreased precipitation and increased temperatures. The average annual surface runoff
of the basin is projected to decrease by 11.66 (4.40)% under SSP126 in the 2020–2050
(2050–2100) period, while an increase of 3.25% is expected under SSP585 in 2020–2050,
followed by a decline of 5.42% in 2050–2100. According to the results, monthly runoff
decreased by more than 20% due to a slight increase in precipitation and a continued
increase in evapotranspiration. On the monthly scale (Figure 8a), a high decrease is
expected in April (−34.23 to −7.21%), May (−28.99 to −5.65%), and June (−43.62 to
−13.31%) under both SSP scenarios and periods. A decrease in surface runoff of 43.62
(33.27) % in June could be attributed to a decrease in rainfall of 8.96 (1.27) % and an
increase in temperature of 2.43 (1.82) ◦C under SSP126 in 2020–2050 (2050–2100). In line
with the findings of [77], the expected increase or decrease in surface runoff was related
to future increases or decreases in precipitation and temperature across the basin. A
decrease in runoff is expected in both dry and rainy seasons (Figure 8b), except under
SSP585 in the period 2020–2050. During the rainy season (Figure 8c), less significant
increases and decreases in precipitation were projected under SSP126 in both periods,
which should result in increased runoff. However, a decrease was predicted, which could
be associated with a significant increase in ET due to increased maximum and minimum
temperatures [27,83]. Temperature effects tend to dominate in the 21st century under the
high-emissions scenario, which had a significant impact on reducing runoff despite the
predicted increase in precipitation during the rainy season [84,85]. This will aggravate
water scarcity, increase water demand, and lead to further water scarcity in the study area.
Due to the significant decrease in surface runoff, the irrigation water requirements will
increase as well. Apart from climate change, population growth and changes in agricultural
and industrial demand will also have significant impacts on the surface runoff in the future.
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3.6. Limitations of the Study

The use of hydrological models to study the impact of climate change on streamflow
incorporates a range of uncertainties [86,87]. The most significant sources of uncertainty
in climate change studies are the selection of the GCM models and the emission scenario
specifications [86,88]. In the regional climate change research, the divergence between
different GCM models is commonly regarded as a substantial source of uncertainty [89,90].
Due to differences in spatial domains and predictor factors, there may be a considerable
difference in future climate data when downscaling with dynamic and statistical down-
scaling approaches [91]. Since the study used the same LCLU data, another source of
uncertainty could be the impact of future changes in land use and soil parameters (which
could influence soil properties in the watershed). Several parameters, such as LCLU, can
have an impact on hydrology, since changes in LCLU alter river flow by modifying the
evapotranspiration regime [92]. Due to the downscaling, hydrological parameter uncer-
tainty, and neglect of the changes in land use and soil properties, there is a mixture of
uncertainties in the GCMs’ outputs. Any or all of these parameters could cause the results
to differ from reality. Despite its limitations, this study aimed to analyze the probable
effects of climate change on the water balance in the Nyabugogo catchment in Rwanda by
seeking the best available data and utilizing the most feasible possible emission scenarios
to reduce the uncertainty of the model predictions.

4. Conclusions

This study attempted to simulate the near- and far-future behavior of water balance
conditions across the Nyabugogo catchment area using climate change simulations per-
formed by 10 GCMs that contributed to CMIP6. The effects of climate change on streamflow,
runoff, and evapotranspiration were also evaluated for both historical and future periods.
The outcomes of the study showed a slight significant increase in precipitation and a
remarkable significant (p < 0.05) increase in both maximum and minimum temperature;
which showed an impact on the evapotranspiration in the catchment area. The streamflow
was projected to decrease by 7.2 (3.49)% under SSP126 in the 2020–2050 (2050–2100) period;
under SSP585, it showed a 3.26% increase in 2020–2050 and a 4.53% decline in 2050–2100.
The average annual surface runoff was also projected to decrease by 11.66 (4.40)% under
SSP126 in the 2020–2050 (2050–2100) period, while under SSP585 an increase of 3.25% in
2020–2050 and a decline of 5.42% in 2050–2100 was expected. In conclusion, the projected
reductions in streamflow and runoff might imply an increased demand for irrigation, which
may intensify the water stress in the study area under the future climate scenarios and,
therefore, affect food and water security in the region. The findings of this study illuminate
the probability of future water consensus, and can assist with future development strate-
gies to balance water demand and supply. These findings can, therefore, be incorporated
into water resource management plans in order to promote more sustainable water use
in the catchment area. Although the common understanding reveals the vulnerability of
this area to climate change, studies on the impact of future climate change on the water
balance of this region are still scarce. However, in order to obtain a more comprehensive
assessment and guide the development of adaptation strategies, future research should
take into account the impact of changes in LCLU and soil parameters on water balance, so
as to lessen the detrimental impact of climate change on agriculture and other industries.
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