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Abstract: Evapotranspiration is often expressed in terms of reference crop evapotranspiration (ETo),
actual evapotranspiration (ETa), or surface water evaporation (Esw), and their reliable predictions
are critical for groundwater, irrigation, and aquatic ecosystem management in semi-arid regions.
We demonstrated that a newly developed probabilistic machine learning (ML) model, using a
hybridized “boosting” framework, can simultaneously predict the daily ETo, Esw, & ETa from local
hydroclimate data with high accuracy. The probabilistic approach exhibited great potential to
overcome data uncertainties, in which 100% of the ETo, 89.9% of the Esw, and 93% of the ETa test
data at three watersheds were within the models’ 95% prediction intervals. The modeling results
revealed that the hybrid boosting framework can be used as a reliable computational tool to predict
ETo while bypassing net solar radiation calculations, estimate Esw while overcoming uncertainties
associated with pan evaporation & pan coefficients, and predict ETa while offsetting high capital
& operational costs of EC towers. In addition, using the Shapley analysis built on a coalition game
theory, we identified the order of importance and interactions between the hydroclimatic variables to
enhance the models’ transparency and trustworthiness.

Keywords: evapotranspiration; machine learning; probabilistic model; shapley analysis

1. Introduction

Background

Evapotranspiration (ET) is the key component of groundwater budget in drought-
prone regions with scarce water supplies [1–3], facing challenges of sustainable develop-
ment and climate resilience [4]. Reliable prediction of ET is useful to determine aquifer
recharge [5,6] in evaluating groundwater sustainability to meet consumptive water use
and environmental flow requirements. ET is often reported as reference crop evapotran-
spiration (ETo), actual evapotranspiration (ETa), or potential evapotranspiration from
wet surfaces (ETp), or surfaces covered by large volume of water, such as wetlands or
lakes (Esw).

ETo accounts for climate-driven watershed-scale ET from a surface covered by a
hypothetical grass reference crop with uniform height, fully shading the saturated soil,
and hence, reflects evaporation power of the atmosphere. The FAO56 Penman-Monteith
equation (FAO56 PME) is commonly used to calculate the ETo [7–11]. FAO56 PME-based
ETo calculations depend on the climate data, involving time series of shortwave solar
radiation (Rs), air temperature (Ta), atmospheric pressure (P), relative humidity (RH),
and wind speed (u2). Because long-term climate data are unavailable in some regions,
simplified versions of the FAO56 PME with fewer climate variables have been explored
and tested at watersheds with scarce data [12–15]. At the extreme edge, Ta was proposed to
be the best alternative to ETo [16] or used as a proxy for ETo [17] in hydroclimatic studies.
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However, regional changes in ETo depend also on the trends in other variables such as Rs,
RH, and u2, which may diminish or exacerbate the role of Ta [18,19].

ETo has been commonly used in aridity and drought analysis. For example, (ETo − Pt),
in which Pt is the precipitation, is used to calculate the standardized precipitation evapotran-
spiration index (SPEI) in assessment or projection of the meteorological droughts [20,21],
although the SPEI was shown to be a poor proxy for projected aridity conditions under
global warming [22]. Similarly, Pt/ETo represents the drought index and has been used to
assess aridity changes under observed and projected global warming conditions [23–25].
ETo has also been used to calculate crop water needs by coupling it with the crop coefficient
(kc) that embodies physiologic characteristics of a specific plant, such as growth stage, crop
types, soil characteristics, crop height and leaf area index [26–28].

Evaporation is the key loss term in the closed-basin lake water budget in semi-arid
regions [29] that are sensitive to climate change, and evaporation could increase due,
in part, to decreases in the ratio of sensible to latent heat flux [30]. Lake evaporation
(Esw) can represent regional ETp [31], which has been used in terrestrial water balance
calculations [32] and flood prediction [33]. Esw has been estimated using indirect methods
such as Meyer’s formula as a function of surface water temperature (Tsw), RH, and u2
data [34,35], or direct measurements through Eddy covariance (EC) towers [36,37] or
pan evaporation methods [38,39]. Evaporation pans are used to determine evaporation
from water surface at the pan-scale (Ep), which are then scaled-up to estimate open water
evaporation (Esw or ETp).

However, neither ETo nor Esw provides a direct estimate for ETa, which is the sum of
evaporation from soil and transpiration from vegetation. As compared to ETo, ETa is more
site-specific and spatially-variable, depending on soil and vegetation types. Reportedly,
an increase in transpiration from vegetation (ETv) could result in a two-fold decrease
in soil evaporation [40], revealing significant impacts of ETv on ETa. EC is the most
direct method of measuring land surface water vapor flux [41] without disturbing the
water-air interface [42], and hence, provides accurate site-scale ETa measurements [43].
When coupled with the energy balance method, the EC technique provided an alternative
measure of latent heat flux equivalent to ETa [44,45].

ETp sets the upper bound for ETa due typically to limited water availability in the
soil for evapotranspiration [46,47]. When ETa < ETp, moisture becomes limited, the
air becomes drier and the excess energy heats up the atmosphere, which subsequently
increases ETp [48]. However, ETp ∼ ETa ∼ Esw holds for wet surface evaporation [49,50].
The ratio ETa/ETo corresponds to the evaporative stress index, and similar to the drought
index, it reflects the water and heat properties on the ground surface without requiring
complex vegetation and soil hydrological properties in climate classifications [51]. The
evaporative stress index was used to study short term droughts [52], irrigation needs for
crop growth [53], and water stress [54]. If soil moisture data are available, ETa can be
computed by multiplying ETp by the soil moisture extraction function [55].

The background above reveals that different, yet interrelated, ET measures have been
used in practice, and their accurate estimates are vital in hydroclimatic applications. Ad-
vanced Machine Learning (ML) methods (e.g., Artificial Neural Network (ANN), Support
Vector Machine (SVM), Random Forest (RF), Gradient Boost (GBoost), Extreme Gradient
Boost (XGBoost)) have also been used to predict ETo [56–59], Ep [60–62] and ETa [63]. How-
ever, these ML models have been used for a particular ET measure and their prediction
accuracy has been evaluated based on the point statistics (e.g., coefficient of determination
(R2) and mean square error (MSE)), but not ‘probabilistically’ for more accurate assessment
of uncertainties in ET predictions.

Scientific challenge

Recently, several machine learning (ML) models (e.g. genetic algorithms, neural
networks, clustering, tree-based ensembles, fuzzy models, multivariate adaptive regression
splines, extreme learning machines, and generalized linear models, deep belief network,
support vector machine) have shown promising results due to their ability to upscale or
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simulate the complex nonlinear behavior of ETo, Ep, and ETa [14,61,64–75]. However, a
critical challenge with these existing ML models is that the nonlinear relationship between
climatic variables and the ET makes it difficult to account for inherent uncertainties [76].
Therefore, in this paper, we confront the uncertainties in ET predictions using a hybrid
probabilistic boosting (natural gradient [77] and extreme gradient boosting [78]) ML model
without compromising the accuracy of the predictions. The probabilistic model takes in
respective feature values x and returns a distribution over the target y indicating the relative
likelihood of different values of y. To our knowledge, ML-aided probabilistic predictions
of ETo, Esw, and ETa is unprecedented. Moreover, for the first time we applied a game
theory approach [79] to explain the importance of the climate variables on the ML-based
ETo, Esw, and ETa predictions. This approach manifests how the individual feature values,
while considering their interactions with other features, influences the models’ predictions,
which enhances the models’ transparency and trustworthiness.

Research questions, motivations, and objectives

Considering the presence of different ET prediction methods (e.g., FAO56 PME,
Meyer’s Formula, Eddy covariance, Machine Learning), a follow-up research question
would be: Can we have a unified machine learning model to (i) avoid calibration pa-
rameters and empirical relations in predicting Esw (or Ep), (ii) calculate ETo, Esw, and ETa
simultaneously from the standard hydroclimatic data, (iii) perform probabilistic predictions
over the entire solution space for more accurate assessment of uncertainties related to ET
estimates, (iv) analyze the order of importance and interactions between the hydroclimatic
variables, and (v) explore new hydroclimatic knowledge that may not be readily available
from non-probabilistic machine learning, numerical, or empirical models? The main moti-
vations for development of such a model are to (i) have an alternative and complementary
method to the FAO56 PME [7] to circumvent net solar radiation calculations in ETo pre-
dictions; (ii) overcome uncertainties associated with the pan coefficients, pan evaporation
data, and upscaling methods for Esw (or ETp) estimates; and (iii) reduce the number of
required EC towers and/or their operational time length, and hence, to offset high capital
& maintenance costs of EC towers used for ETa measurements. Thus, the main objectives
of the paper are to (i) develop a unified ‘probabilistic’ predictive ML model based on the
standard local hydroclimate data to collaterally predict ETo, Esw, and ETa; and (ii) use
Shapley analysis, built on the game theory approach, to determine the order of importance
and dependencies & interactions between hydroclimatic variables in ETo, Esw, and ETa
predictive models, and compare the results against findings from the current literature.

2. Study Area & Data Availability

The karstic Edwards aquifer in semi-arid south-central Texas is the primary source
of drinking water for the city of San Antonio and is also home to several threatened and
endangered aquatic species (e.g., Texas blind salamander, San Marcos salamander) at the
major spring outlets [80]. Up to 65% of rainfall is lost to evapotranspiration [81] in south-
central Texas, which has a few permanent surface water and experiences frequent droughts.
In some years, anomalously sinking motions and divergent water vapor fluxes over the
Texas area reduce precipitation and increase downward solar radiation, which results in
dry and hot soil promoting the occurrence of extreme heat waves [82]. Such an extreme
summer heat wave occurred in 2011 with average temperature 3 ◦C above the 1981–2010
mean for June through August [83]. The likelihood of exceeding a given unusually high
summer temperature in the Texas region was reported to be about 10 times greater with
2011 anthropogenic emissions compared to preindustrial forcing [84]. Under the current
and projected climate conditions in south-central Texas, increased air and groundwater
temperatures and decreased aquifer recharge and springs flow could make endangered or
threatened aquatic species vulnerable to extinction [80,85]. Therefore, reliable estimates of
ET are useful for improved management of Edwards aquifer’s groundwater and habitats
for groundwater-dependent species, as part of the current and future resource planning.
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The Edwards Aquifer Authority (EAA) initiated a pilot program in 2014 to establish a
network of weather stations across the Edwards aquifer region to collect local climate data.
Measured local climate data at these stations for ETo calculations include Rs, P, Ta, RH, and
u2. Local climate data at the 15 min intervals from 1 September 2015 to 1 December 2020
were acquired from weather stations at the Nueces Duernell Ranch (NDR) and Bandera
County River Authority and Groundwater District’s office (BCRAGD) in Figure 1. Local
climate data at the Camp Bullis Savanna (CBS) station was available since 25 January 2016.
Local hydroclimatic data (including climate data at the NDR, BCRAGD, and CBS sites)
used in the numerical and ML analyses are shown in Appendices A.1–A.4.

Figure 1. Data source locations across the Edwards aquifer region. The map shows the location of EAA’s weather stations
with local climate data, the U.S. Geological Survey (USGS)’s station with surface water temperature data, Ingram Lake with
estimated lake evaporation data, Uvalde city with the cloud cover data, and the eddy covariance tower with the actual
evapotranspiration data.

3. Methods
3.1. FAO56 Penman-Monteith Equation (FAO56 PME)

Hourly ETo were computed at the NDR, BCRAGD, and CBS stations using the FAO56
PME. The computed ETo were then used to construct the training and testing data for the
ML models. Using the FAO56 PME [7], ETo [mm/h] is computed by

ETo =
0.4084(Rn − G) + γ 37

Ta+273 u2(eo − ea)

4+ γ(1 + 0.34u2)
, (1)

where 4 is the slope of the saturation vapor pressure [kPa ◦C−1], Rn is the net solar
radiation [MJ/(m2 h)], G is the heat flux density [MJ/(m2 h)], γ is the psychrometric
constant [kPa ◦C−1], Ta is the air temperature [◦C], eo is the saturated vapor pressure [kPa],
ea is the actual vapor pressure [kPa], and u2 is the wind speed measured at 2 m above the
ground surface [m/s]. γ = 0.665× 10−3P. Rns = (1− α)Rs, in which α is the albedo that
determines the fraction of the measured solar radiation, Rs [MJ/m2 h], reflected by the
surface. eo = 0.6108eT∗a , ea = eo(RH)/100, and4 = 2503.058eT∗a /(Ta + 237.3)2, in which
RH is the relative humidity [-] and T∗a = 17.27Ta/(Ta + 237.3). Hourly-averaged Ta, RH,
P, u2, ea, and eo, and hourly-aggregated Rs are used in Equation (1). Net solar radiation is
defined as Rn = Rns − Rnl , in which Rns is the measured net incoming shortwave radiation
and Rnl is the outgoing longwave radiation [MJ/(m2 h)] computed as
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Rnl =
(

σT4
a,K

)
(0.34− 0.14

√
ea)

(
1.35

Rs

Rso
− 0.35

)
, (2)

where σ is the Stefan-Boltzmann constant (2.043 × 10−10 MJ / (K4 m2 h)) and Ta,K is the air
temperature in [K]. Rso is the clear-sky radiation [MJ/(m2 h)]. Linearized Beer’s radiation
law leads to Rso =

(
0.75 + 2× 10−5z

)
Ra, in which z is the elevation of the weather station

above the sea level [m] and Ra is the extraterrestrial radiation [MJ/(m2 h)]. In other words,
Rso ∼ 0.75Ra, which accounts for 25% reduction in Ra due to the interaction of Ra with
atmospheric gases [86,87]. (Rs/Rso) is the relative shortwave radiation, representing the
cloud cover, defined as

0.33 ≤ Rs

Rso
∼ Rs

(0.75 + 2× 10−5z)Ra
≤ 1.0, (3)

in which the lower bound of 0.33 and the upper bound of 1.0 represent the dense cloud
cover and clear sky on a particular day, respectively. The first, second, and third terms in
Equation (2) account for the effect of air temperature, air humidity, and cloudiness on Rnl .
Ra depends on the geographic location of the weather station and time of the day, and is
computed as

Ra =
720Gscdr

π
[(ω2 −ω1) sin(ϕ)sin(δ) + cos(ϕ) cos(δ)(sin(ω2)− sin(ω1))], (4)

where Gsc is the solar constant [0.0820 MJ/(m2 min)], dr is inverse relative distance earth-
sun [-], δ is the solar declination [rad], ϕ is the latitude of the weather station [rad], ω1
and ω2 are the solar time angle at the beginning and end of the period [rad]. Here,
dr = 1 + 0.033 cos(2π J/365) and δ = 0.409 sin(2π J/365− 1.39), in which J is the day
count of the year. Solar time angle at midpoint of hourly period, ω [rad], is given by

ω = (π/12)[(t + 0.06667(Lz − Lm) + Sc)− 12], (5)

in which t is the standard clock time at an half-and-hour intervals [h], Lz = 90◦ for central
Texas, Lm is the longitude of the weather station [degrees], and Sc is the seasonal correction
for solar time [h], given by Sc = 0.1645 sin(2b) − 0.1255 cos(b) − 0.025 sin(b), in which
b = 2π(J − 81)/364. ω1 = ω − (πt1/24) and ω2 = ω + (πt1/24). Here, Ra = 0 when
the sun is below the horizon at ω < −ωs or ω > ωs. To keep the cloudiness, Rs/Rso in
Equation (3), and hence, Rnl in Equation (2) finite, Rs/Rso at night times is set to Rs/Rso
value 2–3 h prior to sunset. The sunset time in each day of the year can be identified by
(ωs − 0.79) ≤ ω ≤ (ωs − 0.52). When the sun is above the horizon (Ra > 0), G = 0.1Rn
corresponds to smaller heat outfluxes, promoting soil warming during day times. In
contrast, when the sun is below the horizon (Ra = 0), G = 0.5Rn corresponds to larger heat
outfluxes, promoting soil cooling at nights. Wind speed, u2 ≥ 0.5 m/s in ETo calculations
to account for the effects of boundary layer instability and buoyancy of air in promoting
exchange of vapour at the surface when air calm.

3.2. Meyer’s Formula (MF)

The MF model was used here to verify the reasonability of Esw data produced by
upscaling the Ep data, as the Esw data were subsequently used to train and test the ML
models. MF is a mass transfer-based, empirically constructed formula [88] used to calculate
daily or monthly Esw. It is expressed in the form of Esw = β(eo − ea), in which β is
the empirically determined constant, eo and ea are defined in terms of surface water
temperature (Tsw), unlike in the FAO56 PME. Reportedly, the best form of the MF to predict
daily Esw from free water surface [34]

Esw = 0.35(1 + 0.98/100u2)(eo − ea), (6)
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where u2 is expressed in [mm/d], and eo and ea are expressed in [mm-Hg] in Equation (6).

3.3. Probabilistic Machine Learning Models

We used NGBoost’s (natural gradient boosting [77]) modular design to hybridize it
with XGBoost (extreme gradient boosting) base learners to enhance the resulting model’s
predictive capability—i.e., producing probabilistic predictions of the continuous variables
in addition to delivering accurate point predictions. Technical explanation for the NGBoost
and XGBoost models are provided in Appendix B.

As shown in Figure 2, the input feature vector x in the hybrid NGBoost-XGBoost
model is passed on to the XGBoost base learners to produce a probability distribution of
the predictions Pθ(y|x) over the entire outcome space y (that is, ETo, ETa, and Esw). The
models are then optimized by scoring rule S(Pθ , y) using a maximum likelihood estimation
function that yields calibrated uncertainty and point predictions. The feature vector x
for ETo predictions consists of Ta, P, RH, u2, Rs, and month; the feature vector x for ETa
predictions includes ETo, Ta, P, RH, u2, Rs, and month; and the feature vector x for Esw
predictions consists of Tsw, Ta, P, RH, u2, Rs, and month. Since XGBoost is designed to
produce only point predictions [78] and NGBoost is not specifically designed for point
predictions [77], the hybridization provides the best of both models.

x (input features)

XGBoost Base Learners {𝒇𝒇𝒎𝒎 𝒙𝒙 } 𝑴𝑴
𝒎𝒎 = 𝟏𝟏

Distribution 𝑷𝑷𝜽𝜽 𝒚𝒚 𝒙𝒙

Scoring Rule 𝑺𝑺(𝑷𝑷𝜽𝜽,𝒚𝒚)

𝜃𝜃

F
it 

N
at

ur
al

 G
ra

di
en

ts
 � 𝜵𝜵

𝜽𝜽

Mandatory 
Climatic 

features: Ta, P, 
RH, u2, and Rs

Optional 
Hydrologic 

features: Tsw for
Esw predictions; 
and ETo for ETa

predictions

Mandatory 
Seasonal 

feature: Month 
of the year

ETo predictions

Esw predictions

ETa predictions

y (predictions)

Figure 2. Conceptual representation of the hybrid NGBoost-XGBoost model for ETo, Esw, and ETa prediction.

4. Results
4.1. ET Predictions Using FAO56 PME and MF

Hourly ETo were calculated with Equation (1), using local climate data at the NDR,
BCRAGD, and CBS stations. Daily and monthly ETo at the NDR site are shown as an
example in Figure 3a. ETo values at nighttime hours occasionally take on negative values.
In some situations, negative hourly ETo may indicate condensation of vapor during periods
of early morning dew [26]. Hourly ETo < −1× 10−3 mm occurred <0.1% of the times in
our study area. Under these conditions, net condensation of water from the atmosphere
is possible. However, on a daily basis ETo values were persistently non-negative, as
expected for a semi-arid region. Predicted daily and monthly Esw (from pan evaporation
data) at Ingram Lake are in good agreement with the estimated Esw at Ingram Lake
using Equation (6) and local climate data from the NDR station or the BCRAGD station
(Figure 3b). Figure 3c shows that ETo, in general, set the lower bound for Esw at Ingram
Lake for the entire period. In 2016, ETo ∼ Esw for most of the year except in December.
Although Esw > ETo in the summer of the following years, with the largest difference in
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the summer of 2018, ETo appears to be a reliable predictor for Esw especially in spring
and winter months. Figure 3d compares daily or monthly Bowen-ratio-corrected ETa
measurements from the EC tower against ETo computed by the FAO56 PME, using local
climate data from the CBS station. According to this plot, ETo ≥ ETa during the monitoring
period, as expected. In some summer months, ETo was about three times higher than ETa
(e.g., July 2017), indicating that the soil was too dry in summer times to contribute to the
evapotranspiration at the CBS site.

Figure 3. Computed ETo and Esw and measured Esw and ETa data.

The results in Figure 3 indicate that ETa ≤ ETo ≤ Esw, which verifies the reliability of
the local hydroclimatic data used in ETo, Esw, and ETa predictions for the semi-arid region.
In the subsequent analysis, hourly ETo were aggregated to daily values, as the Esw and
ETa data were available to us in daily time-stamps. Daily ETo, Esw, and Ea were then used
to train and test the ML models. Because the data available at the CBS site was nearly
half the data available at the NDR site for training the corresponding ML model, 90% of
the existing data were used for training to unravel the relationship between the climatic
features and the ETa. Therefore, we consistently applied the 90-10 (train-test) percentage
split of datasets at all sites to train the corresponding ML models.

4.2. ET Predictions Using Probabilistic ML Models

We investigated if daily ETo can be accurately computed by the probabilistic ML
model using local climate data, as an alternative to Equation (1). The ML model was
trained by using 90% of the daily climate data & the month of the year as features, and
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the FAO56 PME-computed ETo data as the target. Subsequently, the trained ML model
was used to predict ETo for the remaining 10% of the data. In the end, ML-predicted daily
ETo were compared against FAO56 PME-computed daily ETo to assess the performance
of the ML-model on the testing data. Differences between the ML-predicted ETo from
the FAO56 PME-computed ETo on the testing dataset are shown in Figure 4a, in which
100% of the FAO56 PME-computed ETo were within the model’s 95% prediction interval.
In other words, the model 100% of the time successfully predicted ETo value within
the 95% confidence interval. In addition, based on point statistical measures in Table 1,
probabilistic prediction of ETo by the hybrid NGBoost-XGBoost model can be used as a
reliable alternative method to estimate watershed-scale ETo. The total training time for
the ETo hybrid model was ∼39 min that involved choosing the optimum model out of
230 candidates using a 3-fold grid search cross-validation technique, which equates to 690
model fits on an Intel Core i9-9980XE processor and 64 GB RAM computer. The main
advantage of the ML-based ETo prediction model is that it avoids extra-terrestrial, clear-sky,
and longwave solar radiation calculations, as part of the net solar radiation calculations.

Table 1. Hybrid NGBoost-XGBoost ML model accuracy test with statistical measures and comparison to a baseline random
forest model.

Model Data RMSE *
(mm) MAE † (mm) R2 ‡ C §

f (%)

ETo Random Forest Training data only 0.064 1.345 0.998 -
Testing data only 0.163 1.360 0.990 -

NGBoost-XGBoost Training data only 0.098 0.074 0.996 100
Testing data only 0.124 0.092 0.994 100

Esw Random Forest Training data only 0.324 1.493 0.967 -
Testing data only 0.870 1.504 0.776 -

NGBoost-XGBoost Training data only 0.703 0.545 0.843 99.1
Testing data only 0.918 0.736 0.750 89.9

ETa Random Forest Training data only 0.192 1.003 0.973 -
Testing data only 0.580 1.005 0.767 -

NGBoost-XGBoost Training data only 0.414 0.311 0.876 99.4
Testing data only 0.537 0.418 0.801 93

(*) Root mean square error; † Mean absolute error; ‡ Coefficient of determination; § Percentage of datapoint within the model’s 95%
prediction interval.

The ML-based Esw prediction model was trained by using the first 90% of the daily
climate data & the month of the year as features, and the measured Esw data as the target.
Subsequently, the model was tested on the remaining 10% of the data. The comparison
between ML-predicted daily Esw and the measured Esw on the testing data is shown in
Figure 4b. The ML-predicted Esw matched the measured Esw very closely, and 89.9% of the
actual Esw were within the model’s 95% prediction interval in the testing dataset. Based on
the statistical measures in Table 1, the hybrid NGBoost-XGBoost model can be used as a
reliable method for Esw predictions. The total training time for the Esw hybrid model was
∼ 6 min, including the elapsed time for choosing the optimum model from 690 model fits.
The main advantage of the ML-based Esw prediction model is that Esw predictions are not
affected by anomalies in Ep measurements (Figure A4a) or uncertainties in monthly pan
evaporation coefficients.
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Figure 4. Graphical representation of the predictive capability of the hybrid NGBoost-XGBoost model.
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The ML-based ETa prediction model was trained by using the first 90% of the daily
climate data, FAO56 PME-computed ETo, & the month of the year as features, and the
measured ETa data as the target. Subsequently, the model was tested on the remaining
10% of the data. The comparison between ML-predicted daily ETa and the actual ETa
measurements on the testing data is shown in Figure 4c, in which 93% of the actual ETa
values were found within the model’s 95% prediction interval. ML-based ETo predictions
were more accurate than the ETa predictions due, in part, to the availability of less data
from the EC tower at the CBS site than at Ingram Lake or the NDR site for the ML-model
training. However, based on the statistical measures in Table 1, probabilistic prediction
of ETa by the hybrid NGBoost-XGBoost ML model (with R2 = 0.801 on testing data) can
be used as a reliable method to estimate ETa. The total training time for the ETa hybrid
model was ∼9 min, including the 690 model fits to choose the optimum model. The
main advantage of the ML-based ETa prediction model is that it can be used to reduce
the number of required EC towers and/or their operational time length, and hence, offset
the high capital and maintenance costs for the installation and operation of EC towers to
acquire ETa measurements.

In Ref. [59], we had compared the predictive performance of the non-probabilistic ML
models—including XGBoost, support vector machines (SVM), long short-term memory
networks (LSTM), deep learning (DL), random forest (RF), and linear regression (LR)—in
predicting ETo from structured tabular datasets acquired from multiple weather stations.
In that study, the top performing interpretable XGBoost model exhibited comparable
predictive accuracy to the top performing noninterpretable DL model. RF was identified
as the second best interpretable model, which resulted in comparable but, slightly lower
predictive accuracy than XGBoost, and outperformed the predictive accuracy of SVM,
LSTM, and LR. Based on the analysis in Ref. [59], we chose RF as the baseline model in
this study to establish a point of reference for analyzing the performance of the hybrid
NGBoost-XGBoost ML model. Table 1 shows that the hybrid model exhibited better
predictive performance than RF in terms of point predictions of both ETo and ETa on the
testing data. Conversely, RF produced better point predictions of Esw than the hybrid
model but, more importantly, unlike the RF model, the hybrid model was capable of
providing prediction intervals and uncertainty estimates for ETo, Esw, and ETa, and hence,
overcoming the scientific challenge discussed in Section 1.

4.3. Feature Importance in ETo, Esw, and ETa Predictive ML Models Using a Game
Theory Approach

It is imperative for end-users to peek inside ML models to better understand how
the features contribute to the model predictions or how they affect the overall model
performance. The climatic variables (Ta, P, RH, u2, Rs) in Equation (1) were chosen as the
features for the ETo predictive model. The same climatic variables were used as the features
for the ETa predictive model, in addition to ETo to quantify its contribution to ETa. Tsw
in Equation (6) was added as a new feature to the climatic variables in the Esw predictive
model. Moreover, ‘month’ was included as an additional feature in all predictive models
based on the observed seasonality in Tsw data, ETa measurements from the EC tower, and
expected seasonality in soil moisture content at the site where the the EC tower is located.

We investigated the relationship and contribution of each feature to the prediction of
the ETo, Esw, and ETa models (Figure 5a) using Shapley values [79] based on coalition game
theory. The Shapley value is the average marginal contribution of each feature value across
all possible combinations of features. The features with large absolute Shapley values
are deemed important. To obtain the global feature importance, we average the absolute
Shapley values for every feature across the data, sort them in decreasing importance and
plot them. Each point on the plot represents a Shapley value for individual features and
instances. The position on the x- & the y-axis is determined by the Shapley values & the
feature importance, respectively, and the color scale depicts the feature importance from
low to high.
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(c) Feature importance—ETa predictive model
Figure 5. The order of importance of hydroclimate variables on the ETo, Esw, and ETa predictions.
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Figure 5a shows that the order of importance of local climate variables from the highest
to the lowest on the predicted ETo involves the Rs, Ta, RH, u2, & P. The month of the year
is deemed to be the second least important feature for the ETo model. Figure 5b shows
that, unlike ETo, Esw is largely impacted by the Tsw followed by RH. Ta is given lower
importance because of the high correlation (R2 = 0.95) between Tsw and Ta (Figure A6b),
and thus, the model considers Ta as redundant. Moreover, Figure 5b unveils the model’s
understanding of the underlying hydrological process. For example, after being trained
with the historical data, the model predicts higher Esw (represented by higher Shapley value
on the x-axis) when Tsw are high (represented as red dots) and RH are low (represented as
blue dots), capturing the underlying physics correctly, and hence, evidencing the model
capability of making learning-based conscious predictions.

For the ETa predictions, Rs was followed by the month of the year, and RH, and Ta
are the next most important climatic features for ETa predictions, as shown in Figure 5c.
However, in comparison to ETo, ETa depends less strongly on Rs (R2 = 0.77, as shown in
Figure A6c), as the time-dependent soil moisture and vegetation transpiration also impact
ETa measurements, unlike for FAO56 PME-computed ETo in Equation (1). Besides, the
analysis did not reveal a strong impact of ETo on the ETa predictions, because FAO56 PME-
ETo calculations are based on the assumption of a hypothetical reference crop growing in a
saturated soil (Section 3.1), and hence, not accounting for the effect of temporally-varying
transpiration rates from the actual vegetation (open oak savanna at the EC tower site) and
the transient nature of the soil moisture content affecting ETa measurements. Due to the
temporal variations in water uptake, vegetation transpiration, and soil moisture content on
the field near the EC tower, where ETa measurements were taken, the month of the year
became a strikingly more important feature in the ETa model than in the ETo model.

After all, the Shapley values represented the underlying physics accurately in ranking
the hydroclimate variables in the order of their importance in predicting different ET
measures. In the next section, we compare our Shapley results against the order of impor-
tance of hydroclimate variables for ET predictions in the literature that have been typically
obtained from sensitivity or correlation analyses, which are not capable of accounting for
the interdependency among all the features.

5. Discussion
5.1. What the Hybrid NGBoost-XGBoost Model Accomplished?

ETa is the most critical ET estimate, especially for irrigation, agricultural, and wa-
ter resources management practices. The EC method provides accurate prediction for
ETa; however, the associated capital and maintenance costs are high. For example, the
capital cost for the EC tower at the CBS site was about $40,000 and required frequent
maintenance. Esw measurements are important indicators of global climate change [30],
which could affect the water levels & chemistry. Pan evaporation method is a simple,
inexpensive, and widely-used data acquisition method to predict Esw at open water bodies,
but suffers from uncertainties in pan evaporation measurements and in pan coefficients
when water evaporation is upscaled from the pan-scale to the large open-water body-scale.
ETo is often computed by FAO56 PME that relies on local climate variables and net solar
radiation calculations.

We demonstrated in Section 4.2 that using the standard local climate data as the
independent feature, the hybrid NGboost-XGBoost model can simultaneously predict
(i) ETo—without requiring net solar radiation calculations - as an alternative or complemen-
tary method to FAO56 PME calculations; (ii) Esw while eliminating uncertainties associated
with pan evaporation measurements and pan evaporation coefficients needed to upscale
Ep to Esw; and (iii) ETa while offsetting the high capital and operational costs for EC towers
by potentially reducing their numbers and operational length. In addition, the NGBoost-
XGBoost model exhibited great potential in overcoming data uncertainties, in which more
than 89.9% of ETo, Esw, and ETa test data were within the model’s 95% prediction interval,
which is essential to use such models with confidence in practice. Moreover, unlike the
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black-box models (e.g., deep learning models) [89], the hybrid NGboost-XGBoost model
provided explanation for the nonlinear and complex ET processes, as elaborated next.

5.2. How Shapley Analysis Results Compare to Findings in the Current Literature?

We explained the nonlinear feature dependencies on the ETo, Esw, & ETa predictions
using Shapley analysis, based on a game theory, to enhance the interpretability of the ML
model and explainability of the ML model results. The Shapley analysis is advantageous
over traditional sensitivity and correlation analysis as it explicitly considers the interaction
and interdependency among the predictive variables in predicting the target variables.

The findings in Figure 5 are useful to evaluate the suitability of the simplified ver-
sions of the FAO56 PME proposed for semi-arid watersheds with scarce climate data.
Irmak et al. [12] proposed two simplified FAO56 PMEs that require less number of climate
variables to calculate the net radiation (Rn in Equation (1)). The first equation relied on the
measured Ta and Rs, whereas the second equation relied on predicted Rs, and measured
Ta and RH. Although the simplified equations were used to estimate Rn only, the second
equation built on the three most important climate variables, identified in Figure 5a, for
more accurate ETo estimates is expected to perform better for the semi-arid regions, if the
predicted Rs has low uncertainty. This is consistent with the conclusion by Irmak et al. [12]
that the second equation accounted for 79% of the variability in Rn in their case studies.

Chia et al. [73] noted that Ta and Rs are the most critical climate variables to estimate
ET in semi-arid regions. Our results in Figure 5a agree with their statement; however, RH
also needs to be included for enhanced prediction accuracy of ETo. On the other hand,
RH is relatively more significant climate variable than Ta to estimate ETa more accurately
in a semi-arid region (Figure 5c). Moreover, the commonly used Hargreaves–Samani
method [90] for ETo prediction would not provide reliable ETo estimates in a semi-arid
region, as the method calculates ETo based on Ta and Ra only. The Ra, however, is indepen-
dent of Rs (Equation (4)), which is the most critical climate variable to estimate ETo in a
semi-arid region, as shown in Figure 5c. Besides, the Hargreaves–Samani method does not
account for the effect of RH, which is nonnegligible in ETo estimates, as is evident from
Figure 5a.

Rs was recently used as a surrogate variable to reduce the uncertainty of ETo projection
data [91]. This can be justified by the findings from Figure 5a, in which Rs displayed
a more profound impact on ETo than the other forcing variables. On the other hand,
the mean annual temperature was used by Hartmann et al. [17] as a proxy for ETo in
assessing aquifer recharge sensitivity to climate variability based on the argument that
Rn is temperature-dependent and temperature is the best-understood and most common
climatic variable for large-scale hydrological models. Similarly, a computationally simple
method of Berti et al. [16] that relies only on Ta was reported to be the best alternative
method to the FAO56 PME in describing spatiotemporal characteristics of ETo in different
sub-regions of mainland China [13]. Such assumptions [17] and conclusions [13], however,
should be made with caution in ETo calculations, especially for semi-arid regions, as the
ML analysis unveiled that Rs (as part of Rn in Equation (1)) is more important than Ta in
ETo prediction. Moreover, Figure A6 revealed that the statistical correlation between Rs
and Ta is weak with R2 < 0.6. Thus, the use of Ta as a proxy for ETo is questionable for the
semi-arid region.

Gong et al. [92] noted that although the order of importance of climate variables on ETo
(computed by the FAO56 PME) varied with season and region in their study, ETo in general
was most sensitive to RH, followed by Rs, Ta and u2. The authors used time-histories of
daily Ta, u2, RH, and daily sunshine duration. In our analysis, however, measured climate
variables were available at the 15-min intervals, including also Rs and P. Unlike the general
conclusion by Gong et al. [92], our ML-based feature importance calculations in Figure 5a
revealed that Rs and Ta were more critical than RH on ETo estimates.
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5.3. What Are the New Insights from the NGBoost-XGBoost That Can Not Be Obtained from
Other ML Models?

Interestingly, we found many instances where the ML model shows tendency to pre-
dict higher ETa (represented by higher Shapley value on the x-axis) when RH is relatively
high (represented as red dots) in Figure 5c. Such findings were also reported by Yan and
Shugart [93] from ETa measurements by the EC method. High ETa at high RH could be
attributed, for example, to high air-vapor uptake by water deficit soil and vegetation in hot
and humid days, which are subsequently released back into air due to evaporation from
soil and transpiration from vegetation; or evaporation from saturated soil and transpiration
from vegetation in high RH conditions following rain events; or evaporation from moist
soil on a cold day following rain events. Unlike the ML-based modeling, the dynamics
between soil moisture, vegetation water uptake, rain events, Ta, RH and ETa cannot be
captured by one-to-one correlation, as shown in Figure A6. Additionally, Figure 6 shows
that, in certain situations, the model generates low ETa predictions despite high ETo & low
RH measures, which could be driven by critical moisture deficiency in the soil, especially
in hot and dry summer. This could be a serious concern in future, as for a 2 ◦C of global
warming, most of Texas was projected to experience more than a doubling in the number
of days above 38 ◦C [94]. Such more frequent high Ta over extended periods could increase
the soil moisture deficiency, and decrease aquifer recharge and springs flow, which could
affect sustainability of groundwater for consumptive water uses and environmental flows.

(a) RH dependence plot with ETo interaction. (b) ETo dependence plot with RH interaction.

Figure 6. Dependence & interaction plots revealing the interrelationship between RH, ET0, and the corresponding Shap
values. The Shap values represent the model’s behavior to either push the ETa value higher or lower. A higher Shap
value means that the model is trying to produce a higher ETa prediction, and vice-versa. The green boxes highlight the
regions where low RH values correspond to high ETo values but low ETa predictions, which could be attributed to soil
moisture deficiency.

6. Conclusions

We developed and presented a novel probabilistic hybrid NGBoost-XGBoost model
to simultaneously predict ETa, Esw, and ETo from the standard local hydroclimatic data.
Different from other ML models, the proposed hybrid ML model is able to produce point
predictions as well as a probability distribution over the entire outcome space to quantify
uncertainties associated with ET predictions. The proposed hybrid model could provide
practitioners with a better understanding of the uncertainty in the ETo, Esw, and ETa
predictions without compromising the accuracy of the predictions. Our results showed that
the hybrid NGBoost-XGBoost ML model successfully predicted the FAO56 PME-computed
ETo, and measured Esw and ETa, in which ≥89.9% of the target data points were within
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the 95% prediction interval of the model, and R2 values for the point predictions were
0.994, 0.750, and 0.801, respectively, using data from the model testing period. These results
exhibit that the proposed hybrid ML model is a reliable and robust alternative method to
predict ETo, Esw, and ETa from local climate data, without implementing net solar radiation
calculations required by the FAO56 PME, coping with uncertainties in Esw estimates using
evaporation pans, or having expensive EC tower setups for ETa measurements.

We also demonstrated that the Shapley method, based on a game theory approach,
identified the order of importance of hydroclimatic features on ETo, Esw, and ETa predic-
tions, and we compared and contrasted these findings against the findings in the literature,
which were typically performed by sensitivity and correlation analyses. The idea behind
this analysis was to explain the prediction of an instance by computing the contribution of
each feature to the prediction. Our analysis revealed that the shortwave solar radiation,
air temperature, and relative humidity are the most critical features for the daily ETo
predictions, whereas the surface water temperature, relative humidity, and the month are
the most critical features for the daily Esw predictions, and the shortwave solar radiation,
month, and relative humidity are the most critical features for the daily ETa predictions in
the semi-arid region.
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Commonly used abbreviations in the paper:

Ep Pan evaporation
ET Evapotranspiration
ETo Reference crop evapotranspiration
ETa Actual evapotranspiration
ETp Potential evapotranspiration
Esw Surface Water Evaporation
P Atmospheric pressure
Rs Shortwave solar radiation
RH Relative humidity
Ta Air temperature
Tsw Surface water temperature
u2 wind speed at 2 m above the ground surface
BCRAGD Bandera County River Authority and Groundwater District’s office
CBS Camp Bullis, Savanna
EC Eddy covariance
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ML Machine learning
MF Meyer’s formula
MSE Mean square error
NDR Nueces Durnell Ranch
PME Penman-Montheith equation
RMSE Root mean square error

Appendix A. Hydroclimotogical Data

Appendix A.1. Nueces Durnell Ranch (NDR) Weather Station

For hourly-ETo calculations, hourly-averaged Ta, P, RH, and u2 and hourly-summed
Rs at the NDR station, shown in Figure A1, were used as input in Equation (1). The
total number of missing hourly records at this site was less than 0.1%, which were filled
in by linear interpolation. The NDR weather station was selected in the analysis due
to its proximity to Uvalde County, TX, where monthly representative cloud cover data
were obtained.

Figure A1. Hourly climate data and FAO56 PME-computed ETo at the NDR weather station.

Appendix A.2. Bandera County River Authority and Groundwater District’s office (BCRAGD)
Weather Station

The closest weather station to Lake Ingram is located at the Bandera County River
Authority and Groundwater District’s office. The same set of local climate data at the
BCRAGD station was available for the same period at the NDR station. The total number
of missing hourly data was less than 0.1%, which were filled by linear interpolation.
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Figure A2. Hourly climate data and statistical correlations among them at the BCRAGD weather station.

Appendix A.3. Camp Bullis Site (CBS) Weather Station

ETa measurements were obtained from the EC tower at Savanna, Well 10 near Camp
Bullis, TX. Instruments were installed approximately 1.2 m above the height of the veg-
etation. Vegetation at the EC tower is open oak savanna. Daily ETa data were available
from 5/4/2016 to 1/21/2019. Less than 0.1% daily ETa measurements were missing, which
were filled in by linear interpolation.

Figure A3. Hourly climate data from the EAA’s weather station at Savanna, Well 10, and daily ETa measurements from the
EC tower.
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Appendix A.4. Surface Water Data

Daily and monthly surface water evaporation data closest to the NDR site were
obtained from Ingram Lake in Texas. Daily pan evaporation measurements (Ep) from
9/1/2015 to 12/31/2019 were taken by the Texas Water Development Board (TWDB). 1.9%
of these measurements were missing, which were filled in by linear interpolation. These
measurements were upscaled to daily lake evaporation totals (Esw) using monthly-varying
pan coefficients developed by the TWDB. However, sporadically extremely high and low
Esw values, shown in Figure A4a, were found to be quantitatively inconsistent with the
climatic data (Ta, Rs, and RH) trends at the BCRAGD station, provided in Appendix A.2.
Therefore, this time series is regarded as anomalous. Such anomalies are quite common in
Ep measurements due to birds drinking from the pan, debris falling in, or water splashing
out [95]. Subsequently, these anomalies are carried into the daily Esw data, but largely
smoothed out in monthly-averaged Esw. Because the ML model was run with daily Esw
data here, a 7-day rolling median function was used to reduce the noise and outliers in the
daily Esw data (Figure A4a). Monthly Esw, derived from daily Esw (Figure A4) were then
used to determine the suitability of the MFs to predict the monthly Esw at Ingram Lake.
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(a) Lake evaporation (b) Surface water and air temperature
Figure A4. Surface water measurements closest to the NDR weather station. Surface water temperatures at 15-min intervals
were obtained from Frio river in Concan, and daily lake evaporation data were obtained from Ingram Lake in Texas.

The daily and monthly Esw rely on surface water temperature, Tsw [34,35]. The closest
gauging station, with the surface water temperature data from 9/1/2015 to 12/31/2019 at
the 15-min (or 1-h) intervals, to Ingram Lake is the U.S. Geological Survey Station (USGS
08195000) located at the Frio River in Concan, TX. The Frio River at the USGS 08195000
and Ingram Lake are small-size surface water bodies fed by groundwater from the Trinity
aquifer. Therefore, Tsw from the Frio river were used in MF-based Esw calculations at
Ingram Lake. Daily-averaged Tsw are shown in Figure A4b. Because the Frio river is a
groundwater-fed river, Tsw ≥ Ta in winter; whereas, Tsw ≤ Ta in summer. 0.26% of daily
Tsw were missing, which were filled in by linear interpolation.

Appendix B. NGBoost and XGBoost Models

Appendix B.1. Natural Gradient Boosting (NGBoost)

NGBoost is a supervised learning algorithm with generic probabilistic prediction
capability. A probabilistic prediction produces a full probability distribution over the entire
outcome space; thus, enabling the users to quantify the uncertainties in the construction
cost predictions produced by the model. In standard point prediction settings, the object of
interest is an estimate of the scalar function E(y|x), where x is the feature vector and y is
the prediction target, without accommodating uncertainty estimates. In contrast, under a
probabilistic prediction setting, a probabilistic forecast with probability distribution Pθ(y|x)
is produced by predicting the parameters θ. NGBoost can perform probabilistic forecast
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with flexible tree-based models, given that NGBoost is designed to be scalable and modular
with respect to the base learner (e.g., decision trees), probability distribution parameter
(e.g., normal, Laplace, etc.), scoring rule (e.g., Maximum Likelihood Estimation). As shown
in Figure A5, the input feature vector x in the hybrid NGBoost model is passed on to
the base learners (decision trees) to produce a probability distribution of the predictions
Pθ(y|x) over the entire outcome space y. The models are then optimized by scoring rule
S(Pθ , y) using a maximum likelihood estimation function that yields calibrated uncertainty
and point predictions.

x Base Learners {𝒇𝒇𝒎𝒎 𝒙𝒙 } 𝑴𝑴
𝒎𝒎 = 𝟏𝟏 Distribution 𝑷𝑷𝜽𝜽 𝒚𝒚 𝒙𝒙 Scoring Rule 𝑺𝑺(𝑷𝑷𝜽𝜽,𝒚𝒚) y

𝜃𝜃

Fit Natural Gradients �𝜵𝜵𝜽𝜽

Figure A5. Conceptual representation of the NGBoost model (Source: Duan et al. [77]).

Appendix B.2. eXtreme Gradient Boosting (XGBoost)

Extreme gradient boosting (XGBoost), proposed by Chen & Guestrin [78], is a variant
of tree-based boosting algorithm. Conceptually, XGBoost learns the functional relationship
f between the features X and target Y through an iterative process in which the individual
trees are sequentially trained on the residuals from the previous tree. Mathematically the
predictions from the trees can be expressed as

Ŷ = φ(X) =
1
n

n

∑
k=1

fk(X), (A1)

where Ŷ is the predicted Ec, 1 ≤ k ≤ n, and n is the total number of functions learnt by the
n number of trees. The following regularized objective L(φ) is minimized to learn the set
of functions fk used in the model

L(φ) = ∑
i

l(ŷi, yi) + ∑
k

Ω( fk)

where Ω( fk) = γT +
1
2

λ||w||2,
(A2)

where l is a differentiable convex loss function that measures the difference between ŷi
(prediction) and yi (target). Ω is an extra regularization term that penalizes the growing
of more trees in the model to prevent complexity and thus, reduce overfitting. γ is the
complexity of each leaf, T is the number of leaves in a tree, λ is a penalty parameter, and
||w|| is the vector of scores on the leaves. Note that if the regularization parameter Ω is set
to zero, the objective falls back to the traditional gradient tree boosting. For more detailed
information on how the model is trained in an additive manner to optimize Equation (A2),
the reader is referred to Chen & Guestrin [78].
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Appendix C. Statistical Correlations among Daily Variables

(a) ETo. (b) Esw. (c) ETa.

Figure A6. Correlation map between daily climatic variables and (a) the reference evapotranspiration at the NDR site,
(b) lake evaporation at Ingram Lake, and (c) and actual evapotranspiration at the CBS site.
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59. Chakraborty, D.; Başağaoğlu, H.; Winterle, J. Interpretable vs. noninterpretable machine learning models for data-driven
hydro-climatological process modeling. Expert Syst. Appl. 2021, 170, 114498. [CrossRef]

60. Goyal, M.K.; Bharti, B.; Quilty, J.; Adamowski, J.; Pandey, A. Modeling of daily pan evaporation in sub tropical climates using
ANN, LS-SVR, Fuzzy Logic, and ANFIS. Expert Syst. Appl. 2014, 41, 5267–5276. [CrossRef]

61. Lua, X.; Jua, Y.; Wu, L.; Fan, J.; Zhang, F.; Li, Z. Daily pan evaporation modeling from local and cross-station data using three
tree-based machine learning models. J. Hydrol. 2018, 566, 668–684. [CrossRef]

62. Alsumaiei, A. Utility of artificial neural networks in modeling pan evaporation in hyper-arid climates. Water 2020, 12, 1508.
[CrossRef]

63. Filgueiras, R.; Almeida, T.S.; Mantovani, E.C.; Dias, S.H.B.; InácioFernandes-Filho, E.; Cunha, F.F.; Venancio, L.P. Soil water
content and actual evapotranspiration predictions using regression algorithms and remote sensing data. Agric. Water Manag.
2020, 241, 106346. [CrossRef]

64. Nema, M.K.; Khare, D.; Chandniha, S.K. Application of artificial intelligence to estimate the reference evapotranspiration in
sub-humid Doon valley. App. Water Sci. 2017, 7, 3903–3910. [CrossRef]

65. Feng, Y.; Cui, N.; Gong, D.; Zhang, Q.; Zhao, L. Evaluation of random forests and generalized regression neural networks for
daily reference evapotranspiration modelling. Agric. Water Manag. 2017, 193, 163–173. [CrossRef]

66. Jovic, S.; Nedeljkovic, B.; Golubovic, Z.; Kostic, N. Evolutionary algorithm for reference evapotranspiration analysis. Comput.
Electron. Agric. 2018, 150, 1–4. [CrossRef]

67. Dou, X.; Yang, Y. Evapotranspiration estimation using four different machine learning approaches in different terrestrial
ecosystems. Comput. Electron. Agric. 2018, 148, 95–106. [CrossRef]

68. Mehdizadeh, S. Estimation of daily reference evapotranspiration (ETo) using artificial intelligence methods: Offering a new
approach for lagged ETo data-based modeling. J. Hydrol. 2018, 559, 794–812. [CrossRef]

69. Kisi, O.; Alizamir, M. Modelling reference evapotranspiration using a new wavelet conjunction heuristic method: Wavelet
extreme learning machine vs wavelet neural networks. Agric. Forest Meteorol. 2018, 263, 41–48. [CrossRef]

70. Tao, H.; Diop, L.; Bodian, A.; Djaman, K.; Ndiaye, P.M.; Yaseen, Z.M. Reference evapotranspiration prediction using hybridized
fuzzy model with firefly algorithm: Regional case study in Burkina Faso. Agric. Water Manag. 2018, 208, 140–151. [CrossRef]

71. Sanikhani, H.; Kisi, O.; Maroufpoor, E.; Yaseen, Z.M. Temperature-based modeling of reference evapotranspiration using several
artificial intelligence models: Application of different modeling scenarios. Theor. Appl. Clim. 2019, 135, 449–462. [CrossRef]

72. Saggi, M.K.; Jain, S. Reference evapotranspiration estimation and modeling of the Punjab northern India using deep learning.
Comput. Electron. Agric. 2019, 156, 387–398. [CrossRef]

73. Chia, M.; Huang, Y.; Koo, C.; Fung, K. Recent advances in evapotranspiration estimation using artificial intelligence approaches
with a focus on hybridization techniques—A review. Agronomy 2020, 10, 101. [CrossRef]

74. Li, X.; Liu, S.; Li, H.; Ma, Y.; Wang, J.; Zhang, Y.; Xu, Z.; Xu, T.; Song, L.; Yang, X.; et al. Intercomparison of six upscaling
evapotranspiration methods: From site to the satellite pixel. J. Geophys. Res. Atmos. 2018, 123, 6777–6803. [CrossRef]

http://dx.doi.org/10.2134/agronj2006.0159
http://dx.doi.org/10.1016/j.jhydrol.2016.10.022
http://dx.doi.org/10.1016/j.jhydrol.2012.03.034
http://dx.doi.org/10.1029/WR005i006p01244
http://dx.doi.org/10.1038/nclimate3046
http://dx.doi.org/10.5194/nhess-19-2281-2019
http://dx.doi.org/10.1016/j.jhydrol.2012.10.042
http://dx.doi.org/10.1016/0002-1571(74)90081-8
http://dx.doi.org/10.1016/j.rse.2015.11.034
http://dx.doi.org/10.1007/s11442-013-1015-9
http://dx.doi.org/10.1371/journal.pone.0217520
http://dx.doi.org/10.2166/nh.2019.060
http://dx.doi.org/10.3390/math8060972
http://dx.doi.org/10.1016/j.eswa.2020.114498
http://dx.doi.org/10.1016/j.eswa.2014.02.047
http://dx.doi.org/10.1016/j.jhydrol.2018.09.055
http://dx.doi.org/10.3390/w12051508
http://dx.doi.org/10.1016/j.agwat.2020.106346
http://dx.doi.org/10.1007/s13201-017-0543-3
http://dx.doi.org/10.1016/j.agwat.2017.08.003
http://dx.doi.org/10.1016/j.compag.2018.04.003
http://dx.doi.org/10.1016/j.compag.2018.03.010
http://dx.doi.org/10.1016/j.jhydrol.2018.02.060
http://dx.doi.org/10.1016/j.agrformet.2018.08.007
http://dx.doi.org/10.1016/j.agwat.2018.06.018
http://dx.doi.org/10.1007/s00704-018-2390-z
http://dx.doi.org/10.1016/j.compag.2018.11.031
http://dx.doi.org/10.3390/agronomy10010101
http://dx.doi.org/10.1029/2018JD028422


Water 2021, 13, 557 23 of 23

75. Xu, T.; Guo, Z.; Liu, S.; He, X.; Meng, Y.; Xu, Z.; Xia, Y.; Xiao, J.; Zhang, Y.; Ma, Y.; et al. Evaluating Different Machine Learning
Methods for Upscaling Evapotranspiration from Flux Towers to the Regional Scale. J. Geophys. Res. Atmos. 2018, 123, 8674–8690.
[CrossRef]

76. Tang, D.; Feng, Y.; Gong, D.; Hao, W.; Cui, N. Evaluation of artificial intelligence models for actual crop evapotranspiration
modeling in mulched and non-mulched maize croplands. Comp. Electron Agric. 2018, 152, 375–384. [CrossRef]

77. Duan, T.; Avati, A.; Ding, D.Y.; Basu, S.; Ng, A.Y.; Schuler, A. NGBoost: Natural Gradient Boosting for Probabilistic Prediction.
arXiv 2019, arXiv:1910.03225.

78. Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.

79. Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.I. From local
explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2020, 2, 2522–5839. [CrossRef]

80. Devitt, T.J.; Wright, A.M.; Canntella, D.C.; Hillis, D.M. Species delimitation on endangered groundwater salamanders: Impli-
cations for aquifer management for biodiversity conservation. Proc. Natl. Acad. Sci. USA 2019, 116, 2624–2633. [CrossRef]
[PubMed]

81. Dugas, W.A.; Hicks, R.A.; Wright, P. Effect of removal of Juniperus ashei on evapotranspiration and runoff in the Seco creek
Yatershed. Water Resour. Res. 1998, 34, 1499–1506. [CrossRef]

82. Deng, K.; Ting, M.; Yang, S.; Tan, Y. Increased frequency of summer extreme heat waves over Texas area tied to the amplification
of Pacific zonal SST gradient. J. Clim. 2018, 31, 5629–5647. [CrossRef]

83. Hoerling, M.; Kumar, A.; Dole, R.; Nielsen-Gammon, J.; Eischeid, J.; Perlwitz, J.; Quan, X.-W.; Perlwitz, J.; Quan, X.W.; Zhang, T.;
et al. Anatomy of an extreme event. J. Clim. 2013, 26, 2811–2832. [CrossRef]

84. Rupp, D.E.; Li, S.; Massey, N.; Sparrow, S.N.; Mote, P.W.; Allen, M. Anthropogenic influence on the changing likelihood of an
exceptionally warm summer in Texas, 2011. Geophys. Res. Lett. 2015, 42, 2392–2400. [CrossRef]

85. Mahler, B.; Bourgeais, R. Dissolved oxygen fluctuations in karst spring flow and implications for endemic species: Barton springs,
Edwards aquifer, Texas, USA. J. Hydrol. 2013, 505, 291–298. [CrossRef]

86. Zhang, Y.Q.; Chiew, F.H.S.; Zhang, L.; Leuning, R.; Cleugh, H.A. Estimating catchment evaporation and runoff using MODIS leaf
area index and the Penman-Monteith equation. Water Resour. Res. 2008, 44, W10420. [CrossRef]

87. Raza, D.S.M.H.; Mahmood, S.A. Estimation of net rice production through improved CASA model by addition of soil suitability
constant (hα). Sustainability 2018, 10, 1788. [CrossRef]

88. Meyer, A.F. Computing Runoff from Rainfall and Other Physical Data. Trans. Am. Soc. Civ. Eng. 1915, 79, 1055–1155.
89. Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Pedreschi, D.; Giannotti, F. A Survey of Methods for Explaining Black Box

Models. ACM Comput. Surv. 2018, 51, 93. [CrossRef]
90. Hargreaves, G.; Samani, Z. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [CrossRef]
91. Yoo, B.H.; Kim, J.; Byun-Woo, L.; Hoogenboom, G.; Kim, K.S. A surrogate weighted mean ensemble method to reduce the

uncertainty at a regional scale for the calculation of potential evapotranspiration. Sci. Rep. 2020, 10, 870. [CrossRef] [PubMed]
92. Gong, L.; Xu, C.Y.; Chen, D.; Halldin, S.; Chen, Y.D. Sensitivity of the Penman–Monteith reference evapotranspiration to key

climatic variables in the Changjiang (Yangtze River) basin. J. Hydrol. 2006, 329, 620–629. [CrossRef]
93. Yan, H.; Shugart, H.H. An air relative-humidity-based evapotranspiration model from Eddy covariance data. J. Geophys. Res.

Atmos. 2010, 115. [CrossRef]
94. Wobus, C.; Zarakas, C.; Malek, P.; Sanderson, B.; Crimmins, A.; Kolian, M.; Sarofim, M.; Weaver, C. Reframing Future Risks of

Extreme Heat in the United States. Earths Future 2018, 6, 1323–1335. [CrossRef] [PubMed]
95. Thompson, S.A. Water Use, Management, and Planning In the United States; Academic Press: San Diego, CA, USA, 1999.

http://dx.doi.org/10.1029/2018JD028447
http://dx.doi.org/10.1016/j.compag.2018.07.029
http://dx.doi.org/10.1038/s42256-019-0138-9
http://dx.doi.org/10.1073/pnas.1815014116
http://www.ncbi.nlm.nih.gov/pubmed/30642970
http://dx.doi.org/10.1029/98WR00556
http://dx.doi.org/10.1175/JCLI-D-17-0554.1
http://dx.doi.org/10.1175/JCLI-D-12-00270.1
http://dx.doi.org/10.1002/2014GL062683
http://dx.doi.org/10.1016/j.jhydrol.2013.10.004
http://dx.doi.org/10.1029/2007WR006563
http://dx.doi.org/10.3390/su10061788
http://dx.doi.org/10.1145/3236009
http://dx.doi.org/10.13031/2013.26773
http://dx.doi.org/10.1038/s41598-020-57466-0
http://www.ncbi.nlm.nih.gov/pubmed/31964919
http://dx.doi.org/10.1016/j.jhydrol.2006.03.027
http://dx.doi.org/10.1029/2009JD013598
http://dx.doi.org/10.1029/2018EF000943
http://www.ncbi.nlm.nih.gov/pubmed/31032376

	Introduction
	Study Area & Data Availability
	Methods
	FAO56 Penman-Monteith Equation (FAO56 PME)
	Meyer's Formula (MF)
	Probabilistic Machine Learning Models

	Results
	ET Predictions Using FAO56 PME and MF
	ET Predictions Using Probabilistic ML Models
	Feature Importance in ETo, Esw, and ETa Predictive ML Models Using a Game Theory Approach

	Discussion
	What the Hybrid NGBoost-XGBoost Model Accomplished?
	How Shapley Analysis Results Compare to Findings in the Current Literature?
	What Are the New Insights from the NGBoost-XGBoost That Can Not Be Obtained from Other ML Models?

	Conclusions
	Hydroclimotogical Data
	Nueces Durnell Ranch (NDR) Weather Station
	Bandera County River Authority and Groundwater District's office (BCRAGD) Weather Station
	Camp Bullis Site (CBS) Weather Station
	Surface Water Data

	NGBoost and XGBoost Models
	Natural Gradient Boosting (NGBoost)
	eXtreme Gradient Boosting (XGBoost)

	Statistical Correlations among Daily Variables
	References

