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Abstract: Sensitivity analysis is the first step in elucidating how the uncertainties in model param-
eters affect the uncertainty in model outputs. Calibration of dynamic models is another issue of
considerable interest, which is usually carried out by optimizing an objective function. The first
aim of this research was to perform a global sensitivity analysis (GSA) with Sobol’s method for the
16 parameters of the new HORTSYST nonlinear model that simulates photo–thermal time (PTI),
daily dry matter production (DMP), nitrogen uptake (Nup), leaf area index (LAI), and crop tran-
spiration (ETc). The second objective was to carry out the calibration of the HORTSYST model by
applying a differential evolution (DE) algorithm as the global optimization method. Two tomato
(Solanum lycopersicum L.) crops were established during the autumn–winter and spring–summer
seasons under greenhouse and soilless culture conditions. Plants were distributed with a density of
3.5 plants m−2. Air temperature and relative humidity were measured with an S-THB-M008 model
sensor. Global solar radiation was measured with an S-LIB-M003 sensor connected to a U-30-NRC
datalogger. In the sensitivity analysis run in the two growth stages, it was observed that a greater
number of parameters were more important at the beginning of fructification than at the end of crop
growth for 10% and 20% of the variation of the parameters. The sensitivity analysis came up with
nine parameters (RUE, a, b, c1, c2, A, Bd, Bn, and PTIini) as the most important of the HORTSYST
model, which were included in the calibration process with the DE algorithm. The best fit, according
to RMSE, was for LAI, followed by Nup, DMP, and ETc for both crop seasons; the RMSE was close
to zero, indicating a good prediction of the model’s performance.

Keywords: crop nutrition; uncertain parameters; global optimization

1. Introduction

Sensitivity analysis (SA) is the crucial first step in building a dynamic model [1,2]
to identify the sources of uncertainty in the parameters, mathematical structure, input
variables, and initial conditions. In this context, “input factors” are primarily the equation
coefficients and threshold values in the model, and SA helps to elucidate the importance
and dominance of these model parameters [3,4].

Saltelli et al. [5] define SA as “the study of how uncertainty in the output of a numerical
model can be apportioned to different sources of uncertainty in the model input.” SA aims at
determining how sensitive the output from a model is with respect to the model’s elements,
which are subject to uncertainty or variability [6]. SA methods are typically classified as a
local (i.e., derivative-based) or global sensitivity analysis (GSA) [7]. Some GSA methods,
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such as those of Morris [8], Sobol [9], and the Fourier Amplitude Sensitivity Test (FAST) [10],
determine the sensitivity to individual factors and the effects due to the interactions among
them. Sensitivity analysis helps to know if any of the parameters involved in the model
structure can be set with a constant value and only consider the parameters that are most
sensitive during the calibration process, thus simplifying the model and thereby allowing
savings computational. On the other hand, the global sensitivity analysis, unlike the local
methods, quantifies the effect of the parameters in interaction; this is not so with the local
sensitivity methods that only consider the effect of each parameter, alone.

The calibration of dynamic models is another important step in the development
of models, which is carried out through an optimization problem, where an objective
function is minimized or maximized [11,12]. Model calibration is also required, because
not all parameters are directly measured [13]. To solve this problem there are local and
global optimization methods. The local method, using an iterative search starting from
the parameter nominal value, may often be trapped in a local minimum and prematurely
terminate the search [14] and only allow exploring in a narrower domain of the nominal
values of the parameters in the vicinity of a nominal value, regardless of whether the
model has one or more optimal values of each parameter. On the other hand, with the
global optimization method for parameter estimation, the search range of the optimal
values is extended, especially when the model being analyzed is little-known for its recent
development and it is unknown if it has a multimodal behavior (many optimal maximum
and minimum optimal values).

This motivates the application of global parameter estimation methods in dynamics
crop models, e.g., covariance matrix adaptation evolution strategy (CMA-ES) [15], ge-
netic algorithms (GA) [14], particle swarm optimization (PSO) [16], differential evolution
(DE) [17] and artificial bee colony (ABC) [15]. These methods are heuristic optimization
techniques that use bio-inspired concepts in biological evolution, such as inheritance,
mutation, selection, and crossover [18].

Differential evolution (DE) algorithms as global optimization methods are based on
the optimization of a population that starts from a randomly chosen initial population,
sampling the objective function multiple times [19]. Like evolutionary algorithms, they
use operators to find the best solution after several generations and were designed to be a
stochastic direct search method. The DE algorithm is often used to solve optimization prob-
lems due to its simple structure, easy implementation, and robustness. Zuñiga et al. [15]
used evolutionary and bio-inspired algorithms to calibrate the SUCROS model and then
applied it to a husk tomato crop. They found that DE was the most effective and relatively
efficient method to solve the parameter estimation problem compared with CMA-ES, PSO,
and ABC algorithms. On the other hand, Katsoulas et al. [20] applied a genetic algorithm
to a growth model for tomato seedlings, and Dai et al. [17] did the same for a cucumber
growth model.

HORTSYST is a new model that describes nonlinear dynamic systems, and it simulates
output variables, such as photo–thermal index (PTI), dry matter production (DMP),
leaf area index (LAI), nitrogen uptake (Nup), and crop transpiration (ETc) [21]. The
HORTSYST model is a crop growth model that considers input variables that can usually
be measured without any problem inside a greenhouse. With these measured variables, the
model simulates transpiration with a mass and energy balance submodel, like that used
by Martinez-Ruiz et al. [22], and the quantification of the dry matter production follows
the approach of the efficiency of the use of radiation (RUE), as reported by Ezui et al. [23].
With the dilution curve of the nitrogen content and the daily dry biomass produced [24],
the daily nitrogen uptake is obtained as reported by Gallardo et al. [25]. This crop growth
model also simulates the leaf area index [21] from a photo–thermal index that represents
the time (it considers the coupled effect of solar radiation and the air temperature inside
a greenhouse).

The objective of this research was to carry out a sensitivity analysis of the HORTSYST
model using the Sobol’s method, to select the most sensitive parameters of the model.
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Subsequently, a calibration was performed with a differential evolution algorithm of the
most influential parameters identified from of sensitivity analysis.

2. Materials and Methods
2.1. Description of the Experiments

Two experiments were carried out during the autumn–winter and spring–summer
seasons in greenhouses located at the University of Chapingo, Mexico (9◦29′ NL, 98◦53′ WL
and 2240 m). One tomato (Solanum lycopersicum L.) cultivar “CID F1” crop was grown
in a hydroponic system using volcanic sand (Tuff) as substrate. Plants were distributed
at a density of 3.5 plants m−2. For the first experiment, tomato seeds were sown on
18 July 2015, and the seedlings were transplanted on 21 August 2015, in an 8 × 8 m chapel-
type glasshouse. In the second experiment, the seeds were sown on 24 March 2016, and
transplanted on 24 April 2016, in a plastic-covered 8 × 15 m greenhouse with natural
ventilation. The plants were set in polyethylene bag pots of 35 × 35 cm (12 L).

Both crops were fertilized with Steiner nutrient solution [26]. A HOBO weather station
(Onset Computer Corporation) was installed inside each greenhouse. Temperature and
relative humidity were measured with an S-THB-M008 model sensor placed at a height
of 1.5 m. Global radiation was measured with an S-LIB-M003 sensor located 3.5 m above
ground level. Both sensors were connected to a U-30-NRC model data logger; the data were
recorded every minute, and subsequently, the data were processed to get averaged data
at hourly intervals. In each experiment, three plants were chosen randomly for sampling
over a ten-day period to measure (DMP), (Nup), and (LAI). The plants were dried for
72 h at 70 ◦C in an oven.

Nitrogen was determined by the Kjeldahl method [27]. (LAI) was estimated by a
nondestructive method, which consisted of taking four plants randomly to get plant leaf
width, leaf length, and total leaf area measurements using a plant canopy analyzer, LAI-
3100 (LI-COR, USA). From the measurements, nonlinear regression models were fitted
in order to estimate LAI. Crop transpiration was measured every minute by a weighing
lysimeter located in the central part of the greenhouses. The device includes an electronic
balance (scale capacity = 120 kg, resolution ±0.5 g) equipped with a tray for holding
four plants for each experiment. Weight loss measured was assumed to be equal to
crop transpiration.

2.2. Model Description

The dynamic HORTSYST model proposed by Martinez-Ruiz et al. [21] assumes no
water and nutrient constraints (potential growth or potential biomass production) on the
crop, and it simulates photo–thermal time (PTI, MJ d−1), dry matter production (DMP,
g m−2), and nitrogen uptake (Nup, g m−2) as the state variables, while the leaf area index
(LAI, m2 m−2) and crop transpiration (ETc, kg m−2) are considered as output variables.
The model structure is summarized in Table 1. Figure 1 shows the general structure of
the model using a Forrester diagram. The model structure is based on the VegSyst model
developed by Gallardo et al. [25,28–30].

Table 1. HORTSYST model equations.

Variable Definition Equation Units

PT I Photo–thermal time PTI(j + 1) = PTI(j) + ∆PTI MJ m−2

DMP Dry matter production DMP(j + 1) = DMP(j) + ∆DMP g m−2

Nup Nitrogen uptake Nup(j + 1) = Nup(j) + ∆Nup g m−2

ETc Daily crop transpiration ETc(j + 1) = ETc(j) + ∆ETc kg m−2

∆PT I Daily photo–thermal time ∆PTI(j) =

(
24
∑

i = 1
TT(i, j)

)
PAR(j)× fi−PAR(j) MJ m−2 d−1
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Table 1. Cont.

Variable Definition Equation Units

TT Normalized thermal time
TT =


0 (Ta < Tmin)
(Ta − Tmin)/(Tob − Tmin) (Tmin ≤ Ta < Tob)
1 (Tob ≤ Ta ≤ Tou)
(Tmax − Ta)/(Tmax − Tou) (Tou < Ta ≤ Tmax)
0 (Ta > Tmax)

[
dimension

less

]

PAR PAR PAR(j) = 0.5× Rg MJ m−2

∆DMP Daily dry matter production ∆DMP(j) = RUE× fi−PAR(j)× PAR(j) g m−2

fi−PAR Intercepted PAR fraction fi−PAR = 1− exp(−k× LAI(j))
[

dimension
less

]
LAI(j) Leaf area index LAI(j) =

[
c1×∆PTI(j)
c2+∆PTI(j)

]
× d m2 m−2

%N(j) Nitrogen content %N(j) = a× (∆DMP)−b
[

dimension
less

]
∆Nup Daily nitrogen uptake Nup(j) = (%N(j)/100)× DMP(j) g m−2

ETc(i) Hourly transpiration ETc(i) = A× (1− exp(−k× LAI(j)))× Rg(i) +
LAI(DPV)B(d,n)

kg m−2 h−1

ETc(j) Daily evapotranspiration ∆ETc =
24
∑

i = 1
ETc(i) kg m−2
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ences. Flows of material are represented by normal arrows and information flows with dashed lines. 
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1 Top upper temperature (°C) Tmax 31.50–38.50 28.40–42.00 [40] 
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4 Optimum maximum temperature (°C) Tou 21.60–26.40 19.80–28.40 [41] 
5 Radiation use efficiency (g MJ−1) RUE 2.79–3.41 2.48–3.72 [30,42] 
6 Extinction coefficient k 0.58–0.70 0.51–0.77  

7 N concentration in the dry biomass at the end of the 
exponential growth period (g m−2) 

a 6.79–8.31 6.04–9.06 [30] 
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Is the slope of the nitrogen uptake vs. dry biomass 
production function b −0.17–(−0.14) −0.18–(0.12) [30] 

9 Slope of the curve (m−2) c1 2.76–3.38 2.46–3.68 Estimated 
10 Intersection coefficient c2 158.08–193.2 140.51–210.77 Estimated 

Figure 1. Forrester’s relational diagram for the HORTSYST model of a greenhouse tomato crop: inputs, outputs, state vari-
ables, and parameters of the crop model. State variables are represented by rectangles, rate variables by valves, parameters
with a horizontal line, input variables with a circle and a horizonal line, and auxiliary variables with circumferences. Flows
of material are represented by normal arrows and information flows with dashed lines.

The model’s input variables are hourly air temperature (◦C), relative humidity (%),
and integrated global solar radiation (Wm−2) measurements. The model follows the light
(radiation) use efficiency approach [31–33], which allows the calculation of daily dry matter
production (∆DMP) as a function of the photosynthetically active radiation (PAR); crop
characteristics, such as the leaf area index (LAI); and the radiation use efficiency parameter
(RUE, g MJ−1), as has been proposed by several researchers [34,35]. The fraction of light
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intercepted ( fi−PAR) is the fraction of global solar radiation that enters through the canopy
of a crop characterized by LAI.

The extinction coefficient (k dimensionless, parameter) is related to leaf size and leaf
orientation; this assumption is usually robust and tolerates some shift from reality. Leaf
area index (LAI) is modelled as a function of photo–thermal time (PTI), using a Michaelis–
Menten equation and is multiplied by the density of planting d to obtain the leaf area index
(LAI). The normalized thermal time (TT, ◦C) is defined as the ratio of the growth rate to
the condition of actual and optimum temperature [36]. Then, daily photo–thermal time
(∆PTI) is calculated as the product of normalized thermal time with the fraction of light
intercepted ( fi−PAR) and PAR radiation [37].

For daily nitrogen uptake ∆Nup, first the nitrogen content %N was calculated with the
exponential model [38], which is a function of the daily increase in dry matter production
(∆DMP). Finally, crop transpiration (ETc) was computed hourly, with global solar radiation,
vapor pressure deficit, the fraction of light intercepted, and leaf area index.

2.3. Global Sensitivity Analysis of the HORTSYST Model

The procedure proposed by Saltelli et al. [1,2,39] to estimate the global sensitivity
indices is as follows:

Step 1. To determine which model parameter has a small or large influence within
state and output variables in the HORTSYST model; firstly, an objective was specified.

Step 2. Sixteen parameters were included during the sensitivity analysis as the un-
certainty source, and the uncertainties of the nominal parameter values were set by the
10% and 20% ranges between upper and bottom limits of each parameter to generate the
samples; these ranges are listed in Table 2. The nominal parameter values for the generation
of samples were taken from the literature.

Table 2. HORTSYST model parameters with 10% and 20% of the variation of their nominal value, used for sensitivity
analysis under the experimental condition for the spring–summer crop cycles.

No Parameter Symbol Range 10% Range 20% Reference

1 Top upper temperature (◦C) Tmax 31.50–38.50 28.40–42.00 [40]
2 Top bottom temperature (◦C) Tmin 9.00–11.00 8.00–12.00 [40]
3 Optimum minimum temperature (◦C) Tob 15.30–18.70 13.60–19.80 [41]
4 Optimum maximum temperature (◦C) Tou 21.60–26.40 19.80–28.40 [41]
5 Radiation use efficiency (g MJ−1) RUE 2.79–3.41 2.48–3.72 [30,42]
6 Extinction coefficient k 0.58–0.70 0.51–0.77

7 N concentration in the dry biomass at the end of the
exponential growth period (g m−2) a 6.79–8.31 6.04–9.06 [30]

8 Is the slope of the nitrogen uptake vs. dry biomass
production function b −0.17–(−0.14) −0.18–(0.12) [30]

9 Slope of the curve (m−2) c1 2.76–3.38 2.46–3.68 Estimated
10 Intersection coefficient c2 158.08–193.2 140.51–210.77 Estimated
11 Radiative coefficient A 0.44–0.54 0.39–0.59 [43]
12 Aerodynamic coefficient during day (W m−2 kPa−1) Bd 10.08–12.32 8.96–13.44 [43]
13 Aerodynamic coefficient during night (W m−2 kPa−1) Bn 7.45–9.11 6.62–9.94 [43]
14 Initial photo–thermal time (MJ m−2) PTIini 0.06–0.07 0.05–0.07 Measured
15 Initial dry matter production (g m−2) DMPIni 0.22–0.27 0.20–0.29 Measured
16 Plant density (plants m−2) d 3.15–3.85 2.8–4.2 Established

Step 3. As no further information is available, a uniform probability density was selected
as the probability density function (PDF) for each one of the crop model’s parameters.

Step 4. Sobol’s method was selected to assess the sensitivity analysis, which is based on
the calculation of the variance [2,44] to obtain the main sensitivity indices (Si ) (first-order
index) and total sensitivity indices (STi ).

Step 5. A sample size (N = 10,000) was generated for Sobol’s sampling method
to achieve an adequate sensitivity analysis estimation [2]. A Latin hypercube sampling
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(LHS) was applied, because it is an efficient stratified sampling method, according to
Helton et al. [45].

Step 6. To evaluate the crop model, the samples generated in step (5) were used to
run the simulations and quantify the sensitivity of the parameters (Table 2) linked to the
photo–thermal index (PTI), dry matter production (DMP), nitrogen uptake (Nup), and
crop transpiration (ETc). The temporal variation of parameter sensitivity indices was
analyzed at day 40 and 119 after transplant, and the sensitivity analysis was carried out
by integrating the output variables from the beginning to the end of the spring–summer
cycle experiment.

Step 7. The analysis of the output model was done by determining the first-order
sensitivity indices and the total sensitivity index (Si and STi ) using Janon’s estimator [46].

2.4. Sobol Sensitivity Analysis Method

The Sobol method is a variance-based sensitivity analysis approach that makes no
assumptions about the relationship between the model inputs and outputs. The Sobol [9]
GSA method computes an ANOVA based on the decomposition of the output variance,
where the first- (main effect) and second-order sensitivity indices (interaction terms) can be
computed [39]. Sobol’s sensitivity index represents the fraction of the total variance that
is due to any individual factor or combination of factors. Additionally, Sobol’s method
is able to estimate the total sensitivity index STi, defined in terms of the sum of all effects
(including first-order and higher-order) involving the input factor of interest [39].

With k quantifiable input factors, so the decomposition of the variance Var(ŷ) is
expressed as:

Var(Ŷ) =
k

∑
i = 1

Di + ∑
1≤i<j≤k

Dij + . . . + D1,2,...,k (1)

where D1 is the variability associated with the main effect of input factor x1, D2 is the
variability associated with the main effects x2, D12 is the variability associated with the
interaction between x1 and x2, and so on. This technique is very similar to the analysis
of variance (ANOVA), except that Var(ŷ) represents the variability Ŷ in terms of the
overall uncertainty of the input factors, including irregular and nonlinear effects [47]. The
sensitivity indices are derived from the above equation by dividing individual importance
measures by the total variability Var(ŷ).

Si =
Di

Var(Ŷ)
(2)

Sij =
Dij

Var(Ŷ)
(3)

And so on, where Si is called the first-order sensitivity index for factor xi, measuring
the main effect of xi on the output (or the fractional contribution of xi to the variance of
f (x). Sij is called the second-order sensitivity index, which measures the interaction effect
of the two inputs xi and xj without considering the sum of the individual effects [39]. A
useful property of these sensitivity indices is that all the possible first-order sensitivity the
sum of the first-order indices is equal one.

k

∑
i = 1

Si + ∑
1≤i<j≤k

Sij + . . . + S1,2,...,k = 1 (4)

The total sensitivity index (STi) can be defined as the sum of all the sensitivity indices
involving the factor in question.
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2.5. Differential Evolution Algorithm

The DE algorithm is a population-based stochastic search technique that provides an
effective method of searching for the optimum solution to complex problems. In recent
years, the DE algorithm has gained increased attention and has been widely used in
scientific research. The DE algorithm mainly includes mutation, crossover operation, and
selection mechanisms. The significance of the scale factor, crossover rate, and population
size are the three main control parameters of DE optimization algorithms. The calibration
procedure of the HORTSYST model was as follows: the DE algorithm generated the initial
population of the parameters; using these values as the decision variables, the HORTSYST
model was run to predict the outputs. Simulated data is used to assess the fitness function,
taken from the next generation of the best candidates generated by the DE algorithm. In
the calibration process, the fitness function is important for identifying the optimal values
for the model parameters [47].

The features of the DE algorithm applied in the simulation were a population size of
30, the number of parameters estimated was 9, accuracy of 1 × 10−8, generation number of
1000, the minimum values were taken from the mean of 25 runs, and the strategy of the
DE/rand/1/bin algorithm was implemented during the analysis [18,48,49]. F is a constant,
which affects the differential variation between two solutions and was set to 0.6 in our
experiments. The crossover rate (CR) controls the change in the population’s diversity, and
a value of 0.9 was taken.

2.6. Optimization Problem Description

Katsoulas et al. [20] argued that each possible solution to the calibration problem
consists of a set of values for each of the parameters. In heuristic optimization, each
solution must have a quality metric, usually referred to as the “fitness” of the solution,
which is estimated by an appropriate fitness function [15,50]. The HORTSYST crop model
was calibrated by solving the minimization problem, which can closely match the simulated
and observed data of the tomato crop. An objective function (fitness function) is commonly
expressed as follows.

p̂ = argminJ(p) (5)

J(p) =
L

∑
h = 1

M

∑
i = 1

wh[yh(ti, p)− yh(ti)]
2 (6)

yh(ti, p) is the simulated output yh in time ti, yh(ti) is the measurement of the output
yh(ti) in time ti, L is the number of outputs (L = 4), M is the number of samples during the
growing period (M = 12 for autumn–winter and M = 13 for spring–summer), where wh
is the relative weight of each output variables: DMP, Nup, LAI, and ETc (0.01, 10, 100, 1),
respectively. p is the vector of parameters set for calibration (16 parameters), and p̂ is the
parameter that reduces J(p) to a minimum.

2.7. Goodness of Fit Performance of Simulations

The performance of the models was evaluated using the BIAS (bias) and the RMSE
(root-mean-square error), and EF (model efficiency) statistics, which are defined as fol-
lows [51]:

BIAS =

(
1
N

) N

∑
i = 1

(
Yi − Ŷi

)
(7)

RMSE =

√√√√( 1
N

) N

∑
i = 1

(Yi − Ŷi)
2 (8)
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EF = 1−

N
∑

i = 1

(
Yi − Ŷi

)2

N
∑

i = 1

(
Yi −Yi

)2
(9)

where the number of measurements is N, Yi is the measured value for situation i, and Yi is
the corresponding value predicted by the model.

3. Results and Discussion

The environmental conditions measured inside the greenhouses were air temperature,
relative humidity, and global solar radiation for the autumn–winter and spring–summer
seasons; the minimum, average, and maximum values of these climatic variables are shown
in Table 3.

Table 3. Values of global solar radiation (Rg), air temperature (Ta), and relative humidity (RH) during
the autumn–winter and spring–summer crop seasons.

Climatic Variable
Autumn–Winter Season Spring–Summer Season

Minimum Mean Maximum Minimum Mean Maximum

Rg (MJ m−2) 0.88 3.99 8.89 5.40 10.59 14.18
Ta (◦C) 14.12 18.31 21.83 15.31 17.84 21.94
RH (%) 62.59 78.58 93.98 29.47 76.82 93.16

3.1. Sobol’s Sensitivity Analysis Method

The global sensitivity analysis with Sobol’s method was carried out to select the
parameters that are the most sensitive to the uncertainty of 10% and 20% applied to all
parameters around their nominal values; the data of the climatic variables of the spring–
summer season were used to run the simulations. To estimate the sensitivity indices for the
HORTSYST crop model, the simulation was run 10,000 times at the start of fructification
(40 days after transplant (DAT)) and at the end of the crop cycle (119 DAT).

The most influential parameters in the model are listed in Table 4. At 40 DAT, the
sum of the first-order indices (main effects) for PTI was 0.95, and the sum of the total effect
indices was 1.01; for the DMP variable, it was 1.00 for first-order indices, and the sum of
total effect indices was 1.00; for Nup, it was 1.08 for first-order indices and 0.99 for the sum
of total effect indices; for the LAI variable, 1.01 was obtained for first-order indices and
the sum of total effect indices of 1.00; and finally, for ETc, 0.98 was for first-order indices
and for the sum of total effect indices of 1.00. At 119 DAT, the sum of the first order for
PTI was 0.96; for the DMP variable, the sum of this index was 0.92; for Nup, it was 0.99;
for LAI, the value was 1.04; and for ETc, the sum was 0.93. The sum of the total effect
indices for PTI was 1.00; for DMP, it was 1.02; for Nup, this sum was 1.01; for LAI, it was
0.99; and for ETc, the sum of these indices of 1.00 was found. In the fructification stage, the
existence of interaction between parameters was not clear; however, for the second stage,
such interaction was observed, since the values of the indexes STi > Si. Figures 2 and 3
show the indices for 20% uncertainty on the parameters at the start of fructification and
at the end of growth; in both cases the most important parameters were the same, with
10% uncertainty on the parameters. They only varied in order of importance, with these
changes being the most evident for 40 DAT. The most important parameters in descending
order are shown in Table 4. The sum of the first-order effects and the total indices were
for PTI (1.08, 1.04), DMP (1.08, 1.04), Nup (0.99, 1.05), LAI (1.02, 1.05), and ETc (1.00, 1.06)
at fructification stage. In the analysis performed with 20% uncertainty at 119 DAT, the
parameter d (crop density) became more important than c1 for ETc output, whereas the
other parameters kept their order of importance found with 10% uncertainty. In the case of
119 DAT, the sum of the first-order effects and the total indices were for PTI (0.90, 1.00),
DMP (0.91, 1.01), Nup (0.95, 1.02), LAI (0.99, 1.00), and ETc (0.96, 1.02).
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Table 4. Sensitivity of HORTSYST parameters in descending order of importance obtained with
Sobol’s method applied to two tomato crop stages.

Output Response At the Beginning of Fructification At the End of Crop Growth

Parameters (10% of variation)
PTI Tob, c1, d, k, c2, Tou Tob, Tmin
DMP c1, d, k, c2, RUE RUE, c1, d, k
Nup d, c1, c2, k, a, RUE a, b, RUE
LAI c1, d, c2, Tob, k c1, d, c2
ETc c1, d, c2, k c1, A, d, c2, k

Parameters (20% of variation)
PTI k, d, c1, c2, Tob, Tou, Tmax Tob, Tmin
DMP k, d, c1, c2, RUE RUE, c1, d, k
Nup k, d, c1, c2, a, RUE a, b, RUE
LAI d, c1, c2, k, Tob d, c1, c2
ETc d, c1, c2, k d, c1, A, c2, k

The sum of total sensitivity indices for the most important parameters (∑ STi) was
slightly higher than 1 when the sensitivity analysis was carried out with 10% uncertainty
at 40 DAT and 119 DAT, but it is not conclusive to say that the model is nonadditive.
Nevertheless, with the 20% uncertainty, the sums of total indices for all output responses
for both crop stages were different from 1, so the model was nonadditive; this also was
checked with the sum of the first-order effects Si < 1, according to Saltelli et al. [2]. The
interactions between parameters were clearer when the uncertainty on the parameters was
increased to 20% at the beginning of fructification and at the end of the crop cycle STi > Si
for all output variables.

The sensitivity indices were also estimated, taking into account the daily integration
of output variables at the end of the crop cycle with 20% uncertainty, and the indices found
were different for some parameters than when two specific stages were considered in the
analysis (Figure 4). For the daily integration of outputs, some parameters changed in their
magnitude of importance; for example, for PTI and DMP, Tob and RUE decreased their
index values, and the rest of the parameters increased. The parameter c2 increased the
magnitude of its indices for Nup, LAI, and ETc. In the sensitivity analysis run in the two
growth stages, it was observed that a greater number of parameters were more important
at the beginning of fructification than at the end of crop growth for 10% and 20% of the
variation of the parameters (Table 4).

These results indicate that the parameters changed over time, with some of them
increasing in importance and other decreasing; for example, the parameter Tob increased
its importance in PTI, RUE in DMP, a and b in Nup, c1 in LAI, and A and Bd in ETc. Two
of the parameters that decreased their importance with the growth and development of the
crop were c2 (LAI, ETc, and DMP) and the parameter k. This temporal variation was also
reported by López-Cruz et al. [52] with the NICOLET model for lettuce and the SUCROS
model applied to husk tomato [53]. In addition, Wang et al. [54] found this variation
throughout crop growth and the temporal dynamic variation as a result of the increase in
uncertainty in the parameters of the WOFOST model used in corn cultivation.

The cardinal temperatures Tmax, Tmin, Tob, and Tou had an influence on the model’s
performance (Figures 2–4), particularly at the beginning of fructification. However, these
parameters were not selected for the parameter estimation technique, because they were
taken from the literature [35,40,41]. All of these parameters were obtained by experimen-
tation; other parameters, such as k (extinction coefficient) and d (crop density), were also
not considered, though they showed high sensitivity in the analysis, because the k param-
eter can be estimated with a ceptometer, and crop density (d) is defined before setting
the experiment.
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(B) DMP = dry matter production, (C) Nup = nitrogen uptake, (D) LAI = leaf area index, and (E) ETC = crop transpiration
for 20% of parameter variation at the end of the growth cycle (119 DAT).
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Figure 4. The total and main sensitivity indices estimated using Sobol’s method for (A) PTI = photo–thermal time,
(B) DMP = dry matter production, (C) Nup = nitrogen uptake, (D) LAI = leaf area index, and (E) ETc = crop transpiration
for 20% of parameter variation integrating the daily values of the outputs during the entire growth cycle (119 DAT).

During the analysis, it was found that these two parameters were the most sensitive
in all output variables of the model, since these output variables are strongly influenced
by the interception of the light, which is dependent on the simulation of the dry matter
produced, leaf area index area, and crop transpiration and indirectly dependent on the
nutritional uptake, since its determination depends on the biomass produced by the crop.
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The effects of these parameters were discussed by De Reffye et al. [33], who argued
that limitations occur for light interception when density is low, because the expression of
light interception assumes a homogeneous distribution of leaves. Therefore, the parameters
that finally were considered for calibration were: RUE, a, b, c1 , c2, A, Bd, Bn, and PTIini.
The RUE parameter explains the quantity of carbon assimilated and converted to total
dry biomass; thus, it was important for DMP and Nup, because the two variables are
correlated. For models with the light-use efficiency approach, this parameter and k become
more significant, as was found for the CERES–maize model [55] and WOFOST model
studied by Dzitsi et al. [56], the SALUS model for maize, peanut and cotton reported by
Wang et al. [54], and AZODYN for wheat [57]; all of them found higher values of STi and
Si for RUE, and k.

Parameters a and b are important for quantifying nitrogen uptake. The increase in
the indices of these two parameters and RUE from 40 DAT to the end of crop growth
is explained by the increased slope of the exponential growth curve of total dry matter
production due to the fruit’s filling, and this, in turn, increased crop nitrogen demand. c1
and c2 explain the expansion of leaf area. The indices for c2 decreased over time because
the maximum LAI value of the crop was reached, meaning the plateau of this variable’s
curve was attained; however, c1 increased its importance over time.

On the other hand, A, Bd, and Bn influence the radiation and vapor pressure deficit
(VPD) in the estimation of crop transpiration. The second and third parameters were not
significant in this analysis. Similar results were found by Sánchez [58]. However, these
authors found that these parameters become important for the autumn–winter season;
for this reason, they were considered as significant parameters. The parameter PTIini
(one of the two initial conditions) did not have high values for STi and Si, but we realized
that it improved the performance of the calibration of the other selected parameters. The
differences between two indices were for RUE (0.004), a (0.010), b (0.015), c1 (0.004), A
(0.010), and Bd (0.01). The only parameters that did not have interaction were c2, PTIini,
and Bn.

3.2. Calibration of HORTSYST Model by Differential Evolution Algorithm

The HORTSYST crop growth model was calibrated by solving a minimization opti-
mization problem. Nine parameters were estimated during the calibration for the autumn–
winter and spring–summer seasons. PTI vs. LAI Michaelis–Menten function behavior after
calibration are shown in Figure 5. Measured and simulated data after calibration are shown
in Figures 6 and 7. The values of the calibrated parameters are listed in Table 4, and the
model’s goodness of fit statistics are presented in Table 5.

The best fits, according to RMSE, were for LAI, followed by Nup, DMP, and ETc
for both crop seasons. The RMSE was close to zero, indicating an excellent prediction of
model performance.

Another goodness fit index used to evaluate the model was the efficiency of the model
(EF), which resulted in values close to one, which means that the model presented good
adjustments when correlating the variables of the model, according to Xuan et al. [47] and
Wallach et al. [51]. As for the bias values found in the autumn–winter season, the nitrogen
uptake was slightly underestimated, and DMP, LAI, and ETc were overestimated; in the
case of the spring–summer season, LAI and DMP were underestimated, and Nup and ETc
were overestimated. Furthermore, the 1:1 plots are presented in Figures 6 and 7 to visualize
the quality of the prediction of the output responses in the HORTSYST model.

All parameters were accurately calibrated; only parameter Bn in the transpiration rate
turned out to have high standard deviation during the autumn–winter season (Table 6).
This means that it was very uncertain for autumn–winter, but this problem was not found
for spring–summer. The calibrated RUE value for autumn–winter was higher than that
found by Gallardo et al. [30], and, for spring–summer, it was closer to what was reported
by Challa and Bakker [42]; the values obtained from RUE were different for each crop
cycle evaluated. The parameter a was lower for the two crop periods, and b was higher



Water 2021, 13, 610 14 of 19

than reported by Gallardo et al. [30]; these calibrated values were quite similar for both
seasons. For the LAI variable, the parameter c1 was closer for two seasons, but c2 during
the spring–summer was more than twice that found in autumn–winter. The parameters
A, Bd concerning ETc were higher than those found by Sánchez et al. [43] for both the
autumn–winter and spring–summer seasons. These parameters were different between
each crop cycle.

The HORTSYST model’s parameters calibrated using the DE algorithm were closer
than those found by Martinez-Ruiz et al. [21], who used a nonlinear least square method to
find the correct values of the parameters for spring–summer, except for parameter Bn.
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Figure 6. Measured and simulated data after calibration for (A) DMP = dry matter production, (C) Nup = nitrogen uptake,
(E) LAI = leaf area index and (G) ETc = crop transpiration during autumn–winter, 2015, and the (B,D,F,H) 1:1 plots for each
variable, respectively. Measured of all variables are indicated by circles. DAT: days after transplant.
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Figure 7. Measured and simulated data after calibration for (A) DMP = dry matter production, (C) Nup = nitrogen uptake,
(E) LAI = leaf area index, and (G) ETc = crop transpiration during spring–summer, 2016, and the (B,D,F,H) 1:1 plots for each
variable, respectively. Measured of all variables are indicated by circles. DAT: days after transplant.

Table 5. Parameter values and standard deviations after the differential evolution (DE) calibration process.

Parameters
Autumn–Winter Spring–Summer

Nominal Values Standard Deviations Nominal Values Standard Deviations

PTIini 0.03 0.01 (2.05 × 10−9) 0.06 0.031 (4.58 × 10−9)
RUE 4.01 4.79 (3.81 × 10−7) 3.10 2.99 (2.10 × 10−7)
a 7.55 5.89 (1.23 × 10−5) 7.55 5.68 (7.34 × 10−6)
b −0.15 −0.19 (4.06 × 10−7) −0.15 −0.17 (2.23 × 10−7)
c1 2.82 2.65 (4.02 × 10−8) 3.07 2.97 (3.52 × 10−8)
c2 74.66 63.46 (1.26 × 10−9) 175.64 167.99 (8.85 × 10−13)
A 0.30 0.63 (4.58 × 10−9) 0.49 0.56 (2.40 × 10−9)
Bd 18.70 28.57 (1.99 × 10−7) 11.20 15.69 (2.18 × 10−7)
Bn 8.50 4.73 (4.45) 8.28 16.51 (6.13 × 10−7)
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Table 6. Goodness of fit statistics resulting from calibration of the model for autumn–winter
and spring–summer.

Outputs Autumn–Winter Spring–Summer

Bias RMSE EF Bias RMSE EF
DMP 0.41566 13.3133 0.9970 −1.5437 14.7602 0.9989
Nup −0.0708 0.5004 0.9909 0.0287 0.3583 0.9980
LAI 0.0249 0.0989 0.9979 −0.0007 0.1564 0.9962
ETc 3.6465 39.3297 0.8153 1.2918 28.2060 0.9581

4. Conclusions

The global sensitivity analysis based on Sobol’s method was an effective procedure for
determining the most influential parameters in the HORTSYST model. With this procedure
to evaluate the sensitivity analysis, the number of parameters of the model were reduced
from sixteen to nine; it was also realized that all parameters had a temporal variation in
their sensitivity, which could be explained by each development stage of crop, since it is
known that dry matter production, nitrogen uptake, leaf area index, and crop transpiration
have nonlinear behavior.

The values found in the parameters during the calibration were the correct ones for
the autumn–winter and spring–summer seasons, because the amount of radiation between
the two crop seasons is different, and this was reflected in the dry matter production,
nitrogen uptake, and crop transpiration. The parameter estimation was necessary for each
crop period, because the climatic condition is different in the crop cycles. These parameter
values could be used as reference values to simulate another crop grown in a greenhouse
with nonlimitation of water and nutrients. However, more experiments are needed to
validate this model using these estimated parameters, and more research is also needed to
extend this model to another greenhouse × 10-grown crop.

The predictions of the model output variables during the calibration process were
accurate, since the deviation or error between the simulated variables and the measure-
ments was minimal. Therefore, the differential evolution (DE) technique used to esti-
mate the parameters was effective and had good convergence, and its efficiency was
computationally acceptable.

The HORTSYST model has a simple mathematical structure, and, due to the reduced
number of influencing parameters (results of the sensitivity analysis) and its accurate
prediction of the output variables during calibration and once validated, its implementation
is feasible for irrigation and nutrient management in intensive crops, since it uses the RUE
(radiation use efficiency) approach of some models mentioned above, which have been
used as decision support systems (DSS) for the management of agricultural systems.
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