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Abstract: Long-term droughts observed in southern Australia have changed relationships between
annual rainfall and runoff and tested some of the assumptions implicit in rainfall–runoff models used
in these areas. Predictive confidence across these periods is when low using the more commonly
used rainfall–runoff models. Here we modified the GR4J model to better represent surface water–
groundwater connection and its role in runoff generation. The modified model (GR7J) was tested
in 137 catchments in south-east Australia. Models were calibrated during “wetter” periods and
simulation across drought periods was assessed against observations. GR7J performed better than
GR4J in evaluation during drought periods where bias was significantly lower and showed improved
fit across the flow duration curve especially at low flows. The largest improvements in predictive
performance were for catchments where there were larger changes in the annual rainfall–runoff
relationship. The predictive performance of the GR7J model was more sensitive to objective function
used than GR4J. The use of an objective function that combined daily and annual error produced a
better goodness of fit when measured against 80, 50 and 20 percent excedance flow quantiles and
reduced evaluation bias, especially for the GR7J model.

Keywords: drought; rainfall–runoff model; non-stationarity; groundwater–surface water connection;
objective functions

1. Introduction

Conceptual rainfall–runoff models are, at their simplest, a means to transfer a precipi-
tation time series into a runoff hydrograph. They require calibration with observed time
series and may or may not attempt to explicitly represent hydrological processes thought
to be of interest. However, such is the need to estimate runoff from given rainfall, that
their use is widespread and their predictive capacities are employed in environments or
situations unforeseen at the time of model formulation. As new hydrological observations
and knowledge becomes available, assumptions implicit in rainfall–runoff models can be
tested and structural adjustments made.

The term “non–stationarity” is often used in the hydrological community [1], but
can have various interpretations. In the strictest sense stationarity is the quality of time
series data in which its probabilistic behavior does not change with time. In recent times
long term droughts have seen changes in the annual rainfall–annual runoff relationship
(alternatively expressed as runoff coefficient) in Australia [2–4] and China [5]. The phrase,
"non-stationarity", tends to be used in relation to these observations since a single rainfall–
runoff relationship becomes an inadequate predictor of annual runoff following extended
drought. It should be stated that these observations do not necessarily imply a change in
runoff generation processes, but at least they highlight our lack of understanding of such
processes and how they relate to predictive models. Prolonged drought has allowed new
insights into hydrological processes, even in areas where processes were thought to be well
understood, e.g., Grigg and Kinal [6]. This is especially important for conceptual rainfall–
runoff models since many processes affecting runoff generation are unknown or ignored,
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but may be captured implicitly by the calibrated parameters. Any change in conditions
between calibration and prediction can cause problems since the effects of such changes are
not explicitly accounted for. So, in the context of rainfall–runoff models, non-stationarity is
partly a problem of model structure and what processes it can represent (or not represent).
Changes in land use, temperature, or atmospheric CO2 levels may change the way in which
vegetation uses water [7]. Changes in groundwater–surface water connection will affect the
nature of runoff generation with implications for runoff estimation [2,8–10]. A multi–year
drought in south–eastern Australia has significantly changed the rainfall–runoff relationship
across around 37% studied catchments, leading to reduced runoff from a given amount of
rainfall [3,11]. Internationally, many similar observations have been made in China [5,12],
India [13] and the United States [14]. Conversely, a decrease in rainfall has resulted in
observed streamflow increases in Sahelian Africa which remain poorly understood [15].

The utility of rainfall-runoff models across periods of climatic change (particularly
extended drought) has been shown to be poor [16]. Analysis of model parameters calibrated
prior to and within drought periods in SE-Australia indicates that some parameters that
controlled infiltration and soil moisture storage were significantly different for the two
periods [17]. Similarly, in SW-Australia, Silberstein et al. [18] suggest that despite the use
of combinations of five different rainfall–runoff models, there was a pervasive error drift
in all models towards the latter period (increasingly dry), indicating a change in state not
captured by the models. In a separate study, Westra et al. [19] found that model fit prior
to and during the “Millennium drought” (1997–2009) was improved by adding terms to
the model that allowed the size of the watershed soil water accounting store to vary with
an annual signal and a time trend across the simulation, i.e., a time varying parameter.
Furthermore, conceptual rainfall–runoff models form the basis of the river system and
planning models used by jurisdictions across Australia for allocation of resources and
policy assessment. When these are applied outside of calibration conditions, as happened
during the Millennium drought of south-east Australia, predictions were often poor with
consequences for water users.

The study of Hughes et al. [20] attempted to address some the perceived shortcomings
in model structure of the GR4J model [21] for the context of south–western Australia. The
authors modified the production store in such a way that allowed the evaporative process
to have a different sensitivity to storage than runoff production. This included a storage
threshold below which evaporation could continue while runoff ceased. The modification
helped to reduce long-term model error trends by producing a more pronounced declining
trend in model storage and runoff in a drying climate. These modifications were examined
in detail in a single research catchment with long-term ground water and streamflow ob-
servations [4], where model storage showed a strong correlation with catchment saturated
volume. These structural changes were inspired by long-term observations of streamflow
and groundwater storage across a period of extended climatic drying in south-western
Australia where annual runoff showed a strong correlation with catchment groundwater
levels in a highly non-linear relationship. The non-linearity in the groundwater–runoff
coefficient relationship shows a strong influence of proximity of the water table in the
riparian zone. When the water table is within 0–2 m of the riparian ground surface for
at least part of the year, runoff coefficients (Q/P) are higher and very sensitive to the
groundwater elevation. When the water table is disconnected from the riparian surface,
runoff coefficients are much lower and have less sensitivity to groundwater elevation.
Reductions in rainfall in that area across the last 40 years, and in particular the last 20, have
seen large declines in runoff coefficient [2,8,9]. Few observations have been made where
catchment storage increases due to the recent climate. However, increasing catchment
storage (via forest clearing) has resulted in large increases in runoff coefficient follow-
ing “re-connection” of the groundwater with the ground surface, sometimes many years
following forest clearing [22]. Such observations provided conceptual understanding for
the formulation of new hydrological models such as “LUCICAT” [23]. In particular, the
importance of groundwater–surface water connection was explicitly acknowledged in
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the LUCICAT model structure. Similarly, Deb. et al. [24], utilised a groundwater model
coupled to a distributed surface water model to better represent “disconnection” and and
reduced runoff during drought periods. Despite such advances, similar structural changes
have not been evident in rainfall–runoff models.

The aim of this study is to test the benefit of those structural changes suggested by
Hughes et al. [20] and Grigg and Hughes [4] on catchments in SE-Australia that may show
changes in the rainfall–runoff relationship throughout drought periods. In particular, the
ability of a new model structure to perform better via sustained storage depletion across
extended drought (as suggested by Hughes and Vaze [25]). More specifically, this study
will calibrate GR4J and a modified version of this with seven parameters (GR7J) during
“wetter” periods and forecast into one or more “drier” periods to see if the modifications
improve model predictability. This is a departure from the more usual split sample testing
regime [26], since the experiment is specifically designed to test model performance outside
of the calibration conditions. The pretext here is that more severe and extended droughts
may be experienced in the future with no opportunity to calibrate models in transition to
those conditions and, potentially, modifications to rainfall–runoff models may better equip
them for such a transition.

2. Site Information

The study area and catchments used for this study are the same as those used by
Saft et al. [3]. The catchments selected are largely free of contriving factors such as large
reservoirs, substantial irrigation diversion or land use change. The catchments are located
in close proximity to the great dividing range along the south-eastern coastline of the
Australian mainland. These areas produce much of the runoff in south–eastern Australia
including the Murray–Darling basin (MDB, Figure 1). Median annual runoff for the study
catchments is 155 mm, while median annual precipitation is 870 mm and median annual
potential evaporation is 1165 mm (Figure 2) In general, potential evaporation exceeds
rainfall. Actual evapo-transpiration will vary more, since land-use across the study areas
varies from forest in the more humid areas (generally greater than 800 mm p.a.), to pasture
and annual crops, which dominate in the drier catchments. Seasonality of rainfall varies
from north to south. In the south, rainfall is winter dominant, while in the north, summer
rainfall is dominant.
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Figure 1. The study area showing study catchments and spatial distribution of mean annual rainfall.
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Figure 2. Climate and runoff boxplots for the study catchments. Boxes indicate 0.25 to 0.75 quantiles
in data and whiskers indicate 1.5 times interquartile range.

3. Method
3.1. Drought Classification

This study uses the catchments and drought classification of Saft et al. [3]. Drought
years were classified using annual rainfall. Annual rainfall anomaly data were calculated
relative to the annual mean. The anomaly series was divided by the mean annual rainfall
and smoothed with a 3-year moving window. Initially, all periods of consecutive smoothed
negative anomalies were identified. To reduce the blurring effect of the moving window
the exact end date of the dry period was determined through analysis of the un-smoothed
anomaly data from the last negative 3-year anomaly. The end year was set as the last year
of this 3-year period unless:

1. there was a year with a positive anomaly >15% of the mean, in which case the end
year is set to the year prior to that year;

2. if the last two years have slightly positive anomalies (but each <15% of the mean), in
which case the end year is set to the first year of positive anomaly

The start year of the drought period had not been adjusted in a similar way to allow for
abrupt or gradual onset of the drought. The first year of the drought remained the start of
the first three-year negative anomaly period. To ensure that the dry periods are sufficiently
long and severe, in the subsequent analysis we only used dry periods that were 7 or more
years long, and, with a mean dry period anomaly of <−5%.

3.2. Magnitude of Change in Rainfall–Runoff Relationship Due to Drought

The magnitude of the change in the rainfall–runoff relationship due to drought was
calculated by Saft et al. [3] using the method of Potter et al. [11]. Briefly, annual runoff data
were normalised using a Box–Cox transformation [27], since the annual rainfall–runoff
relationships are often non-linear, especially in drier climates. The transformed data were
regressed against annual rainfall;

Q̂y = αIwet + γIdry + βPy + εy (1)
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where Q̂y is the transformed streamflow for year y, α, β and γ are parameters of the linear
model. Iwet and Idry, are non-drought (wet) and drought indicator variables (each assigned
a value of 0 or 1 depending on the classification of the year). The magnitude of the difference
between the drought and non-drought period was calculated using a characteristic drought
rainfall for each catchment. This value was mean of the minimum and mean annual rainfall
for the catchment. The expected values of runoff for a non-drought period and a dry period
were calculated using fitted regression, and back transformed then differenced. This value
was divided by the runoff for characteristic rainfall using the wet period regression to give
a relative shift in runoff due to drought.

3.3. Model Framework

The GR4J model was used as a test-bed for model structural changes. The GR4J
model [21], is widely used and relatively simple in nature. It consists of two main stores
(Figure 3): the production store (S), and the routing store (R). Net rainfall (Pn) and net
evaporation (En) were calculated as follows;

Pn = max(0, Pi − Ei) (2)

and
En = max(0, Ei − Pi) (3)

where Pi was the precipitation on day i and Ei was the potential evaporation on day i.
Ps is the amount on net rainfall that is added to the production store. This amount

depends upon both net rainfall Pn, and the current state of the production store S;

Ps =
x1(1− ( S

x1
)2) tanh( Pn

x1
)

1 + S
x1

tanh( Pn
x1
)

(4)

where S is the current level of storage (mm), Pn is the net precipitation (mm), and x1 is the
maximum storage of S, and is a calibrated parameter. Net rainfall in excess of Ps is routed
to runoff;

Pr = Pn − Ps (5)

where Pr is the amount of net rainfall that becomes available for routing to runoff.

Figure 3. Model structure conceptual diagrams for (a) GR4J and (b) GR7J.
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In a similar way, evaporative loss from the production store (Es) is calculated relative
to the level of the production store (S);

ES =
S(2− S

x1
) tanh( En

x1
)

1 + S
x1

tanh( En
x1
)

(6)

where En is net evaporation (Equation (3)). The GR4J model code was altered with the aim
of allowing more flexibility in the way the processes encapsulated in Equations relate to
the state of the production store (S).

To vary the sensitivity of Ps to S, the exponent in the numerator of Equation (4) was
re-coded as a calibrated parameter of value between 1 and 3;

Ps =
x1(1− ( S

x1
)x5) tanh( Pn

x1
)

1 + S
x1

tanh( Pn
x1
)

(7)

where x5 is the new calibrated parameter. Such a change can, for example, allow Ps to
reduce as S approaches the value of x1, i.e., as the production store becomes full more less
net rainfall contributes to the production store and more goes into the routing store to
produce runoff.

The updated Es calculation required two additional calibrated parameters (x6—magnitude
factor and x7—shape factor), and a user defined value (expand) which determines the size
of the available depletion relative to the size of the production store available for runoff
production (x1);

Es = En ∗ x6 ∗
(
(Smax − x1 + S)

Smax

)x7

(8)

where Smax = expand ∗ x1 and expand have a value greater than or equal to 1. Effectively,
a value of expand > 1 allows depletion of the production store to continue via evaporative
processes when all incoming precipitation Pn is captured by the production store and none
is routed to streamflow. In this study an expand value of 2.0 was used. Initial investigation
suggested that such a value would have some predictive benefit in regards to ephemeral
streams in particular.

It should be noted that no modifications have been made to the routing store calcula-
tions, and these remain identical for GR4J and GR7J. The modifications detailed above are
intended to better encapsulate longer term process, whereas routing functions are more
focussed on shorter time-scales which are beyond the scope of this study.

3.4. Model Calibration

Both GR4J and GR7J were calibrated in identified wet years with evaluation occur-
ring in identified drought years. Goodness of fit was compared for GR4J and GR7J in the
evaluation period. All models were calibrated with the Shuffled Complex Efficiency algo-
rithm [28]. Models were calibrated with two different objective functions. The first was a
linear combination of Nash–Sutcliffe Efficiency (NSE [29]), using root-transformed values
and total simulation bias:

NSEB =

(
1 +

∑n
i=1(Q

λ
obs,i −Qλ

sim,i)
2

∑n
i=1(Q

λ
obs,i −Qλ

obs)
2

)
∗
(

1 +
|∑n

i=1(sim)−∑n
i=1(Qsim,i)|

∑n
i=1(Qobs,i)

)
(9)

where n is the number of time steps, Qobs,i and Qsim,i are the observed and simulated flows,
and λ is the power value for the transformation of data.

Systematic model errors can be observed when the sign of the error persists over a
series of time intervals [30]. When using total bias as a, or part of, an objective function, long
runs of consecutive equal sign error are possible even when total bias is low. This is possible
since, in most cases, the error residual is auto-correlated, indicating that the model has not
adequately described all processes evident in the data. To counter this tendency, a second
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objective function was used where absolute bias was calculated for 365 day segments of the
simulated and observed time series. The mean of the absolute bias of these segments was
combined with NSE in the following objective function:

NSESeg =

(
1 +

∑n
i=1(Q

λ
obs,i −Qλ

sim,i)
2

∑n
i=1(Q

λ
obs,i −Qλ

obs)
2

)
∗
(

1 +
m

∑
k=1

∣∣∣∣ 365

∑
j=1

(Qsim,j −Qobs,j)

∑365
j=1 Qobs,j

∣∣∣∣ ∗ 1
m

)
(10)

where m is the number of 365-day segments the simulated and observed time series are sub-
divided into. For this study the λ value used was 0.5. The scale of aggregation was chosen
to be 365 to approximate annual bias; however, other time scales could be investigated.
Similarly, the weighting of terms in the objective functions is assumed to be even. Further
investigation of differential weighting schemes may be beneficial.

Evaluation goodness of fit was expressed in terms of NSE and total bias. Evaluation
goodness of fit for combinations of model and objective function were compared to GR4J
using the Wilcoxon test for significance [31].

4. Results

Two main drought periods were identified using the drought identification method
(Section 3.1) across all rainfall data. The extended drought was identified in the majority
of catchments during the mid 1990’s to 2009. This period is commonly referred to as the
“Millennium drought”. In other catchments, where the time series is long enough, the
“World War II drought” around 1940 is also classified as drought. These can be seen in
Figure 4. The drought magnitude is calculated using the characteristic drought rainfall.
This is substituted into Equation (1), then the difference in runoff values from drought and
non-drought years is calculated. The mean drought runoff reduction due to non-stationarity
in the rainfall–runoff relationship was 30%, although ∼25 catchments showed an increase
in drought periods. For more information see Saft et al. [3].
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Figure 4. Histogram of identified drought periods across all catchments.
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Calibration of the two models resulted in very similar values for both NSE and bias
(Table 1). Slightly better calibration bias was apparent for the NSEB objective function,
although this is not surprising since the NSEB objective function is, in part, a total bias
calculation. Despite calibration scores of very similar values, the GR7J model, when used
with appropriate objective functions, shows an improved fit across the flow duration curve
relative to GR4J. Figure 5 shows relative error for models at 20, 50 and 80 percentile ex-
ceedance flows calculated across the calibration period. GR7J was clearly superior at low
flows (80% exceedance). The results indicate that the GR7J model is more sensitive to the
objective function used and can achieve lower error than other model and objective function
combinations. NSE scores of all models in the evaluation period were very similar, with a
slight degradation in NSE for the GR7J/NSESeg combination. Improvements in evaluation
bias were apparent for GR7J over GR4J. This was especially so for the GR7J/NSESeg com-
bination that had a mean bias improvement of 14.9% over the next best model/objective
function combination. The significance of the improvement in evaluation bias was tested
using a Wilcoxon test for model combinations relative to GR4J/NSEB (Table 2). Assuming
that a p value of less than 0.05 indicates a significant difference, the evaluation or drought
period bias for GR7J is significantly lower than GR4J/NSEB for the case of GR7J/NSESeg
where bias is 44% lower than GR4J/NSEB at p = 0.004. These results also suggest that an
appropriately formulated objective function is more important as the number of model
parameters is increased.
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Water 2021, 13, 669 9 of 15

Table 1. Mean model goodness of fit during calibration and evaluation (drought) periods for the four
model-objective function combinations.

Period Goodness of Fit
GR4J GR7J

NSEB NSESeg NSEB NSESeg

Calibration NSE 0.71 0.70 0.76 0.72
Absolute bias(%) 0.1 5.6 0.0 4.4

Evaluation NSE 0.64 0.62 0.66 0.59
Absolute bias(%) 59.3 47.9 50.0 33.0

Table 2. Wilcoxon test p values for evaluation period goodness of fit relative to GR4J/Nash–Sutcliffe
Efficiency (NSE)B.

GR4J GR7J

NSEB NSESeg NSEB NSESeg

NSE NA 0.507 0.596 0.340
Absolute bias(%) NA 0.110 0.883 0.004

The magnitude of change in the rainfall–runoff relationship during extended drought
was calculated for each catchment and expressed as a percentage change relative to the
non-drought period. This was then compared to the improvement in evaluation (drought)
bias for the GR7J/NSESeg model over the GR4J/NSEB to understand if the GR7J model
structure is more effective in coping with non-stationarity in the rainfall–runoff relationship.
This is illustrated in Figure 6, showing increased benefit of GR7J in terms of evaluation bias as
the relative change in the rainfall–runoff becomes increasingly negative (drier). The superior
fit of GR7J at low flows (Figure 5a), will result in superior fits in drought conditions as these
will obviously be at higher exceedance flow values. Where the magnitude of change in the
rainfall–runoff relationship is positive or close to zero, there appears to be little predictive
benefit in the GR7J formulation. This is also evident spatially, where the benefit of the
GR7J/NSESeg models are generally located in those catchments described by Saft et al. [3] as
catchments with “change detected”, in reference to the effect of drought on rainfall–runoff
relationships (Figure 7-visible as catchment polygons with blue fill).

Increasing dryness and disconnection of groundwater and surface water can be indi-
cated by the increasing frequency of no-flow days [32]. The predictive advantage to GR7J
showed some influence in the number no flow days experienced within the evaluation
period (Figure 8), and the authors consider this is a reasonable validation of the structural
changes tested.

GR7J has the facility to allow the evaporative and runoff generation processes to have
different sensitivities to store levels, and enable evapo-transpiration to continue when
production store levels are below those at which no incoming net rainfall is moved to the
routing store. This is visible as a negative value in the production store plots (Figure 9).
When droughts are encountered, production store levels become negative. In this situation,
the routing store will only receive new contributions of water when the value of net precipi-
tation (input) is of higher magnitude than the production store deficit. Such a mechanism
can reduce flows to near zero levels and will not produce a runoff response to small volumes
of net precipitation. This also has the effect of creating a deficit and reducing runoff volumes
as catchment storage transitions from dry to wet. This is illustrated in Figure 9 that plots
production store levels and runoff for a single catchment in the year 1983. The year 1982 was
a severe drought, and production storage was low in early 1983. GR4J overestimates runoff
for most of the year, while GR7J slightly underestimates runoff; however, it can be seen that
a deficit (production store) resulting from drought carried forward to the following year is
effective in reducing early season flows and achieving a better match to observations.
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Figure 6. Evaluation period bias improvement of GR7J over GR4J in relation to the magnitude of the
change in the rainfall–runoff relationship in drought periods.
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Figure 8. Evaluation period bias improvement of GR7J over GR4J in relation to the increase in mean
annual zero-flows days from the calibration period to the evaluation period.
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5. Discussion

The GR7J model shows an improved predictive performance in long-term drought
periods relative to GR4J, at least in terms of total bias, and error at selected quantiles. In many
catchments studied here, annual runoff cannot be predicted well during drought periods
using a single annual rainfall–runoff relationship [3], indicating some process change, or the
expression of processes at an extreme. Similar observations have been made in south-western
Australia [2] through a period of continued drying over 35 years. Calibrating rainfall–runoff
models during relatively wet conditions and predicting during dry conditions has shown
to be difficult [16]. The model structure of GR7J was intended to better cope with extended
periods of drought. The inclusion of a threshold in the model production store was intended
to allow the evaporative process to continue after streamflow was minimal, producing model
deficits that needed to be recovered before runoff could potentially recommence. Such a
structure has shown to be beneficial here as it has in the study of Grigg and Hughes [4].
This will obviously have benefits in ephemeral catchments where long periods of no flow
are common and become extended in drought. The predictive advantage for GR7J was
greater where the rainfall–runoff relationship shifted strongly during drought. (Figure 6).
However, it was noted that while the GR7J code could reduce error in low flow and drought
periods, over-prediction was still apparent. The changes implemented provided genuine
improvements and could provide the basis for further model improvement [25].

It should be noted here that the method of quantifying the shift in rainfall–runoff
relationship used in this study considered a change in the intercept term of the relationship
without consideration given to any change in slope (or any interaction between intercept
and slope). It is, therefore, possible that inclusion of such terms in the detection method
would change the magnitude or relationship changes used in this study. The slope term was
tested in the study of Saft et al. [3], but was not used in the final manuscript for simplicity
and since relative magnitudes of change were not greatly different (N. Potter pers. comm.).
However, it is obvious in some studies e.g., Grigg and Hughes [4], that slope of the rainfall–
runoff relationship undergoes marked changes and, for these locations, the method of Saft
et al. [3] may be inadequate.

The changes implemented in GR7J, were inspired by long-term observations of climate,
rainfall, and groundwater information in the south-west of Australia. There exists some
similarity in runoff generation processes between south-western Australia, and the south-
east, at least with regard to the amplifying effect of the water table being close or at the
ground surface. Hydrometric and tracer studies across the MDB indicate that groundwater
proximity to the surface not only provides runoff directly into streams, but is a critical
factor in promoting saturated overland flow [33–36]. This behaviour also implies a distinct
threshold in the relationship between catchment storage (more specifically the water table)
and runoff generation. As the water table falls well beneath the ground surface in extended
drought, there will be less possibility of direct groundwater flow into stream channels and
saturated overland flow. In these circumstances there will be increased capacity for the
catchment to store incoming rainfall in the unsaturated zone at the cost of runoff. This
water can be subsequently lost to evapo-transpiration. While GR7J has a structure that may
offer some predictive improvement, these processes are not well represented and may be
worth further experimentation.

A major limitation of conceptual rainfall–runoff models is the tendency to represent
catchment systems as one-dimensional storage and routing schemes. As such, better repre-
sentation of the three dimensional and multi-temporal nature of catchment hydrology may
require more complicated hydrological models. This situation is highlighted by catchment
drying in southern Australia. Models that can explicitly represent the influence of topog-
raphy, land use and groundwater–surface water connection may be of higher value in the
future, whereas in a more stable climate, simpler models may offer advantages.

Characterising the performance of models is a critical component in the field of hydrol-
ogy. For a comprehensive review on the topic see Bennett et al. [37]. A genuine issue in cali-
brating rainfall–runoff models is the form of the objective function, since these models need to
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be calibrated. The error residual is the general basis for many objective functions [29]. How-
ever, many problems associated with objective functions stem from the assumptions made
about the underlying properties of the error. If the objective function is based upon variance
(e.g., NSE), the errors must have a mean of zero, be homoscedastic, be normally distributed
and pairwise uncorrelated. However, these conditions are rarely met [38]. Aitken [30] ac-
knowledged that autocorrelation in errors required specialised objective functions to reduce
over-fitting. With respect to the Millennium drought in SE Australia, the importance of
objective function to model performance was also demonstrated by Fowler et al. [39], using
a similar approach to Kim et al. [40], i.e., segmenting the model bias across time to reduce
problems related to auto-correlated error.

The objective functions chosen for this study calculated error across two temporal
scales. Both calculated daily error by the use of NSE. Additionally, NSEB calculated total
error using total bias, while NSESeg calculated error at an annual scale. While calculating
total error would seem to help in an intuitive way, further examination showed that such a
calculation could cause problems in optimisation. These problems occur when a portion of
the simulation fits poorly to observed values. To reduce total bias, parameter sets are chosen
that compensate for the period of poor fit, thereby providing inappropriate parameters for
different sub-periods of the simulation time series. The use of the NSESeg avoids this problem
since mean absolute annual error is used which can isolate poorly performing periods
more effectively, and reduce over-fitting at the daily scale. More sophisticated approaches
have been suggested to cope with multiple scales of error detection. The use of wavelet
analysis provides some potential in that regard [41,42], as does a sub-period calibration and
evaluation [40]. Increasing the number of free parameters offers the opportunity to include
more complexity in the model, but increases the opportunity for over-fitting. This was the
case here since GR7J performed far better in evaluation when fitted with the NSESeg objective
function, which is considered a better balance of daily and annual error for calibration. While
NSE alone is likely to over-fit at the daily scale, this is tempered by the annual absolute bias
calculation in the NSESeg objective function.

The value of increasing the number of free parameters in a model can be be judged
against any improvements in performance by using measures such as Bayesian Information
Criteria (BIC) or Akaike Information Criteria (AIC). Other approaches such as k-fold cross
validation have been used. However, in this instance, we aim to test the model predictive per-
formance in strict conditions (drought), making such approaches difficult. Furthermore, the
approach used here demonstrated specific structural weaknesses in the GR4J model for this
application and was inspired by hydrological observations. We used a “bottom-up” approach
based on observations [4] rather than a “top-down” approach e.g., Pushpalatha et al. [43].
In a sense, the model modifications used here and previous studies [4] resulted from a close
coupling of experimental data and an identified predictive deficiency. Such approaches have
been shown to have value [44] but remain uncommon.

6. Conclusions

The structural modifications that produced the GR7J model have some predictive
benefits in situations where there is a shift in the annual rainfall–runoff relationship to
a drier state. One mechanism contributing to this is a threshold in the production store
that allows evaporation to continue when storage available for streamflow production has
been depleted. Moreover, the GR7J model allows the evaporative and runoff production
processes to have a differing sensitivity to production store levels (apart from the threshold).
The GR7J model had more sensitivity to the objective function used for calibration in terms
of its predictive performance. A considerable predictive improvement was apparent for the
use of an objective function incorporating daily and annual error, as opposed to daily and
total error (for the GR7J model). GR4J predictive performance was less sensitive to objective
function. Future modification and increasing model complexity may require objective
functions that operate at multiple temporal scales to deal with over-fitting problems.
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The structural modifications tested here do assist in runoff production prediction
during drought but, in general, still overestimate drought runoff. When considering
observational studies across the MDB, it may offer some utility to rainfall–runoff models to
include processes that better represent the groundwater–surface water connection and its
strong influence on runoff generation.
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