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Abstract: The world is currently witnessing high rainfall variability at the spatiotemporal level. In
this paper, data from three representative rain gauges in northern Algeria, from 1920 to 2011, at an
annual scale, were used to assess a relatively new hybrid method, which combines the innovative
triangular trend analysis (ITTA) with the orthogonal discrete wavelet transform (DWT) for partial
trend identification. The analysis revealed that the period from 1950 to 1975 transported the wettest
periods, followed by a long-term dry period beginning in 1973. The analysis also revealed a rainfall
increase during the latter decade. The combined method (ITTA–DWT) showed a good efficiency
for extreme rainfall event detection. In addition, the analysis indicated the inter- to multiannual
phenomena that explained the short to medium processes that dominated the high rainfall variability,
masking the partial trend components existing in the rainfall time series and making the identification
of such trends a challenging task. The results indicate that the approaches—combining ITTA and
selected input combination models resulting from the DWT—are auspicious compared to those
found using the original rainfall observations. This analysis revealed that the ITTA–DWT method
outperformed the ITTA method for partial trend identification, which proved DWT’s efficiency as a
coupling method.

Keywords: innovative triangular trend analysis; discrete wavelet transform; hybrid method; rain-
fall; Algeria

1. Introduction

Since the beginning of the 1900s, the spatiotemporal variability of precipitation caused
by climate change has been a significant concern for water resource managers around
the world [1–7]. It was found that such variability directly affects the effectiveness of the
water resource system, which sometimes leads to imbalances in un even precipitation
distribution, especially for the development in some fields, such as agriculture, industry,
and civil engineering [8].

Establishing sensitive and effective management systems is not sufficient by itself
for managing water resources. It instead requires reasonable and accurate control of
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the water cycle components, especially precipitation and temperature. Thus, developed
countries strive to develop tools and devices to monitor and measure these components [9].
The success of this system is not complete without the availability of analysis tools and
competent persons. In Algeria, for example, despite the many kinds of research that
have been done in the field of geosciences, hydrology, and water resources [10–17], it is
insufficient to assess climatic conditions and their impact on the environment [18], and to
find accurate future solutions to manage crises and natural disasters, such as long-term
droughts, floods, and management of hydraulic structures [19]. This is due to its vast
area, abundant natural resources, climate, environmental diversity, and unsatisfactory
conditions to support research.

For example, in the hydrology field of flood prediction, management engineers some-
times face problems in the calibration and validation of rainfall–runoff models to better
manage hydraulic infrastructures [14]. The existence of hidden characteristics, in terms
of multiple change points, trends seasonality, stationarity, and extreme events in the time
series to be used in the modeling process, constitutes one of the problems that affect the
calibration and validation of such models [20]. It is worth noting that those characteristics
also make the rainfall–runoff relationship more nonlinear. Moreover, according to [14,21],
in case of the lack of statistically significant patterns in the long-term (upward/downward)
in a rainfall time series, except for shorter periods, the inter-annual to inter-decadal modes
of variability can give a contribution to hiding long-term patterns in the time series. Al-
though mathematical and statistical methods facilitate the detection of these properties,
they sometimes seem to have limited efficiency. Such anomalies may appear in the rainfall
time series, but not in the stream flow time series, because the latter can suffer human
interference. For example, [22] found that, in the Sebaou River basin (northern central
of Algeria), the rainfall and discharge relationship was nonlinear, which could be mainly
due to the drought events. Moreover, the analysis, research, and investigation of the field
revealed that the Taksebt dam’s commissioning and the smuggling and trafficking of rocks
and sands from the riverbed since 1998 has had a negative and significant influence on the
river flow amount. In the Ramganga River basin (India), as noted by [23], climate change
and anthropogenic activities were the main factors affecting the significant decline in water
basin storages between 1982 and 2013.

The 1960s marked the beginning of the computer revolution, which led to a quantum
leap in hydrological modeling development [24]. Several hydrology researchers across
the world have developed mathematical and statistical methods that have been used in
hundreds of research papers, due to their success in determining changes in time series’,
such as parametric and non-parametric tests. The latter is the most used in research studies,
such as the Mann–Kendall test, Pettitt’s test, and Sen’s slope estimator test [25–34], among
others. Parametric tests are generally excellent, yet they require the data to follow the
assumed distribution law effectively. They are mainly very sensitive to outliers and are
not recommended if outliers are detected. Non-parametric tests do not need to assume a
particular type of distribution to calculate the test’s alpha risk. They are based on numerical
properties, and they are very insensitive to outliers, and are therefore recommended in
this case [31]. In 1980, the up-and-coming trend involved the use of the wavelet theory,
in the earth science time series analysis as geology [35], geophysics [36], hydrology [37],
and climatology [14,38]. The wavelet theory can detect invisible abnormalities and change
points in time series compared to other analyses. The application of wavelet theory brought
about a great revolution in analyzing non-stationary phenomena, especially for the most
extended observations. In recent years, the use of artificial intelligence tools, such as neural
networks and deep learning, for example, have been fiercely competing with all methods
of analyzing and predicting rainfall and detecting alerts of droughts and wet years [39,40].

One recent method that proposed for hydroclimatic variability assessment is the
innovative trend analysis (ITA), which was first elaborated by [41]. The methodology
is known for its effectiveness and success for partial trend component identification. It
was used in hundreds of research studies, primarily in the earth science field [20,42–51].
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The success of innovative trend methodology [38] made it a method of interest to many
scientists and researchers worldwide. That is why they continued conducting scientific
experiments and technical contributions on this method, to improve its performance,
mainly for temporal trend detection, primarily in a complicated hydro-climatic time series.
For example, a combination of Sen’s trend method with the discrete wavelet transformation
(DWT) was applied by [52], who were among the first rank to implement the proposed
hybrid model. Their findings stated the effectiveness of this adapted method. However, a
statistical significance test application has been added to ITA [41] by [53,54], to improve its
reliability using a synthetically generated time series that included deterministic, ordinary,
and stochastic processes, and gamma stochastic process tests. The paper revealed that all of
the steps of the methodology were logically presented and easy to apply. In [55], the authors
proposed a significance level of 5 and 10% for trend magnitude interpretation. In [44],
the authors elaborated two methods inspired by ITA, known as the double- and triple-
of the ITA. These two methods are referred to as multiple Şen-innovative trend analyses,
where the time series’ were split into three subsections for Double-ITM (D–ITA) and four
sub-series for Triple (T-ITA) before introducing them into the Şen’s template calculator.
The comparison of the sub-series’ indicates acceptable identification of trend stability.
An improved version of ITA was proposed by [56], based on an approach of the change
boxes. Outcomes indicated that the new hybridization method had efficaciously enhanced
the numerical illustration of time series changes on ITA’s scatter graph. At this time, all
critical points for Şen’s trend analysis presented in the literature are successfully discussed
by [57]. The latest inspired method based on ITA is called the innovative triangular trend
analysis methodology (ITTA), which was proposed by [58]. ITTA is based on dividing the
time series into subintervals (series) of equal length and comparing each, pairwise, in the
form of a triangular array [58]. In [14], the authors assessed four comparatively recent
hybrid approaches for change points and trends detection; the first is called the dynamic
programming Bayesian change point method (BA) [56], the second is the innovative trend
analysis [41], while the third and the fourth are double and triple of the ITA, respectively,
in conjunction with DWT, based on a multi-resolution analysis.

According to our knowledge in hydrology and climatology science, particularly in
change point and trends detection in hydroclimatic time series, the most recent research has
not devoted much value to addressing noise quantization and the respective impact on the
results. Modern research in hydrology has begun with interest in assessing and reducing
noise in hydrological time series’ using time–frequency methods, especially in the past ten
years, when the most research has focused on using DWT with non-parametric statistical
tests [29,38]. In ITA’s framework [41], and the inspired methods, the author developed
another hybrid approach, where the first method ‘’ innovative triangular trend analysis
methodology” was embedded with wavelet transforms (ITTA–DWT). The DWT was used
as a noise reduction and preprocessing tool for improving the effectiveness of ITTA for
partial trend identification. The proposed hybrid method was assessed on data from three
representative stations in northern Algeria, from 1920 to 2011, on an annual scale.

2. Materials and Methods

The flowchart represented in Figure 1 was proposed for the preprocessing and analysis
of the selected rainfall time series by combining the innovative triangular trend analysis
(ITTA) (Table 1) with the orthogonal discrete wavelet transform (DWT), i.e., a hybrid
method (ITTA–DWT), which can be addressed in the following steps:

1. Pretreatment of the input rainfall signal X(t).
2. Using filter bank includes high pass filter (A) and low pass filter (D) for signal filtering.
3. The outputs of A and D are downsampled by the DWT scale coefficient (factor of 2).
4. Choosing the adequate sub-band signal or the scale of decomposition for downsam-

pling based on the time series length.
5. Selecting the mother- and daughter-wavelet, e.g., Daubechies mother-wavelet (db20).
6. After step 5, the wavelet coefficients are obtained.
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7. From the wavelet coefficients (approximations and details), 24 models were proposed
(Table 2), assessed, and analyzed using correlation and spectral analyses for assessing
the periodicity and to perform the filtering

8. The 24 proposed models were used as input time series into the ITTA.
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Table 1. Theoretical ITTA comparison set proposed by [58].

Sub-Series 1st 2nd 3rd 4th (n/t)th

1st 1 1st–2nd 1st–3rd 1st–4th . . . . 1th–(n/t)th
2nd 1 2nd–3rd 2nd–4th . . . . 2nd–(n/t)th
3rd Meaningless 1 3rd–4th . . . . 3rd–(n/t)th
4th 1 4th–(n/t)th

(n/t)th 1

2.1. Triangular Trend Analysis Methodology

As ITA inspires the ITTA method, [58] used the ITA template proposed and explained
by [41] to build the ITTA, which was verified through several simulations [53,54].

It is dependent on comparing between the two equal observation intervals. The
interval-I and the period-II are respectively placed on the horizontal x-axis and the vertical
y-axis and ordered in an ascendant manner. In the case of trendless time series (no trend),
the observation points will appear high correlated to the 1:1 (45◦) straight line. In decreasing
or increasing trend, data points will be placed below or above the trendless line, respectively
(Figure 2). Each tendency is classified and interpreted according to the three quantities
(small, moderate, and high), according to Figure 2. As mentioned earlier, the ITTA is
based on dividing the time series into sub-intervals and comparing each, pairwise, in the
triangular array form (Table 1), as proposed by [58]. For more clarifications, the reader is
invited to consult the research paper of [58–60].
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Table 2. Geographic, statistical, and nonlinear characteristics of the rainfall series and their 24 proposed models resulting from the discrete wavelet analysis.

Oued Taria Station
X = 274.4 km
Y = 176.4 km
Z = 1000 m

Azazga Station
X = 649.6 km
Y = 383.9 km

Z = 430 m

Ain Beida Station
X = 924.15 km

Y = 288 km
Z = 1004 m

Model (M) Combination R1
2 Min Max CTV

(%) R2
2 Min Max CTV

(%) R3
2 Min Max CTV

(%)

OS - 1.00 72 754 100 1.00 521 1577 100 1.00 155 631 100
M 1 D1 0.30 −169 195 30.6 0.43 −398 360 43.1 0.42 −154 152 41.4
M 2 D2 0.22 −124 139 20.7 0.28 −364 288 29.8 0.32 −94 89 30.3
M 3 D3 0.05 −51 55 5.6 0.07 −149 165 11.2 0.06 −61 64 7.0
M 4 D4 0.09 −68 66 9.5 0.06 −118 126 6.3 0.09 −64 40 10.6
M 5 D5 0.08 −68 82 13.7 0.10 −113 134 11.0 0.05 −16 10 0.8
M 6 A5 0.20 278 423 24.5 0.01 945 1036 1.2 0.09 350 437 7.6
M 7 D1+A5 0.50 179 618 54.9 0.44 585 1363 44.4 0.51 242 546 49.2
M 8 D2+A5 0.40 174 561 45.5 0.29 642 1291 31.1 0.40 256 494 38.1
M 9 D3+A5 0.25 228 451 30.4 0.09 799 1110 12.1 0.16 332 461 14.0
M10 D4+A5 0.29 220 445 34.2 0.07 849 1092 7.7 0.19 287 465 17.3
M 11 D5+A5 0.33 213 417 32.9 0.12 835 1104 12.4 0.10 339 443 11.4
M 12 D1+D2+A5 0.71 140 732 76.1 0.72 591 1650 74.3 0.81 223 617 80.0
M 13 D1+D2+D3+A5 0.76 100 753 81.9 0.82 530 1602 82.9 0.88 210 616 87.0
M 14 D1+D2+D3+D4+A5 0.86 54 769 91.7 0.88 530 1627 89.0 0.99 163 625 96.3
M 15 D1+D2+D3+D5+A5 0.90 119 738 90.2 0.93 519 1594 93.9 0.89 198 622 90.7
M 16 D1+D3+D4+D5+A5 0.79 149 640 78.9 0.70 482 1434 71.9 0.69 194 560 68.9
M 17 D1+D3+D4+A5 0.65 130 655 70.6 0.61 512 1480 62.2 0.68 187 554 65.1
M 18 D1+D4+D5+A5 0.74 175 619 73.1 0.71 512 1480 62.2 0.62 227 561 62.7
M 19 D2+D4+D5+A5 0.63 80 571 63.7 0.45 644 1374 49.3 0.51 190 525 51.4
M 20 D3+D4+D5+A5 0.48 178 472 48.3 0.27 729 1253 28.6 0.27 276 480 27.2
M 21 D4+D5+A5 0.43 192 451 42.6 0.18 826 1226 18.9 0.20 276 469 21.1
M 22 D3+D5+A5 0.39 187 432 38.7 0.20 686 1165 22.7 0.17 337 471 17.8
M 23 D2+D5+A5 0.54 132 549 53.9 0.20 605 1328 42.6 0.41 248 500 41.8
M 24 D1+D5+A5 0.64 158 603 63.3 0.55 558 1356 55.6 0.51 226 551 53.0

CTV: Contribution in total variance, D: detail of Xi and A: approximation of Xi.
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Figure 2. Innovative trend methodology template (the black dots are data with no trends) [41].

In this study, one scenario of an 18-year sub-time interval was chosen based on the
following purposes:

• To exploit the entire available time series.
• To always stay within the original methodology (same template) and for comparative

purposes.
• To extract and detect long-term and significant partial trends.

However, in the future, different sub-time intervals can be used for detecting new
atmospheric fluctuations, which would help with understanding the climate variability
within Algeria for better water resource planning.

2.2. Discrete Wavelet Transform

The discrete wavelet transform (DWT) algorithm was first introduced and proposed
in 1989 by Stéphane Mallat [60]. It can be used in denoising, filtering, compressing, and
decomposing the signal and its variance by dissociating its components at various scales. It
also offers an excellent analysis of the signals and facilitates detection of the non-stationarity
in the signal, where this feature is not available in classic techniques, such as short-time
Fourier transform (STFT) and Fourier transform (FT). The main equations of DWT of the
time series is:

Wm,n = 2−m/2
N−1

∑
i=0

xi ψ
(
2−m i− n

)
(1)

where Wm,n is the DWT coefficient of scale s = 2m and position τ = 2mn. Mallat 1989 defines
the DWT as follow:

x(i) = Am
x (i) + ∑

j>m+1
Dj

x (i) = Am
x (i) + Rj

x (i) (2)

Am: The approximation of the discrete signal x(i) at the resolution m. Dm: the detail of
the discrete signal of x(i) at the resolution m. Rx

m: the residue at the approximation scale m.
DWT informs change in an input chronological series at various scales and positions. The
papers of [57–59] explain well the implantation of DWT.
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2.3. Correlation and Spectral Analysis

The simple correlation analysis highlights the dependence of successive events for
increasing time intervals [60–64]; it based on the autocorrelation function for a time series
of N observations xt(x1, x2, x3, . . . . . . , xn) and x mean [65].

The values rk (k = 0, 1, 2, . . . . . . , . . . m) are the autocorrelation coefficients obtained.
According to Box and Jenkins 1976; the choice of truncation (m) is not based on theoretical
concepts, it is better to take m = N/2, m = N/3 or m = 2N/3. The following expression
gives rk :

rk =
Ck(k)
Ck(0)

(3)

With

Ck(0) =
1
N

N

∑
t=1

(xt − x)2 Ck(k) =
1
N

N−k

∑
t=1

(xt − x) (xt+k − x) (4)

Ck(k): is the auto covariance and k: is the time step.
According to [66]: power spectral density function Γx( f ) is an unbiased approach of

the Fourier transform of the function of autocorrelation, representing the decomposition of
the time series variation in the hesitation area, where the periodic phenomena show up as
peaks in Γx( f ) graph [63,64] is provided by:

Γx( f ) = 2

[
1 + 2

m

∑
x=1

Dkrk cos (2π f k)

]
(5)

f : is the frequency, Dk is a weighting function chosen in such a way that has the
estimated value of the spectrum Γx( f ) is not biased [66]. The Tukey filter is used, and in
this case:

Dk =
1 + cos

(
πk
m

)
2

(6)

2.4. Study Area and Collected Data

In this proposed work, annual data of rainfall from 1920 to 2011 were derived from
the three extreme representative stations, which are situated in the north and north side
of Algeria, and used for the scale analysis (Figure 3 and Table 2). The Mediterranean
climate is characterized by warm to hot, dry summers, and mild to cool, wet winters. It
is also characterized by a high diversity of climate trends relating to relief, watershed
orientation, and the distance from the sea. The climate of Algeria is dependent on the air
mass movement (North Atlantic) cold and wet (responsible for low temperatures and heavy
rains) tropical ocean; warm humid, associated with the Azores anticyclone [10,12,15–19].
Therefore, the climate of Algeria is varied, since the country has a very large area. The
northern part has a Mediterranean climate, while the rest of the country mainly has a
desert climate (Köppen classification) [18]. Thus, three rainfall stations were proposed for
the analysis to try to get a glimpse regarding climate variability of northern Algeria. In
addition, this selected geographical region has a limited research focus.

Oued Taria station is located southwest of the Macta watershed (Figure 3). It is located
between west longitude 1◦16′ and 0◦58′ and north latitude 34◦31′ and 35◦21′. This basin is
considered one of the biggest Mediterranean basins in northwestern Algeria, occupying
an area of 14,389 km2. A Mediterranean climate dominates the northern part of the Macta.
However, the southern interior part is characterized by a hot and dry climate in summer,
and cold and humid in the winter (Figure 3). The Azazga station is located in the Oued
Sebaou watershed (Figure 3), which extends to the extreme northern–central section of
Algeria, between north latitudes 36◦30′ and 37◦00′ and east longitudes 3◦30′ and 4◦30′.
This basin is one of the most watered basins in the Mediterranean, and it covers an area
of 2500 km2 (Figure 3). The Ain Beida station is located in the endorheic basins of the
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Constantine highlands (Figure 3), representing the semiarid areas of northeastern Algeria,
and covers an area of 9615 km2 (Figure 3).
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Figure 3. Northern Algeria and selected rainfall series used in the analysis.

3. Results and Discussion
3.1. Triangular Trend Analysis Methodology

For innovative triangular trend analysis methodology, the rainfall time series of
92 years were divided into five successive periods of eighteen years (1920–1937, 1938–1955,
1956–1973, 1974–1991, and 1992–2009) before inserting on Şen’s graph template. In the
first observation, by comparing ITA (the bottom left corner) with ITTA (top right corner),
the visual observation demonstrates that the ITTA provides more information and details
regarding partial trend components than ITA. This is one of the advantages of ITTA. For
the Oued Taria rainfall, the ITA indicates a significant monotonic downward rainfall trend
where the negative part of the trend was observed in 1966–2011 for low, medium, and high
magnitudes (Figure 4). The first row of ITTA indicates no monotonic downward trend
for the 1938–1955, 1956–1973 periods and a monotonic downward trend for the 1974–1991
and 1992–2009 compared to 1920–1937 (Figure 4). The second row revealed no monotonic
upward rainfall trend for 1956–1973 compared to 1938–1955 with points appearing highly
correlated to the 1:1 (45◦) straight line, characterizing a downward trend for the 1974–1991
and 1992–2009 periods, compared to 1938–1955. For the third row, a monotonic downward
trend is observed for the 1974–1991 and 1992–2009 periods compared to 1956–1973. The
fourth−row analysis revealed that the 1992–2009 period carried part of the trend (no
monotonic) than the 1974–1991 period (Figure 4).

Likewise, in several Tunisia regions, many authors declared the absence of significant
annual trends, or that these trends are not always detected [66–72]. According to [14,21],
the lack of statistically relevant long-term rainfall patterns, except for shorter periods, can
be attributed to the inter-annual of the inter-decadal mode of variability, which will help to
mask long-term patterns in a rainfall period series.

Furthermore, the western Mediterranean basin is located in the transition between
mid-latitudes and a tropical zone, in which atmospheric dynamic interacts with a com-
plex topography to produce a high spatiotemporal variability of rainfall [73]. Based on
the coefficient of variation (CV) and the consecutive disparity index (S), [74] showed the
strongest influence of the Western Mediterranean Oscillation (WeMO) over locations in
which precipitation irregularity was highest (high CV and S values), and vice versa. Ac-
cording to [75], rainfall trends over southern Tunisia may be influenced by the rainfall
regime (local changes) rather than large-scale climatic fluctuations.
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Figure 4. Triangular trend analysis methodology applied on rainfall series of Oued Taria.

The analysis of Azazga and Ain Beida rainfalls using ITA and ITTA (Figures 5 and
6) indicated that observation points appear very close to the 1:1 (45◦) straight line, mak-
ing the decision about the existence of significant partial trend components for different
rainfall magnitude very difficult. According to many research pieces, western Algeria
(Macta basin, for example) is recommended for climate change assessment and its impact
studies [67]. Western Algeria is more vulnerable to drought impact, and this is explained
by the fact that the Rif Mountain Range and the High Atlas Range (Morocco) are acting as
barriers to prevent the incoming moist air from arriving from the Atlantic Ocean. Besides,
winds, which are in northwestern side, recharge on the Mediterranean Sea to produce
strong amounts of rainfall on the northern side, and superimpose a rainfall increase with
longitude (from the west to the east). This is a particular characteristic in Algeria, which
makes the Sebaou River basin one of the most watered in northern Algeria compared
to the Macta basin (western Algeria). Many authors revealed that the Mediterranean
climate impacts the high rainfall variability in northern Africa and southern Europe. For
example, based on long-term rainfall series analysis, [68] observed that the Mediterranean
area’s rainfall variability has become irregular over time, with drier and extreme climatic
conditions. In [21,69], the authors revealed the lack of a statistically significant long-term
trend in rainfall in the Mediterranean basin resulting from the strong heterogeneity of the
regional scale.
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According to the scientific community in hydrology, climatology, and meteorology,
the high rainfall variability can be attributed to geographic factors (as latitude, longitude,
and elevation), distance from the sea and large bodies of water, position to mid-latitudes
and tropical, topography, vegetation, prevailing winds and ocean currents provoking large
scale climatic phenomena responsible for multiannual and multi-decadal fluctuations, in
addition to the errors of measuring devices, which may increase the noises. The authors
are well aware that most of these factors can influence one time on a particular area’s
rainfall. All of these factors can influence the time series of rainfall measurements’ physical
values, which contribute to producing or adding the noise component in the original signal,
making it difficult for diagnosis and analysis. Therefore, the tool used in the analysis may
not necessarily be of limited effectiveness. However, instead, it is necessary to study the
fluctuations of the time series with specific tools and methods, before starting the analysis
process with change points and trend detection methods. This is for better interpretation of
results and decision−making. For example, using quantitative rainfall analysis-based ITA
in the Macta watershed, [51] noticed that “low and medium” rainfall ranges commonly
have no-trend cases, but “high” rainfall values have decreasing trends, likewise, [14] using
ITA, observed a non−significant upward trend in Oued Taria and no rainfall trend in
Azazga and Ain Beida stations. Nevertheless, with the time−frequency-based method as
a preprocessing and combined approach (ITA−DWT), [14] successfully detected hidden
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change points in the rainfall time series. For this, in this paper, in addition to three rainfall
series, 24 input combinations for each rainfall station resulting from DWT were assessed
using ITTA to partial trend identification.
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3.2. Combining Triangular Trend Analysis Methodology with Discrete Wavelet Transform

The first row of ITTA indicates no monotonic downward trend for the 1938–1955,
1956–1973 periods, and a monotonic downward trend for the 1974–1991 and 1992–2009
compared to 1920–1937 (Figure 4). The second row revealed no monotonic upward rainfall
trend for 1956–1973 compared to 1938–1955, with points appearing highly correlated to
the 1:1 (45◦) straight line, characterizing a downward trend for the 1974–1991 and 1992–
2009 periods, compared to 1938–1955. For the third row, a monotonic downward trend is
observed for the 1974–1991 and 1992–2009 periods compared to 1956–1973. The fourth-row
analysis revealed that the 1992–2009 period carried part of the trend (no monotonic) than
the 1974–1991 period (Figure 4). Noise is a series of small explosions in the signal. It
is an unwanted signal that contaminated the measurement of another series. Its power
spectrum, average, and variance are non−stationary over time. It is a time series that
contains information about the origin of the noise. A variety of sources causes such
noises. Distortion and noise effect reduction in the signal has become the core of the
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signal processing and communication theory and application, such as medical image
processing, radar, speech recognition [76], and others. One of the most known noise
reduction approaches is low-pass filtering, based on a threshold selection of the power
spectrum. The second stage removes all components whose frequency is greater than the
threshold selected [77]. Signal-to-noise ratio (SNR) and linear approaches, such as Fourier
transformation, are also used [78], but the latter is not recommended.

As stated earlier, the recent researches started around ten years ago to consider signal
noise quantization and reduction in hydrological time series’ using time−frequency based
methods, such as [79], who designed a new approach using continuous wavelet transform
coefficients for trend detection, which was considered one of the preferred combined
approaches, especially for complicated time series. The success of the hybrid methods
has a great revolution in the field of hydrology, where many researchers have suggested
and proposed many hybrid approaches [7,14,29,52,80–84]. Nevertheless, most research
has focused on using DWT with non-parametric statistical tests. Quite the opposite when
predicting the future hydroclimatic parameters, researchers have been creative in using
time−frequency-based approaches with various types of artificial intelligence algorithms,
such as neural network, neuro−fuzzy approach, and extreme learning machine [85–87], but
this application is still in its beginning stage, which opens the way for more development
in the future.

Many researchers and authors suggested similar combinations as presented in
Table 2 [7,52,80,83,88–90]. These proposed models may not have a central role to play
in the decision-making process regarding trend component existence [14,81].

The 24 proposed models resulting from DWT of Table 2 are well represented and
explained in [14]. The DWT approximations (A) and details (D) at five levels are repre-
sented hereafter as A1, A2 . . . A5 and D1, D2 . . . D5, respectively. More details about the
implementation of DWT can be found in References [5,60–62]. The nonlinear fluctuations
and climatic responses of each spectrum (Model) were interpreted in the framework of
climate variability [14]. The results of [14] indicate that the hybridization models of the
BA−DWT, ITA−DWT, D−ITA−DWT, and T−ITA−DWT, in most cases, generate high
performance compared to the traditional approach (BA, ITA, D−ITA, and T−ITA). Fur-
thermore, the results revealed that removing some spectrums of the original series using
DWT significantly improved the accuracy of detecting hidden patterns and shift points.
Therefore, in this section, we will attempt to confirm or disagree with the hypothesis
proving DWT’s efficiency as a coupling method that can improve ITTA accuracy for partial
trend component identification.

In this section, a relatively new hybrid method, ITTA−DWT, was presented to enhance
the temporary localization and facilitate the numerical or graphical visualization of the
partial trends on the ITTA dispersion graph based on Şen’s template. The best hybrid
models, ITTA−DWT, are shown in Figures 7–9.

The analysis indicates that model 20, containing the sum of D3, D5, and A5, character-
izes a significant partial trend in the station of Oued Taria. The graphical representation
revealed a significant negative monotonic trend, particularly for low and medium rainfall
for the periods: 1938–1955, 1956–1973, 1974–1991, and 1992–2009 compared to the period
1920−1937. The second row revealed an increased partial trend for the third 18-year period,
1956–1973, compared to the second, 1938–1955, marked for low and medium rainfall. In
contrast, the fourth and fifth 18-year period revealed a tendency towards drier conditions
than the second period. The last row of ITTA indicates an increase in rainfall amount for
the fifth 18-year period (1992–2009) compared to the previous period 1974–1991 (Figure 7).

As the first observation in Figure 8, we can notice the big difference and the clarity of
ITTA−DWT for trend identification compared to the ITA and ITTA-based original rainfall
series. The trends observed in Azazga and Ain Beida (Figures 9 and 10) are similar to
the Oued Taria station’s partial trends. Except for new observations regarding the high
rainfall, which indicates a rising trend at all of the obtained results, compared to the low
and medium rainfall, especially for the Ain Beida station (Figure 9), [51] also observed,
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in northeastern Algeria (Macta basin), an increasing trend in “high” rainfall. This can
explain the effectiveness of ITTA−DWT for extreme event detection. The ITTA−DWT
(Figures 9 and 10) indicates that region of central and eastern Algeria can face the risk the
hydrological extreme in the future, explained by the torrential rainfall generating the floods,
which make a natural disaster, especially in the presence of vulnerable infrastructure in
the urban area. According to [91], extreme droughts in the Mediterranean Basin will not
disappear progressively, but this can occur abruptly following heavy and torrential rainfall.
Hence, studies on the framework of extreme rainfall events, and their impacts on the
environment, are recommended for Algeria, in order to reduce the risk of flooding effects,
and for sustainable development of civil engineering structures. Numerous floods were
noted throughout the Algerian territory [92]: the exceptional precipitation that occurred
from March 28 to 31, 1974, in several central regions, caused 52 deaths in the wilaya of
Tizi−Ouzou, with 4570 houses destroyed, 130 isolated villages, and more than 18,000 dis-
aster victims. Material damage was estimated at 27 million Dinars. Thirteen bridges and
a few kilometers were washed away by the floods. Qued Rhiou in western Algeria on
October 20, 1993: 22 deaths and 14 injured. Batna, Tebessa, Constantine, Ouargla, Algiers,
September and October 2018: 2 deaths and material damage.
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According to the analysis, the ITTA−DWT successfully detected the partial trends in
the studied rainfall time series as follows:

1. A partial trend toward drier conditions occurred between 1920 and 1950.
2. A partial trend toward humid conditions occurred from 1950 to 1975.
3. A partial negative trend extended in northern Algeria from the years 1975.
4. A partial trend with a non−significant increase occurred from the end of the 1990s.
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Most studies carried out in Algeria, North Africa, and the Mediterranean basin docu-
mented the existence of a negative rainfall trend and long term drought between decades
1980s and 1990s [6,12,15–17,67,68,93–102]. Over Europe and the Mediterranean basin,
long-term rainfall series were analyzed by [6]; the results indicate a negative trend in the
eastern Mediterranean (>2 mm/years) and approximately 0.6 mm/years in North Africa.
In the northwest of Algeria at the Cheliff watershed, [12] has shown that the maximum dry
episodes occurred between 1971 and 1990, where the dry sequence was negatively corre-
lated with the Southern Oscillation phenomena explained by El Niño. In [94], the authors
found, in the northern–central side of Algeria, a long-term dry period marked during the
1980s and 1990s, and it was linked to the North Atlantic Oscillation (NAO), according to
a cross-analysis. In [17], researchers demonstrated—in the basins of Macta and Tafna—a
wet period (upward trend) localized over the period from 1950 to 1960, accompanied by a
dry period (downward trend) observed between the 1980s and 1990s. In the northwest of
Algeria, [103] documented a high rainfall variability in the period 1930–2007, with a rainfall
deficit extended in the region from 1975, and a wet period observed between 1930 and 1975.
During the study period 1950 to 2012, [104] indicated that the most significant drought
events took place in Europe, the Mediterranean region, and Baltic Republics from the 1990s
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and 2000s. In Oum Er-Rabia River Basin in (Morocco), [98] observed the maximum rainfall
deficit between 50 and 63% in 1980–1981 with a great spatial extent drought between the
1980s and 1990s. In [105], researchers observed that the extreme drought sequence was
typical, particularly during the 1980s and 1990s. In [106], researchers observed in Chelif
basin (northern Algeria) a long-wet period between 1938 and 1976, where the greatest
drought episodes were observed from the year 1977. Various research concerns the slight
increase in rainfall during the decade 2000–2010 compared to the 1980s–1990s, as observed
in this study, but it has always been described as non-significant [92,107–109]. For example,
regarding the bulk of Mediterranean areas, [110] found major downward rainfall patterns
from 1901 to 2009, with no major positive patterns observed over the West Iberian Penin-
sula, North Africa, and Southern Italy. Likewise, [107] detected a downward trend for wet
episodes in southern Italy (Basilicata region) between 1951 and 2010, where the analysis
reported a non−significant positive trend during the latter decade. According to [111],
detection of a rainfall pattern towards certain weather patterns can only be statistically
confirmed over a dozen years.
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In a previous study by [14], the correlation-spectral analysis (CSA) was applied to the
original rainfall series for assessing its periodicity. In this section, CSA was also applied
to the 24 combination models proposed in Table 2, to assess the cyclical components and
compare them with that of the original rainfall series. Figure 10 illustrates the CSA analysis
of rainfall (blue curve) and the best model of DWT (red curve) used for partial trend
identification in ITTA.

The application of CSA on rainfall series indicates several fluctuations characterizing
long-term organized processes explained by the dominance of inter-annual (2-years), mul-
tiannual (5-years), and multi-decadal (20-years) rainfall periodicity fluctuations (Figure 10
blue line). The analysis of the DWT model (Figure 10 red line) indicates a spectacular
peak of frequency 0.1, mainly for Azazga, describing decadal phenomena of 10 years
(Figure 10d–f), unlike Oued Taria, which indicated the dominance of low-frequency phe-
nomena of decadal and multi-decadal fluctuations, well explained by a simple spectrum
(Figure 10d–f). This revealed the significant filtering process that was made based on DWT



Water 2021, 13, 727 17 of 22

by removing the inter-annual to multiannual fluctuations’ less than decadal periodicity; for
example, 90% and 61% of the energy of the original series were removed to obtain models
3 and 22, respectively (Table 1). Therefore, we can conclude from the analysis:

• The short and medium-term processes, and less than decadal periodicity, dominate the
high variability of rainfall. This masks the partial trend and change points presented
in the rainfall series and makes it hard to identify. In southwestern Europe, between
1850 and 2018, the authors in [21] linked the lack of substantially declining or growing
patterns to the long-term rainfall series, to the predominance of inter-annual variability,
making trend identification difficult. Thus, spectral analysis as a time–frequency-based
method, and a first assessment tool to diagnose and characterize climatic series’ high
variability before inserting in trend method analyses, is indispensable.

4. Conclusions

In this paper, and based on data from representative rain gauges in northern Algeria,
the partial trend identification was analyzed during 1920–2011 using ITTA and an uncon-
ventional hybrid approach (ITTA–DWT). The main results of the study are briefly outlined
as follows:

• According to the analysis, the ITTA−DWT successfully detected the partial patterns
in the studied rainfall time series.

• The analysis revealed the alternate long-term dry and wet periods, where most compo-
nents of wet periods occurred between 1950 and 1975, with a non−significant increase
in rainy episodes observed from the end of the 1990s. The dry periods were observed
from 1975 to the end of the 1990s.

• The analysis indicated an increase in the occurrence of heavy rainfalls compared to
low and medium intensity rainfalls, in the study area, which can infer the risk of
occurrence of torrential rainfalls, which can generate floods.

• The analysis proved DWT’s efficiency as a coupling method that can improve ITTA
accuracy for partial trend component identification.

• The analysis proved the effectiveness of DWT as a filtering and denoising method for
climatic time series.

• The inter-annual to multiannual of the short to medium processes dominate the high
variability of rainfall, masking the partial trend components existing in the rainfall
series, making it hard for identification.

• Before inducing the climatic time series in the trend analysis methods, the diagnosis
of its behavior, and removing some components, can improve the accuracy of the
analysis.

• The obtained results indicated that combining ITA, D–ITA, T–ITA, ITTA, and some
input combination models resulting from the DWT is very promising, relative to those
of the initial rainfall sequence. Those results corroborate the results obtained by [14].
The ITA–DWT, D–ITA–DWT, T–ITA–DWT, ITTA–DWT methods outperformed the
ITA, D–ITA, T–ITA, ITTA methods for partial trend identification.

The proposed methods (ITTA–DWT) showed to be very efficient for multiscale, noise
reduction, and filtering analyses; however, further studies will be needed to assess their
performance using a finer time series (i.e., a monthly or daily scale) or with synthetic time
series data at different variance magnitudes.
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13. Boudiaf, B.; Dabanli, I.; Boutaghane, H.; Şen, Z. Temperature and Precipitation Risk Assessment Under Climate Change Effect in
Northeast Algeria. Earth Syst. Environ. 2020, 4, 1–14. [CrossRef]

14. Zerouali, B.; Chettih, M.; Abda, Z.; Mesbah, M.; Djemai, M. The use of hybrid methods for change points and trends detection in
rainfall series of northern Algeria. Acta Geophys. 2020, 68, 1443–1460. [CrossRef]

15. Achite, M.; Buttafuoco, G.; Toubal, K.A.; Luca, F. Precipitation spatial variability and dry areas temporal stability for different
elevation classes in the Macta basin (Algeria). Environ. Earth Sci. 2017, 76, 458. [CrossRef]

16. Taibi, S.; Meddi, M.; Mahé, G.; Assani, A. Relationships between atmospheric circulation indices and rainfall in Northern Algeria
and comparison of observed and RCM-generated rainfall. Theor. Appl. Climatol. 2017, 127, 241–257. [CrossRef]

17. Meddi, M.M.; Assani, A.A.; Meddi, H. Temporal Variability of Annual Rainfall in the Macta and Tafna Catchments, Northwestern
Algeria. Water Resour. Manag. 2010, 24, 3817–3833. [CrossRef]

18. Zeroual, A.; Assani, A.A.; Meddi, M.; Alkama, R. Assessment of climate change in Algeria from 1951 to 2098 using the
Köppen-Geiger climate classification scheme. Clim. Dyn. 2019, 52, 227–243. [CrossRef]

19. Bouabdelli, S.; Meddi, M.; Zeroual, A.; Alkama, R. Hydrological drought risk recurrence under climate change in the karst area of
Northwestern Algeria. J. Water Clim. Chang. 2020, jwc2020207. [CrossRef]
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47. Mohorji, A.M.; Şen, Z.; Almazroui, M. Trend Analyses Revision and Global Monthly Temperature Innovative Multi-Duration

Analysis. Earth Syst. Environ. 2017, 1, 9. [CrossRef]
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