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Abstract: In the urban drainage sector, the problem of polluting discharges in sewers may act on the
proper functioning of the sewer system, on the wastewater treatment plant reliability and on the
receiving water body preservation. Therefore, the implementation of a chemical monitoring network
is necessary to promptly detect and contain the event of contamination. Sensor location is usually
an optimization exercise that is based on probabilistic or black-box methods and their efficiency
is usually dependent on the initial assumption made on possible eligibility of nodes to become a
monitoring point. It is a common practice to establish an initial non-informative assumption by
considering all network nodes to have equal possibilities to allocate a sensor. In the present study,
such a common approach is compared with different initial strategies to pre-screen eligible nodes
as a function of topological and hydraulic information, and non-formal ‘grey’ information on the
most probable locations of the contamination source. Such strategies were previously compared for
conservative xenobiotic contaminations and now they are compared for a more difficult identification
exercise: the detection of nonconservative immanent contaminants. The strategies are applied to a
Bayesian optimization approach that demonstrated to be efficient in contamination source location.
The case study is the literature network of the Storm Water Management Model (SWMM) manual,
Example 8. The results show that the pre-screening and ‘grey’ information are able to reduce the
computational effort needed to obtain the optimal solution or, with equal computational effort, to
improve location efficiency. The nature of the contamination is highly relevant, affecting monitoring
efficiency, sensor location and computational efforts to reach optimality.

Keywords: Bayesian approach; illicit intrusion; optimal positioning; urban drainage system; water
quality sensors

1. Introduction

In both water distribution systems and sewer systems, the monitoring of water quality
is very important for preserving resources and public health. Monitoring physical, chemi-
cal and biological parameters increases the possibility of early detection of water quality
deterioration and individuation of pollution sources with thus, decreasing the occurrence
of overflows and improving discharged water quality. Those are important parts in the
pollution-reducing strategies. In this regard, the Water Framework Directive 2000/60/EC
requires the application of local measures to address the pollution that affects their surface
waters. Combined sewer overflows (CSOs)—which contain untreated domestic and indus-
trial waste, toxic materials, and debris—impact the physicochemical, biological, hydraulic,
and aesthetic status of receiving water bodies. For example, overflows can cause oxygen
depletion, increased turbidity, and higher concentrations of micropollutants, heavy metals,
and pathogenic and fecal organisms in surface waters [1]. Xenobiotic substances, unlike
organic substances, are only slightly affected by biological degradation processes.
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1.1. Nature of Contaminants in Sewers

Several studies have focused on where the contaminants come from, since it varies
widely. In fact, their origin can derive from both anthropogenic activities and environmental
processes. Marsalek [2] have highlighted the problem of discharges of urban stormwater
and of combined sewer overflows (CSOs) that contribute to fecal contamination of urban
waters and need to be considered in planning the protection of recreational waters and
sources of drinking water.

Nawrot [3], indicates the connection between bottom sediments of retention tanks
located on urban streams and road sweeping wastes (RSW) that migrate during surface
runoff to the stormwater drainage systems with discharge to the retention tanks. The
complex analysis of HMs origin confirmed the motorization origin of HMs: Zn, Cr, Ni,
and Cd, except Pb (coal combustion as the main source) and Cu (non-uniform origin).
Cryder [4], exposes the problem of the urban-use pesticides present a unique risk to non-
target organisms in surface aquatic systems because impervious pavement facilitates runoff
that may lead to serious contamination and ensuing aquatic toxicity. Ghane [5], conducted
a long-term study was to quantify and compare contaminant transport in agricultural
drainage water and urban stormwater runoff, suggesting that management practices
should be directed to load reduction of ammonium and TSS (Total Suspended Solids) from
urban areas, and nitrate from cropland while TP (Total Phosphorus) should be a target
for both.

1.2. Polluting Sources Identification

In general, the problem of polluting source identification was mainly investigated
regarding looped pressure networks [6–9] in which variable flows and flow directions in
space and time may greatly affect the reliability of sensor networks.

The problem of the identification of illicit intrusions in sewers shares similarities in
respect to the application to water distribution systems, but it also presents important
differences. Since the collected liquid is not clear water, the contamination event has to be
properly detected, denoting differences in the usual composition of the wastewater.

In the Table 1 is possible to synthetically identify the main differences between pressure
networks and free surface networks in terms of modelling, sensors, impacts and contami-
nants.

Table 1. Main differences between pressurized distribution networks and free surface networks.

Pressurized
Distribution Networks Free Surface Networks

Contamination episodes

Water leak from loss of
pressure or household

pipes/hospitals/etc. and
voluntary contamination.

Illicit discharges from private or
industrial and commercial

activities, in sewer systems.

Contaminants

Microbial pathogens from
fecal contamination, aquatic

microorganisms and their
toxins, chemical
contaminants.

Untreated domestic and
industrial waste, toxic materials

and debris.

Modelling

The solutions space is known
a priori, it may be a backward

contamination and the flow
has low variations.

The solutions space is not known
a priori, it cannot be a backward
contamination and the flow has

high variations.

Impact of contamination Resources and public health. Sewer system, wastewater
treatment plant and water body.

Sensor technology Fixed type sensors. Fixed, mobile type sensors or
sampling.
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The individuation of an anomalous (voluntary or unintentional) contamination was
an almost impossible task before continuous monitoring of pollutant loads became feasible,
thanks to the development of new sensor technologies [10]. Pollution concentrations have
been traditionally measured by extracting samples manually or automatically and then
analyzing them in a standardized laboratory. This method contains major drawbacks
represented by high costs, which usually imposes short-duration campaigns with limited
information obtained at insufficient time intervals, not completely representative of the
wastewater pollutant dynamics. However, to date, the enhancement of technology allowed
increase the range of usable probes including fixed monitoring stations, movable stations
and Lagrangian platforms (i.e., sensors transported by currents) resulting in improvements
in terms of quality of results and costs. For these reasons, the implementation of a monitor-
ing network is crucial for an efficient contamination prevention strategy in urban drainage
systems, which involves the identification and elimination of illicit polluting discharges.

1.3. Optimal Sensor Location

To reduce the cost of the instrumentation and maintenance obtaining, at the same
time, a reliable monitoring of the system, is essential achieve the optimum positioning of
the probes. Design problems in scientific and industrial endeavors, they are fraught with
choices, choices that are often complex and high dimensional, with interactions that make
them difficult for individuals to reason about [11].

Bayesian optimization has emerged as a powerful solution for these varied design
problems. The main characteristic of Bayesian methods is their explicit use of probability
for quantifying uncertainty in inferences based on statistical data analysis.

Bayesian methods is impacting a wide range of areas, including interactive user inter-
faces [12], robotics [13,14], environmental monitoring [15], information extraction [16], com-
binatorial optimization [17,18], automatic machine learning [19–23], sensor networks [24,25]
adaptive Monte Carlo (MC) [26], experimental design [27], and reinforcement learning [28].

To define the best chemical monitoring strategy, sensors also have its relevance. In fact,
there are different types (fixed or mobile) and with the possibility of detecting different
parameters, several authors have proposed studies relating to sensors [29–31]. Defining
the type of tool to be used is therefore a fundamental step and to be implemented among
the first things, after identifying the nature of the contaminant to be intercepted. In Sam-
bito [32], the optimal positioning exercise was carried out by considering a conservative
xenobiotic contaminant and such hypothesis showed to privilege downstream sensor loca-
tions confirming a general rule of thumb that sensors are more effective if their sensitivity
is high and if they are able to monitor the larger wastewater volumes. The initial pre-
screening strategy was relevant to reduce computational efforts, but it did not affect the
final optimal configuration.

In the present paper two hypotheses are removed regarding the nature contamination
by trying to detect the excessive discharge of a non-conservative organic compound and
choosing a contaminant is commonly present in wastewater such as total organic carbon
(TOC) or total nitrogen (TKN).

To this end, in this work, two contamination scenarios (xenobiotic conservative and
organic non-conservative) have been defined and studied to demonstrate how the per-
centage of probability of contamination detection and therefore the positioning strategy
change. Regarding instead that magnitude and duration of contamination can be uncertain,
the contamination parameters are randomly set up in terms of the contaminant mass and
contamination duration as it will be better described in the case study.
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2. Materials and Methods

In the proposed methodology, the sensor location problem is solved using a Bayesian
approach in which data are initially collected and the operator plans to improve the
monitoring strategy.

In such a case, two main components are required: a calibrated model for hydraulic
and water quality simulations in sewer systems (EPA-SWMM) and a Bayesian solver for
likelihood estimation and probability updating (based on Mat-SWMM toolbox).

2.1. Hydraulic Simulation Model

SWMM is the Storm Water Management Model of the US Environmental Protection
Agency (EPA) that use the one-dimensional De Saint Venant equations (DSVe). More
information can be found in Gironàs [33]. Besides to contain a flexible set of hydraulic
modelling capabilities used to route runoff and external inflows through a drainage system
network of pipes, channels, storage/treatment units and diversion structures, SWMM can
also estimate the production of pollutant loads associated with this runoff. These processes
can be modelled for any number of user-defined water quality constituents. In this study,
this function was used.

The concentration of a constituent that exits the conduit at the end of a time step is
obtained by integrating the conservation of mass equation and using average values for
quantities that may change over the time step, such as flow rate and conduit volume. The
quality of the water that exits the node is the mixture concentration of all water that enters
the node. Water quality modelling within storage unit nodes and manholes follows the
approach used for conduits.

As presented in the introduction, two equal contamination scenarios were considered:
Scenario 1: a xenobiotic conservative contaminant (such as metals or many contami-

nants of emerging concern) and
Scenario 2: an organic non conservative contaminant that also has an immanent

presence in wastewater. This hypothesis was introduced because the intrusion of a non-
conservative pollutant may represent a more dangerous scenario for public health and
because reaction kinetics introduce uncertainties that may make difficult the detect and
locate contamination source especially when the contaminant is also present in legit dis-
charges.

2.2. Structure of the MatSWMM Toolbox

The structure of MatSWMM is presented in Figure 1 and can be divided in three main
parts: handling of the SWMM files, management of SWMM simulations, and presentation
of results. The SWMM files (i.e., the input, report, and output files), are stored in a single
folder called “swmm files”. In order to run a simulation, it is only required to store the input
file created with SWMM, and the path to the input file must be described through code.
The simulation results are stored in four different folders that are related to the simulation
time and the three main types of elements in UDS (i.e., links, nodes, and subcatchments)
as “.csv” files that contain information of different attributes depending on the type of
simulated object. More information can be found in Riano-Briceno [34].
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2.3. Bayesian Solver

The main characteristic of Bayesian methods is their explicit use of probability for
quantifying uncertainty in inferences based on statistical data analysis. The process of
Bayesian data analysis can be idealized by dividing it into three steps. First, setting up a
full probability model, that is a joint probability distribution for all observable and unob-
servable quantities in a problem. Second, the conditioning on observed data: calculating
and interpreting the appropriate posterior distribution and the conditional probability
distribution of the unobserved quantities of ultimate interest, given the observed data. In
this study, these two phases were carried out by writing the model on “Matlab”, recalling
the functions of the “EPA-SWMM 5”, software for the hydraulic simulation of sewers,
by means of the “MatSWMM” toolbox. Third, evaluating the fit of the model and the
implications of the resulting posterior distribution, that is: how well does the model fit
the data, are the substantive conclusions reasonable, and how sensitive are the results to
the modelling assumptions in step 1? In response, one can alter or expand the model and
repeat the three steps.

Mathematically, we are considering the problem of finding a global maximizer (or
minimizer) of an unknown objective function f :

x∗ = arg max f (x) x ∈ X (1)

In global optimization, X is often a compact subset of Rd but the Bayesian optimization
framework can be applied to more unusual search spaces that involve categorical or
conditional inputs, or even combinatorial search spaces with multiple categorical inputs.
Furthermore, we will assume the black-box function f has no simple closed form but
can be evaluated at any arbitrary query point x in the domain. This evaluation produces
noise-corrupted (stochastic) outputs y ∈ R such that E [y|f (x)] = f (x). In other words, we
can only observe the function f through unbiased noisy point-wise observations y.
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In summary, the Bayesian optimization framework has two key ingredients. The
first ingredient is a probabilistic surrogate model, which consists of a prior distribution
that captures our beliefs about the behavior of the unknown objective function and an
observation model that describes the data generation mechanism. The second ingredient is
a loss function that describes how optimal a sequence of queries are; in practice, these loss
functions often take the form of regret, either simple or cumulative. Ideally, the expected
loss is then minimized to select an optimal sequence of queries. After observing the output
of each query of the objective, the prior is updated to produce a more informative posterior
distribution over the space of objective functions.

As anticipated, for likelihood estimation and probability updating a bayesian solver
was implemented by writing a code in C language using MatLab® and the MatSWMM
toolbox, the latter useful to invoke some functions and objects from the .inp file and start
the hydraulic simulations for network contamination.

MatSWMM is an additional module of the SWMM computational engine in order to
preserve the code integrity. It is compiled as a DLL, so it can be compatible with C-based
programming languages, like the one used in this case. MatSWMM is a flexible tool,
i.e., a software package that gives the user the possibility to manipulate the simulation
results easily for data analysis and/or system edition functionalities, since it has been
structured for three high-level programming languages (i.e., C++, Python, and LabVIEW),
guaranteeing the possibility of implementing easily interfaces, and physical applications,
taking advantage of matrix-oriented programming, plotting capabilities, optimization and
control toolboxes. The toolbox works as a co-simulation engine, which is based on SWMM
and it has been developed as a collection of functions in order to facilitate the expansion of
the framework.

Presenting the merits of the code implemented, Figure 2 shows a flow chart that
explains step by step the logic of Bayesian solver.

The first step consists in a network pre-screening procedure that allows to immediately
eliminate all those nodes that are certainly not useful/strategic for the positioning of the
contamination detection sensors.

In this case these nodes are:

• Outfall nodes, because clearly positioning a sensor in the terminal nodes does not
give me any advantage for the purposes of rapid interception and containment of
contamination;

• Head nodes, since positioning the sensors in those nodes would give a 1:1 information,
i.e., it would mark a trace of contamination only if it started from that node so it would
not be of help in all those other cases in which the source of contamination has started
or it has moved somewhere else.

At the end of the pre-screening procedure, we obtain a first set of nodes that can be
used for positioning the sensors, which however is still very large; at this point we then
move on to the second step and apply the Bayesian method.

The second step consists in a further screening of nodes eligible for positioning but
through the calculation of the Bayesian probability.
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Figure 2. Flow chart of numerical simulation model.

The origin of Bayesian philosophy lies in an interpretation of Bayes’ Theorem and it
derives from two theorems, the composed probability theorem and the total probability
theorem [35]:

Composed probability theorem P [A|B] = P [A ∩ B]/P [B] with P [B] > 0 (2)

Total/absolute probability theorem P [A ∩ B] = P [A|B] × P [B] (3)

Bayes′ Theorem P[A|B] = P[B|A]× P[A]

P[B]
(4)

In which:

• P[A|B] is the conditional probability of A, known B. It is also called posterior proba-
bility, because it depends on the specific value of B;

• P[B|A] is the conditional probability of B, known A;
• P[A] is the prior probability or marginal probability of A. “A priori” means that it does

not consider any information about B;
• P[B] is the prior probability B and acts as a normalizing constant.

Bayesian interpretation asserts that the probability of a hypothesis A conditioned
upon some evidence B is equal to its likelihood P[B|A] times its probability prior to any
evidence P[A], normalized by P[B]. The further claim that this is a right and proper way of
adjusting our beliefs in our hypotheses given new evidence is called conditionalization.
After applying Bayes’ theorem to obtain P[A|B] adopt that as your posterior degree of belief
in A or, Bel[A] = P[A|B]. Conditionalization, in other words, advocates belief updating via
probabilities conditional upon the available evidence. It identifies posterior probability
(the probability function after incorporating the evidence, which we are writing Bel[A])
with conditional probability (the prior probability function conditional upon the evidence,
which is P[A|B]).

In the present application, all network nodes were considered to have the same
probability to host the contamination event, while different probabilities were established
in this analysis based on the information about the system and the served area. Obviously,
any different hypothesis on contamination do not impact the generality of the approach.
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As in Sambito [32], each sensor network configuration was investigated by 1000
random contamination events, and its efficiency was evaluated by some indicators. The
isolation likelihood F1, contamination detection F2 and sensor network reliability or redun-
dancy F3 are expressed by the following equations:

F1 =
1
S

S

∑
i=1

dr (5)

F2 =
∑S

i=1 dr

∑S
i=1 dt

(6)

F3 =
1

∑S
i=1 dt

S

∑
i=1

Rr (7)

where S is the total number of analyzed contamination events; dr is 1 if the contamination
source was correctly identified by the sensor network and is 0 otherwise; dt is 1 if the
contamination was correctly detected by the sensor network and is 0 otherwise; and Rr
is 1 if the contamination was detected by at least two sensors and is equal to 0 otherwise.
The indicator F1 provides information on the ability of the sensors network to locate the
contamination source, the indicator F2 provides information on the ability of the sensor
network to detect the contamination event while F3 indicates the reliability of the sensor
network (more than one sensor) in detecting an event. If the contamination is not confirmed
by more than one sensor in the system, false positives may be present.

As initial hypothesis on possible sensor location has a relevant impact on computa-
tional efforts, in this study, the tests are performed considering the following approaches
(Prior A, B, C) to compare the results:

• Prior A: no pre-screening procedure and no prior knowledge (each node has an equal
initial probability to be the location of a sensor).

• Prior B: no prior knowledge and pre-screening procedure based on network topology.
• Prior C: pre-screening procedure and prior knowledge based on water fluxes.

The Bayesian approach allows to make a further selection based substantially on the
experience that the sensor has of intercepting contamination if positioned in that node,
it is thus possible to identify a more restricted set of nodes based on the probability of
contamination detection (posterior probability). Once a threshold has been established,
only the nodes that have a greater or equal value are chosen and all those that have a lower
contamination detection capacity are excluded.

If the set is still large or too small, it is possible to set a higher or lower selection
threshold thus making the model flexible to the various network sizes.

2.4. Case Study

The literature Example 8, presented in the EPA SWMM reference manual, is a com-
bined sewer system that convey both sanitary sewerage and stormwater through the same
pipes. Combined sewer systems are designed to discharge the excess wastewater directly
to a water body through diversion regulators. In the model, the flow regulator structures
are not defined as elements directly, but through a combination of orifices, weirs and pipes.
The combined sewer pipes with pipe’s name “Px” (where x represents a sequential number)
are designed to capture of the sanitary and stormwater flows; the pipelines called “Inter-
ceptors” with pipe’s name “Ix”, to capture 100% of the sanitary flows during dry weather
periods and convey them to a wastewater treatment plant (WWTP, O2) instead those called
“stream”, where the pipes takes name “Cx”, have the task of remove the excess flows in case
of combined sewer overflow and discharge them directly into the river (O1). Jx and JIx
represent junctions only Aux3 has a different name as dry weather and wet weather flows
are split.
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The network scheme reported in Figure 3, serves an area of 0.12 km2 and consists of
31 nodes (28 junctions, 1 well and 2 outfalls), 29 pipes and a pump. The pump station is
at the downstream end of the interceptor and the node “Well” is represented by a storage
node and serve as the wet well for the pump station.
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However, before applying the Bayesian procedure, the contamination in the network
must be simulated. To this end, it is first necessary to select the node (s) that will be a source
of contamination and start the hydraulic simulation in the network and as anticipated, two
scenarios have been assumed. Considering that the position, magnitude and duration of
contamination can be uncertain, each model application is given by a random simulation
in which the contamination parameters are randomly set up in terms of the contaminant
mass, contamination duration and contamination node.

In scenario 1, the xenobiotic conservative contaminant mass is randomly set between
0.1 kg and 0.5 kg; the contamination duration is randomly set between 0.25 h and 3 h.

In scenario 2, the organic non-conservative contaminant mass is randomly set between
1 kg and 3 kg; the contamination duration is randomly set between 0.25 h and 3 h. As
the contaminant is supposed to be immanently present in wastewater, a constant load
of 0.2 kg/h is considered from all nodes. Contaminant decay, according to Example 8
reference, is based on a first order decay law with a decay constant equal to 0.05 day−1.

3. Results and Discussion

As described in the previous paragraphs, the first step is that of the pre-screening,
which is configured in the identification and elimination from the set of candidate nodes
for the positioning of the contamination detection sensors, the outfalls nodes and the head
nodes that are considered unlikely to be able to discriminate the location of contamination
as the first group has all the network upstream and the second group has no nodes
upstream.

For the case study, the nodes eliminated thanks to the initial pre-screening are 7 out of
30, that are:

• O1 and O2 which are the outfalls nodes;
• J1, J2a, Aux3, J12 and J13 which are the head nodes;
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The set of nodes suitable for positioning the sensors downstream of the prescreening
is therefore formed by 23 nodes. As discussed above, all the nodes (apart outfalls) have the
same probability of being contaminated.

The initial step of the analysis is the definition of sensor “prior probability” according
to the 3 prior hypotheses. Probability density functions are shown in Figure 4 and they
are independent from the nature of contaminant. In Prior A, all the nodes have the same
probability of being sensor location while Prior B and Prior C rely on some prior information
based on network topology and hydraulic variables.
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To evaluate the differences in terms of optimal sensor placement in the two contami-
nation scenarios (xenobiotic conservative and immanent non-conservative), six Bayesian
procedure (2 scenarios for each of the 3 prior distributions) were run in parallel considering
3 sensors to be located and running 10 update steps of 100 simulations each. After each
step, the two nodes (rounded 10% of the total) with the lower posterior probabilities are
removed from the analysis.

The results of Scenario 1 are quite in line with previous literature. The best locations
for sensors are all in the downstream part of the network (JI10 and JI11) and the optimal
sensor configuration is made up these two sensors plus a third one (JI5) in the middle
part of the network (Figure 5). The results of Prior B are omitted because quite similar to
Prior C.

Independently from prior distribution, the final configuration of the sensor network
remains the same and it can detect 91% of contamination episodes. F1 is equal to 84%
so only two contamination events for every tenth are not located. F2 is equal to 92.3%
showing than when the contamination is detected, it is most likely correctly located. F3 is
equal to 100% meaning that all the events were detected by at least 2 sensors and this is
relevant for the reliability of the monitoring system. Differences between prior distributions
are only related to the computational efforts to reach the optimal configuration: starting
from the non-informative Prior A, only after 9 Bayesian updates (900 simulations), the
method provides negligible updates to the posterior sensor probability distributions. Using
the Prior B and C, without significant differences among them, after 5 Bayesian updates,
the method only provides negligible updates and further simulations are not useful to
discriminate the best location for sensors.

Scenario 2 provides different results: efficiencies are lower and the prior probability
distribution affects slightly the optimal sensor configuration that is, in any case, different
with respect to the Scenario 1.
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Figure 5. Posterior probabilities in Scenario 1.A (a) and 1.C (b).

Starting from non-informative Prior A, the best configuration is given by sensors in
nodes J11, JI5 and JI10 that are no more concentrated in the downstream part of the network
but distributed homogenously in the system (Figure 6). The system was able to detect only
the 82% of the events because others were presumably masked by the immanent discharges
in all the nodes of the system. Indicator F1 was equal to 67%—so the monitoring system
was able to locate 2 events every three; the indicator F2 is equal to 81.7%—demonstrating
that a large percentage of the detected events are also correctly located. Redundancy F3
drops greatly with respect to the Scenario 1 reaching only 78%.

Prior B provides a different optimal configuration in which two sensors are located in
the same nodes than Prior A (J11 and JI5) and the third one is in node JI11. This last node is
near to JI10 and on the same main sewer so the differences cannot be considered relevant
but enough to provide better detection (85%), higher values of indicators F1 (70%) and F2
(82.3%) keeping F3 (77.8%) substantially at the same level of the previous case.
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Prior C provides another optimal configuration in which two sensors are located in
the same nodes than Prior A (J11 and JI10) and the third one is in node JI2. Only one
node is common between Prior B and Prior C (J11). Detection capacity drops to 78%,
lower values of indicators F1 (61%) and F2 (78.2%) keeping F3 (76.8%) substantially at the
same level of the previous case. In none of the cases, after 10 updates, the variation of
posterior probability can be considered negligible demonstrating that some other steps
may be needed to help the method to improve the selection of sensor locations.

To sum up the results, Scenario 2 shows that the contamination kinetics and the
presence of a continuous contribution from all nodes provide a relevant impact on sensor
locations and some general comments can be provided on contamination monitoring and
source locations:

• Sensor deployment is dependent on contaminant kinetics and detectability with
respect to background concentration so that more dense and uniformly distributed
networks are expected when degradable and immanent contaminants need to be
investigated;

• Xenobiotic conservative contaminations are easier to be located provided that sensor
technology is sufficiently reliable and that networks can be deployed in downstream
nodes so a smaller number of sensors is able to investigate large portions of the
drainage system;

• The Bayesian approach gives its best in this type of problem, in which the initial
database is small and only general and non-formal information is available about
polluting sources; the method is able to introduce information coming from the initial
detection exercises to improve the network in time thus allowing for deploying an
initial sensor network configuration to be updated once a sufficient number of events
are detected.

4. Conclusions

The goal of this study was to investigate Bayesian methods to identify optimal sensor
distribution to solve a contamination detection and location problem. Some examples in
literature relies on the simplified hypothesis of considering xenobiotic soluble conservative
contaminants that are not usually present in the sewers system (such as metals). In this
study, a non-conservative and immanent contaminant was considered (such as organic
carbon or nitrogen) that is usually present in urban wastewater but that may be the object
of illicit contamination when loads are higher than what is authorized by law.

In such a case, two problems have to be faced by the monitoring system: the decay of
the contaminant, so that the path is longer from the contamination node and the sensor
and the chances are smaller to detect it; and the presence of distributed loads of the same
contaminant that is illicitly discharged so downstream sensors are less efficient in the
location exercise.

The method demonstrated to be versatile being able to obtain significant results both
in the conservative and in the non-conservative scenario. Some interesting considerations
may arise from the comparison of the two cases:

• The selection of prior distribution is irrelevant for the selection of the optimal sensor
configuration in the conservative scenario while affects results in the non-conservative
case; differences are not great (with the Prior B outperforming the others) but they are
not negligible.

• Prior C based on flows probably does not adequately address the fact that with bigger
flows, the sensor may be unable to detect the contamination due to the masking effect
of distributed discharges of the same chemical.

• The number of steps needed to achieve the optimal configuration is much higher in
the non-conservative case, showing the presence of greater uncertainties, and results
are worse even if still largely acceptable.

• The two sensor configurations are different with the conservative case privileging the
downstream nodes and the non-conservative one suggesting a more balanced config-
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uration. This demonstrates that the nature of contaminant is a relevant information
for deploying the best possible sensing strategy.

The study showed that some nodes can be considered a good starting point for any
monitoring network as they demonstrated to be relevant both in case of conservative
and non-conservative contaminants. Some others have to be selected depending on the
contaminant that has to be searched.

In conclusion, the methodology should be upgraded and tested to take into account the
presence of multiple contamination sources and the possibility of deploying Lagrangian sen-
sors carried by the flow. Additionally, the comparison with fault isolation approaches [36]
may be interesting from the perspective of transferring the fault mode and effect analysis
(FMEA)-type approaches to the water industry.

Author Contributions: M.S., G.F. equally contributed to the present research and to the preparation
of the paper. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Passerat, J.; Ouattara, N.K.; Mouchel, J.-M.; Rocher, V. Impact of an intense combined sewer overflow event on the microbiological

water quality of the Seine River. Water Res. 2011, 45, 893–903. [CrossRef] [PubMed]
2. Piazza, S.; Mirjam Blokker, E.J.; Freni, G.; Puleo, V.; Sambito, M. Impact of diffusion and dispersion of contaminants in water

distribution networks modelling and monitoring. Water Sci. Technol. Water Supply 2020, 20, 46–58. [CrossRef]
3. Francés-Chust, J.; Carpitellan, S.; Herrera, M.; Izquierdo, J.; Montalvo, I. Optimal placement of quality sensors in water distribution

systems. In Proceedings of the Conference: Mathematical Modelling Conference in Engineering & Human Behaviour, Valencia,
Spain, 10–12 July 2019.

4. Lifshitz, R.; Ostfeld, A. Clustering for real time response to water distribution system contamination event intrusion. J. Water
Resour. Plan. Manag. 2019, 145, 04018091. [CrossRef]

5. Piazza, S.; Sambito, M.; Feo, R.; Freni, G.; Puleo, V. Optimal positioning of water quality sensors in water distribution networks:
Comparison of numerical and experimental results. In Proceedings of the CCWI 2017—15th International Conference on
Computing and Control for the Water Industry, Sheffield, UK, 5–7 September 2017.

6. Bourgeois, W.; Burgess, J.E.; Stuetz, R.M. On-line monitoring of wastewater quality: A review. J. Chem. Technol. Biotechnol. 2001,
76, 337–348. [CrossRef]

7. Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R.P.; de Freitas, N. Taking the human out of the loop: A review of Bayesian
optimization. Proc. IEEE 2016, 104, 148–175. [CrossRef]

8. Brochu, E.; Brochu, T.; de Freitas, N. A Bayesian interactive optimization approach to procedural animation design. In Proceedings
of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Madrid, Spain, 2–4 July 2010; pp. 103–112.

9. Lizotte, D.; Wang, T.; Bowling, M.; Schuurmans, D. Automatic gait optimization with Gaussian process regression. In Proceedings
of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, 6–12 January 2007; pp. 944–949.

10. Martinez-Cantin, R.; de Freitas, N.; Doucet, A.; Castellanos, J.A. Active policy learning for robot planning and exploration under
uncertainty. Proc. Robot. Sci. Syst. 2007, 3, 321–328.

11. Marchant, R.; Ramos, F. Bayesian optimization for intelligent environmental monitoring. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 7–12 October 2012; pp. 2242–2249.
[CrossRef]

12. Wang, Z.; Shakibi, B.; Jin, L.; de Freitas, N. Bayesian multi-scale optimistic optimization. In Proceedings of the 17th International
Conference on Artificial Intelligence and Statistics (AISTATS), Reykjavic, Iceland, 22–25 April 2014; pp. 1005–1014.

13. Hutter, F.; Hoos, H.H.; Leyton-Brown, K. Sequential Model-based Optimization for General Algorithm Configuration, Learning and
Intelligent Optimization; Springer: Berlin, Germany, 2011; pp. 507–523.

14. Wang, Z.; Zoghi, M.; Matheson, D.; Hutter, F.; de Freitas, N. Bayesian optimization in high dimensions via random embeddings.
In Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, Beijing, China, 3–9 August 2013; pp.
1778–1784.

15. Bergstra, J.; Bardenet, R.; Bengio, Y.; Kegl, B. Algorithms for hyper-parameter optimization. In Proceedings of the 25th Annual
Conference on Neural Information Processing Systems (NIPS 2011), Granada, Spain, 12–17 December 2011; pp. 2546–2554.

16. Hoffman, M.; Shahriari, B.; de Freitas, N. On correlation and budget constraints in model-based bandit optimization with
application to automatic machine learning. In Proceedings of the 17th International Conference on Artificial Intelligence and
Statistics (AISTATS), Reykjavic, Iceland, 22–25 April 2014; pp. 365–374.

http://doi.org/10.1016/j.watres.2010.09.024
http://www.ncbi.nlm.nih.gov/pubmed/20934197
http://doi.org/10.2166/ws.2019.131
http://doi.org/10.1061/(ASCE)WR.1943-5452.0001031
http://doi.org/10.1002/jctb.393
http://doi.org/10.1109/JPROC.2015.2494218
http://doi.org/10.1109/IROS.2012.6385653


Water 2021, 13, 934 14 of 14

17. Snoek, J.; Larochelle, H.; Adams, R.P. Practical Bayesian optimization of machine learning algorithms. In Proceedings of the
25th International Conference on Neural Information Processing Systems, New York, NY, USA, 3–6 December 2012; Volume 2,
pp. 2951–2959.

18. Swersky, K.; Snoek, J.; Adams, R.P. Multi-task Bayesian optimization. In Proceedings of the Neural Information Processing
Systems, Harrahs and Harveys, Lake Tahoe, CA, USA, 5–10 December 2013; pp. 2004–2012.

19. Thornton, C.; Hutter, F.; Hoos, H.H.; Leyton-Brown, K. Auto-WEKA: Combined selection and hyperparameter optimization of
classification algorithms. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Chicago, IL, USA, 11 August 2013; pp. 847–855.

20. Garnett, R.; Osborne, M.A.; Roberts, S.J. Bayesian optimization for sensor set selection. In Proceedings of the 9th ACM/IEEE
International Conference on Information Processing in Sensor Networks; Association for Computing Machinery: New York, NY, USA,
2010; pp. 209–219.

21. Srinivas, N.; Krause, A.; Kakade, S.M.; Seeger, M. Gaussian process optimization in the bandit setting: No regret and experimental
design. In Proceedings of the 27th International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010; pp. 1015–1022.

22. Mahendran, N.; Wang, Z.; Hamze, F.; de Freitas, N. Adaptive MCMC with Bayesian optimization. J. Mach. Learn. Res. 2012, 22,
751–760.

23. Azimi, J.; Jalali, A.; Fern, X. Hybrid batch Bayesian optimization. In Proceedings of the 29th International Conference on Machine
Learning, Edinburgh, UK, 26 June–1 July 2012; pp. 1215–1222.

24. Brochu, E.; Cora, V.M.; de Freitas, N. A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User
Modeling and Hierarchical Reinforcement Learning; Technical Report UBC TR-2009-23; Department of Computer Science, University
of British Columbia: Vancouver, BC, Canada, 2009.

25. Marsalek, J.; Rochfort, Q. Urban wet-weather flows: Sources of fecal contamination impacting on recreational waters and
threatening drinking-water sources. J. Toxicol. Environ. Health A 2004, 67, 1765–1777. [CrossRef] [PubMed]

26. Nawrot, N.; Wojciechowska, E.; Rezania, S.; Walkusz-Miotk, J.; Pazdro, K. The effects of urban vehicle traffic on heavy metal
contamination in road sweeping waste and bottom sediments of retention tanks. Sci. Total Environ. 2020, 749, 141511. [CrossRef]
[PubMed]

27. Cryder, Z.; Greenberg, L.; Richards, J.; Wolf, D.; Luo, Y.; Gan, J. Fiproles in urban surface runoff: Understanding sources and
causes of contamination. Environ. Pollut. 2019, 250, 754–761. [CrossRef] [PubMed]

28. Ghane, E.; Ranaivoson, A.Z.; Feyereisen, G.W.; Rosen, C.J.; Moncrief, J.F. Comparison of Contaminant Transport in Agricultural
Drainage Water and Urban Stormwater Runoff. PLoS ONE 2016, 11. [CrossRef] [PubMed]

29. Su, X.; Sutarlie, L.; Loh, X.J. Sensors, Biosensors, and Analytical Technologies for Aquaculture Water Quality. Research 2020,
8272705. [CrossRef] [PubMed]

30. Pasika, S.; Gandla, S.T. Smart water quality monitoring system with cost-effective using IoT. Heliyon 2020, 6, e04096. [CrossRef]
[PubMed]

31. Yu, H.C.; Tsai, M.Y.; Tsai, Y.C.; You, J.J.; Cheng, C.L.; Wang, J.H.; Li, S.J. Development of Miniaturized Water Quality Monitoring
System Using Wireless Communication. Sensors 2019, 19, 3758. [CrossRef] [PubMed]

32. Sambito, M.; Di Cristo, C.; Freni, G.; Leopardi, A. Optimal water quality sensor positioning in urban drainage systems.
J. Hydroinform. 2020, 22, 46–60. [CrossRef]

33. Gironás, J.; Roesner, L.A.; Davis, J.; Rossman, L.A.; Supply, W. Storm Water Management Model Applications Manual; National Risk
Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency: Cincinnati, OH,
USA, 2009.

34. Riano-Briceno, G.; Barreiro-Gomeza, J.; Ramirez-Jaimea, A.; Quijanoa, N.; Ocampo-Martinez, C. MatSWMM—An Open-Source
Toolbox for Designing Real-Time Control of Urban Drainage Systems. Environ. Model. Softw. 2016, 83, 143–154. [CrossRef]

35. Korb, K.B.; Nicholson, A.E. Bayesian Artificial Intelligence, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2010.
36. Blanke, M.; Kinnaert, M.; Lunze, J.; Staroswiecki, M. Diagnosis and Fault-Tolerant Control, 3rd ed.; Springer: Berlin/Heidelberg,

Germany, 2015. [CrossRef]

http://doi.org/10.1080/15287390490492430
http://www.ncbi.nlm.nih.gov/pubmed/15371215
http://doi.org/10.1016/j.scitotenv.2020.141511
http://www.ncbi.nlm.nih.gov/pubmed/32829276
http://doi.org/10.1016/j.envpol.2019.04.060
http://www.ncbi.nlm.nih.gov/pubmed/31035158
http://doi.org/10.1371/journal.pone.0167834
http://www.ncbi.nlm.nih.gov/pubmed/27930684
http://doi.org/10.34133/2020/8272705
http://www.ncbi.nlm.nih.gov/pubmed/32149280
http://doi.org/10.1016/j.heliyon.2020.e04096
http://www.ncbi.nlm.nih.gov/pubmed/32642574
http://doi.org/10.3390/s19173758
http://www.ncbi.nlm.nih.gov/pubmed/31480344
http://doi.org/10.2166/hydro.2019.036
http://doi.org/10.1016/j.envsoft.2016.05.009
http://doi.org/10.1007/978-3-662-47943-8

	Introduction 
	Nature of Contaminants in Sewers 
	Polluting Sources Identification 
	Optimal Sensor Location 

	Materials and Methods 
	Hydraulic Simulation Model 
	Structure of the MatSWMM Toolbox 
	Bayesian Solver 
	Case Study 

	Results and Discussion 
	Conclusions 
	References

